Share:


Statinio informacinio modeliavimo taikymo efektyvumo vertinimo kriterijai ir atvejo analizė / The criteria for the assessment of building information modeling application efficiency and case study

Abstract

The article proposes a system of criteria for assessing the effectiveness of BIM projects. Proposed criteria are divided into two groups: quantitative (calculated using formulas) and qualitative (scores are calculated according to the proposed scales). The criteria system includes assessment of time and cost variations, organizational scale of BIM deployment, BIM competency granularity level, BIM capability level, BIM maturity level. The criteria are intended to evaluate the already implemented BIM projects. In the study, the criteria were adapted for the evaluation of real project results, the findings, limitations and difficulties of the project, and the benefits of the application of the BIM were analyzed. The application of the methodology allows to assess the level at which BIM technology applied to construction projects. The collection of such data may lead to a constant monitoring of the BIM developing in the country.


Santrauka


Straipsnyje siūloma kriterijų sistema BIM projektų efektyvumui vertinti. Pasiūlyti kriterijai suskirstyti į dvi grupes: kiekybiniai (apskaičiuojami taikant formules) ir kokybiniai (vertinami balais pagal pasiūlytas skales). Į kriterijų sistemą įtraukti laiko ir kaštų kitimo vertinimas, BIM taikymo mastas organizacijoje, BIM išsamumo lygis, BIM pajėgumo lygis, BIM brandos lygis. Kriterijai skirti jau įgyvendintam BIM projektui vertinti. Atlikto tyrimo metu kriterijai pritaikyti realaus projekto rezultatams vertinti, analizuoti projekto radiniai, apribojimai ir sunkumai bei BIM taikymo naudos. Metodikos taikymas leidžia įvertinti, kokiu lygiu BIM technologijos taikomos statybos projektuose. Kaupiant tokius duomenis gali būti vykdoma nuolatinė BIM vystymosi šalyje stebėsena.


Reikšminiai žodžiai: BIM, statybos projektas, efektyvumo rodikliai, kriterijų sistema.

Keyword : BIM, construction project, efficiency indicators, criteria system

Published in Issue
Dec 21, 2018
Abstract Views
304
PDF Downloads
101
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abanda, F. H., Tah, J. H. M., & Cheung, F. K. T. (2017). BIM in off-site manufacturing for buildings. Journal of Building Engineering, 14, 89-102. https://doi.org/10.1016/j.jobe.2017.10.002

Akanbi, L. A., Oyedele, L. O., Akinade, O. O., Ajayi, A. O., Delgado, M. D., Bilal, M., & Bello, S. A. (2018). Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator, Resources. Conservation and Recycling, 129, 175-186. https://doi.org/10.1016/j.resconrec.2017.10.026

Arayici, Y., Fernando, T., Munoz, V., & Bassanino, M. (2018). Interoperability specification development for integrated BIM use in performance based design. Automation in Construction, 85, 167-181. https://doi.org/10.1016/j.autcon.2017.10.018

Cavka, H., Staub-French, S., & Poirier, E. A. (2017). Developing owner information requirements for BIM-enabled project delivery and asset management. Automation in Construction, 83, 169-183. https://doi.org/10.1016/j.autcon.2017.08.006

Ciribini, A. L. C., Mastrolembo, S. V., & Paneroni, M. (2016). Implementation of an interoperable process to optimise design and construction phases of a residential building: A BIM Pilot Project. Automation in Construction, 71(1), 62-73. https://doi.org/10.1016/j.autcon.2016.03.005

Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, 75, 1046-1053. https://doi.org/10.1016/j.rser.2016.11.083

Hattab, M. A., & Hamzeh, F. (2018). Simulating the dynamics of social agents and information flows in BIM-based design. Automation in Construction, 92, 1-22. https://doi.org/10.1016/j.autcon.2018.03.024

Yuan, Z., Sun, C., & Wang, Y. (2018). Design for manufacture and assembly-oriented parametric design of prefabricated buildings. Automation in Construction, 88, 13-22. https://doi.org/10.1016/j.autcon.2017.12.021

Kassem, M., & Succar, B. (2017). Macro BIM adoption: Comparative market analysis. Automation in Construction, 81, 286-299. https://doi.org/10.1016/j.autcon.2017.04.005

Miettinen, R., & Paavola, S. (2014). Beyond the BIM utopia: approaches to the development and implementation of building information modelling. Automation in Construction, 43, 84-91. https://doi.org/10.1016/j.autcon.2014.03.009

Park, C. S., Kim, H. J., Park, H. T., Goh, J. H., & Pedro, A. (2017). BIM-based idea bank for managing value engineering ideas. International Journal of Project Management, 35, 699-713. https://doi.org/10.1016/j.ijproman.2016.09.015

Pavlovskis, M., Antucheviciene, J., & Migilinskas, D. (2016). Application of MCDM and BIM for evaluation of asset redevelopment solutions. Studies in Informatics and Control, 25(3), 293-302. https://doi.org/10.24846/v25i3y201603

Schlueter, A., & Geyer, P. (2018). Linking BIM and Design of Experiments to balance architectural and technical design factors for energy performance. Automation in Construction, 86, 33-43. https://doi.org/10.1016/j.autcon.2017.10.021

Singh, V., & Yalcinkaya, M. (2016). Data aggregation and information search in AEC/FM industry. Prieiga per internetą: https://www.bimthinkspace.com/project-management/

Smith, P. (2014). BIM Implementation – Global Strategies. Procedia Engineering, 85, 482-492. https://doi.org/10.1016/j.proeng.2014.10.575

Succar, B., & Kassem, M. (2015). Macro-BIM adoption: Conceptual structures. Automation in Construction, 57, 64-79. https://doi.org/10.1016/j.autcon.2015.04.018

Succar, B., Sher, W., & Williams, A. (2012). Measuring BIM performance: Five metrics. Architectural Engineering and Design Management, 8(2), 120-142. https://doi.org/10.1080/17452007.2012.659506

Won, J., & Leeb, G. (2016). How to tell if a BIM project is successful: A goal – driven approach. Automation in Construction, 69, 34-43. https://doi.org/10.1016/j.autcon.2016.05.022