MMCA-97 Conference, pp. 35-40 R. Čiegis (Ed) © 1997 Vilniaus Gedimino technikos universitetas

SOLUTIONS OF A NONLINEAR DIRICHLET PROBLEM IN WHICH THE NONLINEAR PART IS BOUNDED FROM ABOVE AND BELOW BY POLYNOMIALS

JAN BĘCZEK

Institute of Mathematics and Physics, Pedagogical University, ul. Żołnierska 14, PL-10561 Olsztyn, Poland,

ABSTRACT

In this paper we study the existence and multiplicity solutions of nonlinear elliptic problem of the form

Here, Ω is a smooth and bounded domain in \mathbb{R}^N , $N \geq 2$, $\lambda \in \mathbb{R}$ and $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous, even function satisfying the following condition

$$c_1 \cdot |t|^{\alpha} \leq f(t) \leq c_2 \cdot |t|^{p-1} \qquad for \ |t| > 1$$

$$0 \leq f(t) \leq c_3 \cdot |t| \qquad for \ |t| \leq 1$$

for some $c_1, c_2, c_3, p, \alpha \in R$, $c_1, c_2, c_3, \alpha > 0$ and $p > 1 + \alpha$. We shall show that, for $\lambda \in R$, $g \in L_r(\Omega)$ if N = 2, r > 1, $p > 1 + \alpha$ or $N \ge 3$, $r \ge \frac{2 \cdot N}{N+2}$, $1 + \alpha , the above problem has solutions.$ $Assuming additionally that, <math>\lambda \le \lambda_1$ and f is decreasing for $t \le 0$, we shall show that, this problem have excly one solution.

We take advantage of the fact, that a continuous, proper and odd (injective) map of the form I + C (where C is compact) is surjective (a homeomorphism).

1. THE MAIN RESULTS

We will consider the following nonlinear Dirichlet problem

$$\begin{array}{ll} \Delta u + \lambda \cdot u - f(u) \cdot u = g & \quad in \ \Omega \\ u = 0 & \quad on \ \delta \Omega \end{array} \tag{1}$$

Here, Ω is a smooth and bounded domain in \mathbb{R}^N , $N \geq 2$, $\lambda \in \mathbb{R}$ and $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous, even function satisfying the following condition

J. Bęczek

$$c_{1} \cdot |t|^{\alpha} \leq f(t) \leq c_{2} \cdot |t|^{p-1} \quad for \ |t| > 1 0 \leq f(t) \leq c_{3} \cdot |t| \qquad for \ |t| \leq 1$$
(2)

for some $c_1, c_2, c_3, p, \alpha \in \mathbb{R}$, $c_1, c_2, c_3, \alpha > 0$ and $p > 1 + \alpha$. We assume that, $p > 1 + \alpha$ for N = 2 and $1 + \alpha for <math>N \ge 3$.

For each $u \in W_{12}^{\circ}(\Omega)$, let us define the elements Lu, Tu as follows:

$$\begin{aligned} (Lu, \ \phi)_{12} &= \int_{\Omega} u \cdot \phi dx \\ (Tu, \ \phi)_{12} &= \int_{\Omega} f(u) \cdot u \cdot \phi dx \end{aligned}$$
(3)

for every $\phi \in W_{12}^{\circ}(\Omega)$.

LEMMA 1. If $u \in \overset{\circ}{W_{12}}(\Omega)$, then $Lu, Tu \in \overset{\circ}{W_{12}}(\Omega)$. P r o o f. Let $u \in \overset{\circ}{W_{12}}(\Omega)$. Then, for every $\phi \in \overset{\circ}{W_{12}}(\Omega)$, we have

$$|q_{1}(\phi)| = |\int_{\Omega} u \cdot \phi dx| \le \int_{\Omega} |u \cdot \phi| dx \le ||u||_{02} \cdot ||\phi||_{02} \le c \cdot ||\phi||_{12}$$

 and

$$\begin{aligned} |q_2(\phi)| &= |\int_{\Omega} f(u) \cdot u \cdot \phi dx| \leq \int_{\Omega} |f(u) \cdot u \cdot \phi| dx \\ &\leq ||f(u) \cdot u||_{0\frac{2\cdot N}{N+2}} \cdot ||\phi||_{0\frac{2\cdot N}{N+2}} \leq c \cdot ||\phi||_{12} \end{aligned}$$

for $N\geq 3$ or

$$|q_2(\phi)| \leq \| f(u) \cdot u \|_{02} \cdot \| \phi \|_{02} \leq c \cdot \| \phi \|_{12}$$

when N = 2.

This means that, functions q_1 and q_2 are linear continuous functionals defined on the Hilbert space W_{12}° (Ω). The Riesz theorem implies that, $Lu, Tu \in \overset{\circ}{W_{12}}$ (Ω). \Box

Thus we can define the operators $L, T : W_{12}^{\circ}(\Omega) \longrightarrow W_{12}^{\circ}(\Omega)$. Now we shall prove some properties of L and T.

LEMMA 2. The operator L is linear and compact.

Proof. It is obvious that, L is linear. Let us consider a bounded sequence $\{u_n\}$ in $\overset{\circ}{W_{12}}(\Omega)$. Since the imbedding $\overset{\circ}{W_{12}}(\Omega) \subset L_2(\Omega)$ is compact, there exists a subsequence $\{u_{n_k}\}$ such that $u_{n_k} \longrightarrow u$ in $L_2(\Omega)$, $k \longrightarrow \infty$. Hence

$$\|Lu_{n_k} - Lu\|_{12} \leq c \cdot \|u_{n_k} - u\|_{02} \longrightarrow 0.$$

This means that, $Lu_{n_k} \longrightarrow Lu$ in $\overset{\circ}{W_{12}}(\Omega)$ as $k \longrightarrow \infty$ and the operator L is compact. \Box

LEMMA 3. The map T is continuous and compact.

P r o o f. Let $u_n \longrightarrow u$ in $\overset{\circ}{W_{12}}(\Omega)$, $n \longrightarrow \infty$. The continuity of the imbedding $\overset{\circ}{W_{12}}(\Omega) \subset L_{\frac{2\cdot N}{N-2}}(\Omega)$ implies that $u_n \longrightarrow u$ in $L_{\frac{2\cdot N}{N-2}}(\Omega)$.

It follows from inequality (2) and the Vajnberg theorem that, $f(u_n) \cdot u \longrightarrow f(u) \cdot u$ in $L_{\frac{2 \cdot N}{(N-2) \cdot p}}(\Omega)$. Hence

$$\begin{split} \| Tu_n - Tu \|_{12} &= \sup_{\|\phi\|_{12}=1} |(T(u_n - Tu, \phi)_{12}| \\ &= \sup_{\|\phi\|_{12}=1} |\int_{\Omega} (f(u_n) \cdot u_n - f(u) \cdot u) \cdot \phi dx \\ &\leq \sup_{\|\phi\|_{12}=1} \| f(u_n) \cdot u_n - f(u) \cdot u \|_{0\frac{2 \cdot N}{N+2}} \cdot \| \phi \|_{0\frac{2 \cdot N}{N-2}} \\ &\leq c \cdot \sup_{\|\phi\|_{12}=1} \| f(u_n) \cdot u_n - f(u) \cdot u \|_{0\frac{2 \cdot N}{N+2}} \cdot \| \phi \|_{12} \\ &\leq c \cdot \| f(u_n) \cdot u_n - f(u) \cdot u \|_{0\frac{2 \cdot N}{N+2}} \longrightarrow 0 \end{split}$$

for $n \to \infty$, N > 2 and

$$\| Tu_n - Tu \|_{12} \leq \sup_{\|\phi\|_{12} = 1} \| f(u_n) \cdot u_n - f(u) \cdot u \|_{02} \cdot \| \phi \|_{02}$$

$$\leq c \| f(u_n) \cdot u_n - f(u) \cdot u \|_{02} \longrightarrow 0$$

for N = 2.

This proves continuity of T.

Now let $\{u_n\}$ be a bounded sequence in $W_{12}^{\circ}(\Omega)$. From the compactness of the imbedding $W_{12}^{\circ}(\Omega) \subset L_{\frac{2\cdot N\cdot p}{N+2}}(\Omega)$, we conclude that, there exists a subsequence $\{u_{n_k}\}$ such that $u_{n_k} \longrightarrow w$ in $L_{\frac{2\cdot N\cdot p}{N+2}}(\Omega)$, $k \longrightarrow \infty$. It follows from inequality (2) and the Vajnberg theorem that, $f(u_{n_k}) \cdot u_{n_k} \longrightarrow$ $f(w) \cdot w$ in $L_{\frac{2\cdot N}{N+2}}(\Omega)$. The continuity of T implies that T is compact. \Box

Let $A: \overset{\circ}{W_{12}}(\Omega) \longrightarrow \overset{\circ}{W_{12}}(\Omega)$ be a map defined by

$$A = I - \lambda \cdot L + T.$$

We shall prove some properties of A.

J. Bęczek

LEMMA 4. The map is odd.

Proof. $A(-u)=(-u)-\lambda\cdot L(-u)+T(-u)=-u+\lambda\cdot Lu-Tu=-(u-\lambda\cdot Lu+Tu)=-Au.\square$

LEMMA 5. The map A is proper.

P r o o f. We shall show that, $||Au||_{12} \to \infty$ if $||u||_{12} \to \infty$. Let $\{u_n\} \subset \overset{\circ}{W_{12}} (\Omega)$ and $||u_n||_{12} \to \infty$ as $n \to \infty$. Then

$$\begin{aligned} (Au_n, u_n)_{12} &= (u_n, u_n)_{12} - \lambda \cdot (Lu_n, u_n)_{12} + (Tu_n, u_n)_{12} \\ &= \| u \|_{12}^2 - \lambda \cdot \| u \|_{02}^2 + \int_{\Omega} f(u_n) \cdot u_n^2 dx \\ &\geq \| u_n \|_{12}^2 - \lambda \cdot \| u_n \|_{02}^2 + \int_{\Omega} |u_n|^{2+\alpha} dx \\ &= \| u_n \|_{12}^2 - \lambda \cdot \| u_n \|_{02}^2 + \| u_n \|_{02+\alpha}^{2+\alpha} \\ &\geq \| u_n \|_{12}^2 - \lambda \cdot \| u_n \|_{02}^2 + c \cdot \| u_n \|_{02}^{2+\alpha} \\ &\geq \| u_n \|_{12}^2 - \lambda \cdot \| u_n \|_{02}^2 + c \cdot \| u_n \|_{02}^{2+\alpha} \\ &= \| u_n \|_{12}^2 + \| u_n \|_{02}^2 (c \cdot \| u_n \|_{02}^\alpha - \lambda). \end{aligned}$$

But $(Au_n, u_n)_{12} \leq ||Au_n||_{12} \cdot ||u_n||_{12}$, therefore

 $\|Au_n\|_{12} \geq \|u_n\|_{12} + \|u_n\|_{02}^2 (c \|u_n\|_{02}^{\alpha} - \lambda) / \|u_n\|_{12} \longrightarrow \infty \text{ as } n \to \infty.$

THEOREM 1. The map A is surjective.

P r o o f. It follows from fact that, a continuous, proper and odd map of the form I + C (where C is a compact) is surjective.

THEOREM 2. If $\lambda \leq \lambda_1$ and f is decreasing for $t \leq 0$, then A is a homeomorphism.

P r o o f. We shall prove that A is injective. Let us assume that, there exist $u, v \in \overset{\circ}{W_{12}}(\Omega)$, such that Au = Av. Then

$$(Au, u - v)_{12} = (Av, u - v)_{12}$$
$$(u - v, u)_{12} - \lambda \cdot (Lu, u - v)_{12} + (Tu, u - v)_{12} -$$
$$- (v, u - v)_{12} + \lambda \cdot (Lv, u - v)_{12} - (Tv, u - v)_{12} = 0$$
$$(u - v, u - v)_{12} - \lambda \cdot (Lu - Lv, u - v)_{12} + (Tu - Tv, u - v)_{12} =$$
$$\parallel u - v \parallel_{12}^{2} - \lambda \cdot \parallel u - v \parallel_{02}^{2} + \int_{\Omega} (f(u) \cdot u - f(v) \cdot v) \cdot (u - v) dx = 0.$$

Hence

38

$$|| u - v ||_{12}^2 - \lambda \cdot || u - v ||_{02}^2 = -\int_{\Omega} (f(u) \cdot u - f(v) \cdot v) \cdot (u - v) dx.$$

Since $\lambda \leq \lambda_1$, the left-hand side of the equation is nonnegative, the righthand side is nonpositive, so u = v and therefore A is injective. From theorem 1 we conclude that, A is homeomorphism. \Box

An element $u \in \overset{\circ}{W_{12}}$ (Ω) is called a weak solution of problem (1), if the following condition is satisfied

$$\int_{\Omega} \nabla u \cdot \nabla \phi dx - \lambda \cdot \int_{\Omega} u \cdot \phi dx + \int_{\Omega} f(u) \cdot u \cdot \phi dx = -\int_{\Omega} g \cdot \phi dx \qquad (4)$$

for every $\phi \in \overset{\circ}{W_{12}}(\Omega)$.

Let $g \in W_{-12}(\Omega)$, then there exists $h \in \overset{\circ}{W_{12}}(\Omega)$ such that $-\int_{\Omega} g \cdot \phi dx = (h, \phi)_{12}$ and (4) can be written in the form

$$(u - \lambda \cdot Lu + Tu, \phi)_{12} = (h, \phi)_{12}$$
(5)

for every $\phi \in \overset{\circ}{W_{12}}(\Omega)$. This equation is equivalent to

$$u - \lambda \cdot Lu + Tu = h \tag{6}$$

or

$$Au = h$$
.

THEOREM 3. If $g \in L_r(\Omega)$ where, r > 1, N = 2, $p > 1 + \alpha$ or $N \ge 3$, $r > \frac{2 \cdot N}{N+2}$, $1 + \alpha , then there exists a weak solution of problem (1). If additionally <math>\lambda \le \lambda_1$ and function f is decreasing for $t \le 0$, the problem (1) has exactly one weak solution.

P r o o f. Let g satisfies the assumptions of theorem. Then

$$|\int_{\Omega} (-g) \cdot \phi dx| \leq ||g||_{02} \cdot ||\phi||_{02} \leq c \cdot ||\phi||_{12} \quad in \ case \ N=2$$

or

$$|\int_{\Omega} (-g) \cdot \phi dx| \leq \|g\|_{0^{\frac{2\cdot N}{N+2}}} \cdot \|\phi\|_{0^{\frac{2\cdot N}{N-2}}} \leq c \cdot \|\phi\|_{12} \quad for \ N \geq 3.$$

J. Bęczek

It denotes that $g \in W_{-12}(\Omega)$. The thesis of theorem follows from theorems 1 and 2.

REFERENCES

- [1] A. Ambrosetti and G. Prodi. On the inversion of some differentiable mappings with singularities between Banach spaces, *Ann. Math. Pure Appl.*, 93, 1972, P. 213–246.
- [2] A. Bahri and B. Berestycki. A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., 267, 1981, P. 1-30.
- [3] M. S. Berger. Nonlinearity and functional analysis, Academic Press, New York, 1977.
- [4] M. S. Berger and E. Podolak. On the solutions of a nonlinear Dirichlet problems, Indiana Univ. Math. J., 24, 1975, P. 837-846.
- [5] J. Bęczek. On solutions of some nonlinear Dirichlet problems, Zeszyty naukowe UG, 1987, P. 7-15.
- [6] J. Bęczek. On the existence of solutions of some nonlinear Dirichlet problems, Annales Polonici Math., XLIX, 1988, P. 45-51.
- [7] E. N. Dancer. On the Dirichlet Problem for Weakly Nonlinear Elliptic Partial Differential Equations, Proc. Royal. Soc., Edinburgh 76 A, 1977, P. 283-300.
- [8] J. Dugundi and A. Granas. Fixed point theory, PWN Warszawa, 1982.
- [9] O. Ladyzenskaya and N. Uralceva. Linear and Quasilinear Elliptic Partial Differential Equations, Academic Press, New York, 1968.
- [10] L. Nirenberg. Topics in Nonlinear Functional Analysis, Courant Inst. of Math. Sciences, New York, 1974.