Share:


Flight trajectories comparison in the Baltic FAB / Baltijos funkcinio oro erdvės bloko skrydžių trajektorijų palyginimas

Abstract

Aviation is one of the types of transport which has a crucial role in the modern world and develops with unprecedent speed. As the number of flights tends to increase, the Air Traffic Management (ATM) system has to ensure the safety of these flights and effectiveness of them. The design and use of the European routes and use of the air route network are considered to be a major causal factor of flight inefficiencies in the continent. The present ATM system needs to be reorganised to satisfy airspace operator needs and maintain safety levels, because of the recent and future predicted traffic growth and not always satisfactory indicators of the efficiency of the ATM system.The airspace is currently fragmented along national borders that is why the efficiency of flights is not assured i.e. to perform flights along optimal trajectories avoiding delays, excessive fuel burn and emissions. One of the conditions for ATM system to be more effective is connection of the airspace blocks, into Functional Airspace Blocks (FAB), within which more efficient flight could be conducted based on more direct routes connecting entry and exit points of the FAB. According to the analysis on European and US ATM systems, where the European ATM system is the sum total of a large number of separate Air Navigation Service Providers (ANSP) whereas the US system is operated by a single ANSP, it was analysed and stated that the less fragmentation there is, the more efficient flights are.The focus of this paper is to show the differences between fixed routes and direct trajectories (Great Circle) in the Baltic FAB in terms of flight distance, fuel burn and emission.


The airspace is currently fragmented along national borders that is why the efficiency of flights is not assured i.e. to perform flights along optimal trajectories avoiding delays, excessive fuel burn and emissions. One of the conditions for ATM system to be more effective is connection of the airspace blocks, into Functional Airspace Blocks (FAB), within which more efficient flight could be conducted based on more direct routes connecting entry and exit points of the FAB.


According to the analysis on European and US ATM systems, where the European ATM system is the sum total of a large number of separate Air Navigation Service Providers (ANSP) whereas the US system is operated by a single ANSP, it was analysed and stated that the less fragmentation there is, the more efficient flights are.


The focus of this paper is to show the differences between fixed routes and direct trajectories (Great Circle) in the Baltic FAB in terms of flight distance, fuel burn and emission.


Santrauka


Aviacija – viena iš greitai augančių transporto šakų, kuri yra svarbi šiuolaikiniame moderniajame pasaulyje. Kadangi skrydžių nuolatos daugėja, oro eismo valdymo (OEV) sistema turi užtikrinti skrydžių saugą ir efektyvumą. Europos oro maršrutų išdėstymas ir naudojimas laikomi svarbiausiais skrydžių neefektyvumo veiksniais žemyne. Dėl esamo ir numatomo oro eismo augimo ir ne visados patenkinamų OEV sistemos efektyvumo rodiklių esama OEV sistema turi būti reorganizuota, siekiant užtikrinti oro erdvės naudotojų poreikius ir palaikyti reikalingą saugos lygį.Šiuo metu oro erdvė yra sudalyta pagal kiekvienos šalies valstybines ribas, dėl to skrydžių efektyvumas nėra optimalus, t. y. atliekami skrydžiai nevykdomi pagal optimalias trajektorijas vengiant užlaikymų, mažinant naudojamo kuro sąnaudas ir emisijas. Viena sąlyga, siekiant OEV sistemą padaryti efektyvesnę, – sujungti oro erdvės blokus į funkcinius oro erdvės blokus (FOEB), kur skrydžiai būtų vykdomi tiesesniais maršrutais tarp įskridimo ir išskridimo į FOEB taškų.Atlikus Europos OEV ir JAV sistemų analizę matyti, kad Europos OEV sistema susideda iš daugybės atskirtų oro navigacijos paslaugų teikėjų, o JAV sistemą valdo vienas oro navigacijos paslaugų teikėjas. Konstatuota, kad ten, kur fragmentacija mažesnė, skrydžių efektyvumas didesnis.Straipsnio tikslas – parodyti skirtumus tarp fiksuotųjų ir laisvųjų maršrutų Baltijos funkciniame oro erdvės bloke skrydžių atstumo, sunaudojamo kuro ir emisijų faktoriais.


Reikšminiai žodžiai:  Baltijos FOEB, skrydžio trajektorija, fiksuotieji maršrutai, laisvieji maršrutai, tiesūs maršrutai, neefektyvumas.


 

Keyword : Baltic FAB, flight trajectory, fixed route, free route, direct route, inefficiency

Published in Issue
Dec 21, 2018
Abstract Views
60
PDF Downloads
46
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aircraft analysis and fleet planning. (2005). Aircraft commerce, issue No.42. Retrieved from http://www.aircraftcommerce.com/sample_articles/sample_articles/fleet_planning_2_sample.pdf

Baltic FAB concept of operations, version 1. (2012).

Bucuroiu, R. (2013). Status of free route airspace developments. Eurocontrol. Retrieved from https://www.eurocontrol.int/sites/default/files/publication/files/brochure-fra-20161209.pdf

Chesneau, S., Fuller, I., & Hustache, C. (2002). ATM flight efficiency and its impact on the environment. EUROCONTROL Experimental Centre.

Dudoit, A., & Stankūnas, J. (2015). The comparison of the enroute horizontal flight trajectory components. Science – Future of Lithuania, 7(5) 577-582. ISNN 2029-2341. https://doi.org/10.3846/mla.2015.836

EASA.AATPL. (2008). Ground Training Series – Navigation 1 – General Navigation. Oxford aviation academy.

Eddie, C. L., & Baciu, G. (2012). Introduction to wireless localization with iPhone SDK examples (1st ed.). IEEE. Wiley. ISBN 978-1-118-29851-0.

Enea, G., & Poretta, M. (2012). A comparison of 4D-trajectory operations envisioned for NextGen and SESAR, some preliminary findings, 5, 4152-4165.

European Network Operations Plan 2016-2019/20, June 2016.

FAA. (2015). Comparison of air traffic management-related operational performance: U.S./Europe.

FRA deployment in Europe. (2016).

Free Route Airspace. (2018). Retrieved from https://www.skybrary.aero/index.php/Free_Route_Airspace_(FRA)

Hoekstra, J. M., van Gent, R. N. H. W., & Ruigrok, R. C. J. (2002). Designing for safety: the „Free Flight“ air traffic management concept. Reliability Engineering & System Safety, 75(2), 215-232. https://doi.org/10.1016/S0951-8320(01)00096-5

Howell, D., Bennett, M., Bonn, J., & Knorr, D. (2003). Estimating the en-route efficiency benefits pool. ATM Seminar. Retrieved from http://www.atmseminar.org/seminarContent/seminar5/papers/p_023_MPM.pdf

Kondroška, V., & Stankūnas, J. (2012). Analysis of airspace organization considering air traffic flows. Transport, 27(3), 219-228. https://doi.org/10.3846/16484142.2012.719199

Kraus, J. (2011). Free route airpsace (FRA) in Europe. Free Route Airspace (FRA) Journal, 6(5), 129-135. Prague.

Krzyżanowski, M. (2013). Conflict free and efficient flight routes planning in Free Route Airspace. Prace Naukowe Politechniki Warszawskiej, Transport, 277-285.

Liutkevičius, D. (2017). Oro erdvės blokų formavimas Europos regione eigos tyrimas (Master’s thesis). Vilnius. VGTU.

Masiulionis, T. (2017). Automatizuota orlaivio pilotavimo vertinimo sistema (daktaro disertacija). Vilnius: „Technika“. ISBN 978-609-476-026-6. https://doi.org/10.20334/2017-032-M

Ngo, D., & Shamoun, F. (2016). Environmental cost of different unit rates. Sweden.

Peleckis, K. (2018). The analysis of the limited areas influence to free route airspace (Master’s thesis). Vilnius, VGTU.

Pereira, J. P. (2015). Free route airspace for route optimization (Master Thesis). Instituto Superior Tecnico. University of Lisbon Delft University of Technology, October.

Stankūnas, J., & Kondroška, V. (2012). Formation of methodology to model regional airspace with reference to traffic flows. Aviation, 16(3), 69-75. https://doi.org/10.3846/16487788.2012.732306

Šakalys, M. (2015). Oro transporto laisvųjų ir fiksuotųjų skrydžių maršrutų analizė (Master’s thesis). Vilnius. VGTU.