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Abstract. In this paper, the boundary value problem for second order singularly
perturbed delay differential equation is reduced to a fixed-point problem v = Av
with a properly chosen (generally nonlinear) operator A. The unknown fixed-point
v is approximated by cubic spline vh defined by its values vi = vh(ti) at grid points
ti, i = 0, 1, . . . , N . The necessary for construction the cubic spline and missing the
first derivatives at the boundary are replaced by the derivatives of the corresponding
interpolating polynomials matching the grid points values nearest to the boundary
points. An approximation of the solution is obtained by minimization techniques
applied to a function whose arguments are the grid point values of the sought spline.
The results of numerical experiments with two boundary value problems for the second
order singularly perturbed delay differential equations as well as their comparison with
the results of other methods employed by other authors are also provided.
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1 Introduction

The problems we consider in this paper are boundary value problems for second
order singularly perturbed delay differential equations of the form

εy′′(x) = f
(
x, y(x), y′(x), y

(
α(x)

))
, a ≤ x ≤ b, (1.1)

y(x) = φ(x) for x ≤ a, y(b) = ψ, (1.2)
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where the functions f , φ and α,

f : D → R, D =
{

(t, z1, z2, z3) : a ≤ t ≤ b,−∞ ≤ zi ≤ +∞
}
,

φ : [γ, a]→ R, α : [a, b]→ (−∞, b], γ = min
a≤x≤b

α(x)

are continuous and 0 < ε� 1. Without a loss of generality we can assume that
y(a) = y(b) = 0.

The singularly perturbed problems appear in many areas of science and
technology and there exists a vast literature devoted to them. A good and
comprehensive review of the literature related to singularly perturbed problems,
perturbation methods and their applications can be found in [9], where the
bibliography consists of 513 items and among which there are research papers,
books devoted to the general theory and different applications, survey papers
and conference proceedings related to singularly perturbed problems. So, we
refer all the readers interested in the subject to this paper.

A method of solution of problem (1.1)–(1.2) we will propose was already
presented in [2] as an approximate method of solution of boundary value prob-
lems for delay differential equations (DDE in short) of the form

y′′(x) = f
(
x, y(x), y′(x), y

(
α(x)

))
, a ≤ x ≤ b, (1.3)

y(x) = φ(x) for min
x∈[a,b]

α(x) ≤ x ≤ a, y(b) = 0, (1.4)

where the functions f , α and φ,

f : D → R, D =
{

(t, z1, z2, z3) : a ≤ t ≤ b,−∞ ≤ zi ≤ +∞
}
,

α : [a, b]→ [β, b], β ≤ a, φ : [β, a]→ R,

are continuous and φ(a) = 0.
It was also discussed in [3] as an approximate method of solution of more

general boundary value problems for the system of DDEs of the form

dy(t)

dt
= f

(
t, y(t), y(t− τ1), . . . , y(t− τk)

)
, t ∈ (a, b], (1.5)

P1y(t) + P2y(b− a+ t) = ϕ(t), t ∈ [a− τ, a], (1.6)

where f = (f1, . . . , fn)T : [a, b] × Rk+1 → Rn is continuous on some compact
subset D̄ of the set [a, b] × Rk+1, y(t) = (y1(t), . . . , yn(t))T is the unknown
function defined on [a − τ, b], ϕ(t) = (ϕ1(t), . . . , ϕn(t))T is continuous on [a −
τ, a], Pk = [p

(k)
ij ]i,j=1,...,n, k = 1, 2, are constant matrices and P1 is nonsingular,

τi > 0 for i = 1, . . . , k and τ = min1≤i≤k{τi}.
It is easy to see that after dividing both sides of equation (1.1) by ε, problem

(1.1)–(1.2) reduces to problem (1.3)–(1.4).
As the numerical experiments showed, this new approach gives more accu-

rate approximate solutions for many boundary value problems for delay differ-
ential equations when compared with other known methods. Its application
requires a reduction of the original problem to a fixed-point problem, which in
the case of boundary value problem for DDE can be done with the help of an
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auxiliary linear system of equations of the form y′ = By + v (with properly
written original boundary conditions). Then, using the integral form of the
solution of this problem with v as a parameter function we eliminate y′ and y
from the original equation and arrive at the fixed-point problem with v as the
unknown. In the above-mentioned papers an approximation to the unknown
fixed-point v was searched in the form of piecewise linear function vh. An
approximate solution yh was recovered through the integral form of the solu-
tion to the above-mentioned linear problem and assumed the form of a cubic
(or quadratic) spline. It was interesting for us whether we can apply this ap-
proach to solving boundary value problems for singularly perturbed DDEs with
such a success and without additional difficulties which introduce the usage of
nonuniform grids. It is well known that such problems are more difficult to
deal with and require special treatment which includes Shishkin-type meshes
or Bakhvalov-type meshes (see [1, 6, 8]). Preliminary numerical experiments
showed that the approach used in [2, 3] fails to produce accurate results. So,
we decided to replace the piecewise linear approximation of the fixed point v
with the cubic spline approximation. The numerical experiments demonstrate
that the change resulted in satisfactory accuracy of the approximation and the
comparison with the accuracy of other methods shows that for some problems
(with not too small perturbation parameter ε) the accuracy is better1.

2 Reduction of Problem (1.1)–(1.2) to a Fixed-Point
Problem

As we noticed earlier, problem (1.1)–(1.2) reduces to problem (1.3)–(1.4) and,
in the sequel, we will use notation (1.3)–(1.4) for the boundary value problem
for second order singularly perturbed delay differential equation under consid-
eration. Following [2] we use the standard substitutions y1 = y, y2 = y′1 and
reduce the system (1.3)–(1.4) to the system

y′(x) = F
(
x,y(x),y(·)

)
, (2.1)

y1(x) = φ(x) for x ≤ a, y1(b) = 0 (2.2)

with

y(x) =

(
y1(x)
y2(x)

)
, F (x,y(x),y(·)) =

(
y2(x)

f(x, y1(x), y2(x), y1(α(x)))

)
.

Now, let P 1 and P 2 be defined as follows:

P 1 =

(
1 0
0 0

)
, P 2 =

(
0 0
1 0

)
,

and assume that there exists a matrix B = B(x), x ∈ [a, b], such that for the
fundamental matrix Y of the system y′ = By, satisfying Y(a) = I, the
matrix Q = P 1 + P 2Y(b) is nonsingular.

1 it is customary to denote the perturbation parameter standing in front of y′′ by the Greek
letter ε. We also use this letter but with different shape ε in the context of the name of
our method

Math. Model. Anal., 20(3):369–381, 2015.
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Let us consider the following auxiliary boundary value problem for the
system of differential equations

y′(x) = By(x) + v(x), x ∈ [a, b], (2.3)

P 1y(a) + P 2y(b) = d =

(
0
0

)
. (2.4)

The solution to (2.3)–(2.4) can be written

y(x) = Y(x)

[
−Q−1P 2Y(b)

∫ b

a

Y−1(s)v(s) ds+

∫ x

a

Y−1(s)v(s) ds

]
. (2.5)

Denoting the right-hand side of (2.5) by (Gv)(x) we can write the solution to
(2.3)–(2.4) in the form

y(x) = (Gv)(x) =

(
(g1v)(x)
(g2v)(x)

)
(2.6)

and reduce the problem (2.1)–(2.2) to the following fixed point problem

v(x) = F
(
x, (Gv)(x), (Gv)(·)

)
−B(Gv)(x). (2.7)

It is easy to check that taking B = ( 0 1
0 0 ) we get Y =

(
1 x−a
0 1

)
with detQ 6= 0

and the problem (2.5)–(2.7) takes the form(
v1(x)
v2(x)

)
=

(
0

f(x, y1(x), y2(x), y1(α(x)))

)
, x ∈ [a, b]. (2.8)

From (2.8) it follows immediately that v1(x) ≡ 0 and denoting v2 by v we
obtain

v(x) = f
(
x, y1(x), y2(x), y1

(
α(x)

))
, (2.9)

where

y2(x) = (g2v)(x) =

∫ b

a

s− b
b− a

vds−
∫ b

a

vds+

∫ x

a

vds, (2.10)

y1(x) = (g1v)(x) =

∫ x

a

(a− s)vds+ (x− a)(g2v)(x). (2.11)

It is clear that the operators g1 and g2 are linear. Let the spaces C0[a, b] =
{u ∈ C[a, b] : u(a) = u(b) = 0} and C[a, b] be equipped with the standard norm
‖u‖ = maxa≤t≤b |u(t)|.

In [2] the following three lemmas have been proved.

Lemma 1. The operators g1 : L2[a, b] → C0[a, b] and g2 : L2[a, b] → C[a, b]
defined by the formulas (2.10) and (2.11) are continuous.

Now, let us define the operator Ḡ : C0[a, b]→ C[a, b],

(Ḡy)(x) =

{
Φ(α(x)) if α(x) < a,

y(α(x)) if a ≤ α(x) ≤ b.
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Lemma 2. The operator Ḡ : C0[a, b]→ C[a, b] is continuous.

Next, remark that the right-hand side of (2.9) defines the operator

A : L2[a, b]→ C[a, b] ⊂ L2[a, b], i.e.

(Av)(x) = f
(
x, (g1v)(x), (g2v)(x),

(
Ḡ(g1v)

)
(x)
)

= f
(
x, y1(x), y2(x), y1

(
α(x)

))
. (2.12)

We have the following lemma:

Lemma 3. The operator A : L2[a, b]→ L2[a, b] defined by (2.12) is continuous.

3 Description of the Approximate Method and Its Con-
vergence

The description of the approximate method is given in [2,3]. The only difference
consists in that instead of using piecewise linear functions to approximate the
fixed point we use cubic splines. So, our example of convergent approximation
of space L is different and we cannot prove Theorem 3.1 given in [2]. As a
result we use another approach to prove Theorem 3.2 stated in [2].

To make the paper at least partly self-contained we recall the following basic
material from [2] (see also [3]).

3.1 Notation and basic definitions

Let (L, d) be a metric space with a metric d, M be an interval (0, h0], h0 > 0,
or a sequence of positive real numbers convergent to zero, {Sh : h ∈ M} be a
family of spaces of grid functions defined for each h on a finite set of grid points
from a compact set K, {rh : h ∈ M, rh : L −→ Sh} be a family of operators
mapping L onto Sh and {ph : h ∈ M, ph : Sh −→ L} be a family of operators
mapping Sh into L.

Remark 1. In the sequel, speaking of an arbitrary family of sets Qh or trans-
formations qh we shall mean the families {Qh | h ∈ M} or {qh | h ∈ M}
respectively.

Definition 1. We shall say that the family of spaces Sh and the families of
operators rh and ph define a convergent approximation of L if for any x ∈ L
the condition

d(phrhx, x)−→
h→0

0 (3.1)

holds.

Definition 2. We shall say that the family LM = {xh ∈ L : h ∈ M} of
functions in L is compact in L with h→ 0 if from any sequence xhn , xhn ∈ LM ,
hn → 0, a subsequence convergent in L can be chosen.

Now, let ε ≥ 0 be a given real number.

Definition 3. We shall say that x ∈ L is an ε-fixed-point of A : L→ L if

d(x,Ax) ≤ ε. (3.2)

Math. Model. Anal., 20(3):369–381, 2015.
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3.2 The main theorem and corollaries, an approximate method for
a fixed-point problem

Theorem 1. If

a) operator A is continuous in L,

b) the family of spaces Sh and the families of operators rh and ph define a
convergent approximation of L,

then A possesses at least one fixed-point if and only if there exists a non-
negative function ε(h), ε(h)→ 0 for h→ 0 such that the operator A possesses
ε(h)-fixed-points phxh and the family {phxh | h ∈M} is compact with h→ 0.

Corollary 1. If

(i) the operator A : L −→ L is continuous and has a unique fixed-point x,

(ii) the family of spaces Sh and the families of operators rh and ph define a
convergent approximation of L,

(iii) for ch = d(0, phrhx) a sequence (phxh) satisfying the condition

d(phxh,Aphxh) = εc(h)
def
= min
{yh:d(0,phyh)≤ch}

d(phyh,Aphyh) (3.3)

is compact with h→ 0,

then
lim
h→0

phxh = x. (3.4)

Corollary 1 suggests the following approximate method for a fixed-point
problem with a continuous operator A : L −→ L, which we will call the ε(h)
approximate method:

1. Choose such families of spaces Sh of grid functions uh=(u1, u2, . . . , un(h))
defined on finite sets of grid points (x1, x2, . . . , xn(h)) in a given compact
set K and operators ph and rh that

(a) they define a convergent approximation of L,

(b) family of phxh satisfying d(phxh,Aphxh) −→ 0 if h→ 0 is compact
with h→ 0,

(c) the functions

qh(u1, u2, . . . , un(h)) = d(phuh,Aphuh) (3.5)

are continuous with respect to the variables u1, u2, . . . , un(h).

2. Choose large enough constant c and small enough parameter h and find
an εc(h) fixed-point of A by minimization of qh on the (compact in Sh)
closed ball B(0h, c) of radius c centered at 0h, where 0h = (0, . . . , 0) is
the zero function in Sh.

Then phxh approximates the fixed-point x of A because phxh → x if h→ 0.
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Remark 2. It follows from the proof of Theorem 1 (see [2]) that this method can
be applied to the problems with a unique fixed-point if operator A is continuous
only in some neighborhood of the fixed-point and if the initial approximation
to an εc(h) fixed-point is taken close enough to the fixed-point of A.

3.3 An example of a convergent approximation and other auxiliary
theorems

Like in [2], let
L2
n[a, b] = L2[a, b]× · · · × L2[a, b]︸ ︷︷ ︸

n times

be the metric space of square integrable on [a, b] vector functions with the

metric d induced by the norm ‖ · ‖(n)2 defined for v ∈ L2
n[a, b] by putting:

‖v‖(n)2 =

(
n∑
i=1

∥∥vi∥∥2
2

) 1
2

, where
∥∥vi∥∥

2
=

(∫ b

a

∣∣vi(s)∣∣2 ds) 1
2

.

Now, let on [a, b] be defined a family of grids NH (H = 2h, h = b−a
2N , N =

1, 2, . . . ) with grid points xk = a + kH, k = 0, 1, . . . , N . Denote the set of h
by M and for h ∈M let

Snh = Snh [a, b] = Sh[a, b]× · · · × Sh[a, b]︸ ︷︷ ︸
n times

be a linear space (over R) of grid functions defined on the grid NH .
We define the extension operators ph : Snh → L2

n[a, b] by the formula

phvh =
(
p̄hv

1
h, . . . , p̄hv

n
h

)
,

where p̄hv
i
h, for a fixed h, is the cubic interpolating spline whose knots coincide

with the grid points NH and its values at the knots are the same as the values
of the grid function at these knots. For the uniqueness of the cubic spline two
more conditions are needed. So, we impose the following additional conditions

p̄hv
i
h

′
(a) =

(
−11vih(x0) + 18vih(x1)− 9vih(x2) + 2vih(x3)

)
/(6H),

p̄hv
i
h

′
(b) =

(
11vih(xN )− 18vih(xN−1) + 9vih(xN−2)− 2vih(xN−3)

)
/(6H).

We also extend the domain of the function v ∈ L2
n[a, b] by putting

v(s) = 0 if s /∈ [a, b].

Now, for a fixed h define the restriction operator rh : L2
n[a, b]→ Snh by putting

rhv =
(
r̄hv

1, . . . , r̄hv
n
)
, where

r̄hv
i(xk) = ṽ1(xk) =

1

2h

∫ ∞
−∞

ωh(xk, s)v
i(s) ds.

The integral appearing in this formula is a Lebesgue integral and the function
ωh(x, s) is an averaging kernel (for details on averaging kernels see [4]).

Math. Model. Anal., 20(3):369–381, 2015.
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Now, we have to show that the family of spaces Snh and the families of
operators ph and rh define a convergent approximation of L2

n[a, b]. Let ṽh =
(ṽ1h, . . . , ṽ

n
h) be the average of the function v obtained by applying the averaging

kernel ωh(x, s).

Theorem 2. For each v ∈ L(n)
2 [a, b]

d(phrhv , v)−→
h→0

0,

i.e. the family of spaces Snh and the families of operators ph and rh define a

convergent approximation of L
(n)
2 [a, b].

Proof. We have∥∥phrhvi − vi∥∥2 ≤ ∥∥phrhvi − ṽih∥∥2 +
∥∥ṽih − vi∥∥2. (3.6)

To prove our theorem it is enough to prove that both terms on the right-hand
side of inequality (3.6) converge to 0 as h→ 0. The convergence to 0 as h→ 0
of the second term on the right-hand side of inequality (3.6) follows from the
following lemma proved in [4] (with D = [a, b] and p = 2).

Lemma 4. If h→ 0 then ṽh → 0 in the space Lp(D).

To prove the convergence to 0 as h→ 0 of the first term on the right-hand
side of inequality (3.6) we will use the results of [7, pages 35, 36]. Namely,
the following corollary of the earlier proved theorem [7, Theorem 7.6, page 35]
given in the form of an example and which (up to the notation adopted to our
needs) reads

“As an application of Theorem 7.6, consider the case of cubic splines
on a uniform partition NH , where NH has at least four knots. Then,
given f ∈ Ck[a, b], 0 ≤ k < 4 and s be the unique cubic spline such
that

s(xi) = f(xi), 0 ≤ i ≤ N,
Ds′(a) =

(
−11f(x0) + 18f(x1)− 9f(x2) + 2f(x3)

)
/(6H), (3.7)

Ds′(b) =
(
11f(xN )− 18f(xN−1) + 9f(xN−2)− 2f(xN−3)

)
/(6H).
(3.8)

Then

KHk−jω
(
Dkf,H

)
≥

{
‖Dj(f − s)‖L∞[a,b], 0 ≤ j ≤ k,
‖Djs‖L∞[a,b], if k < j ≤ 3,

(3.9)

where D stands for the derivative operator and ω is the module of
continuity of f .”

yields the claimed convergence.
It follows from the corresponding lemma proved in [4], that ṽ is continuous

on [a, b] (and consequently uniformly continuous) and the inequality (3.9) can
be applied to it at least for k = 0, j = 0 (and for larger k, if v is smooth). So,
our theorem is proved. ut
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3.4 Convergence of the approximate method

To show that the method described in Section 3.2 converges we have to prove
that the family phvh obtained by minimization on a ball B(0, c) in Sh the
functions qh defined by (3.5) is compact with h → 0, i.e. the family phvh is
bounded in L2[a, b] and∫ b

a

∣∣phvh(x+ t)− phvh(x)
∣∣2dx −−−→

t→ 0
0 (3.10)

uniformly with respect to all phvh. It is clear that (3.10) is equivalent to
‖(phvh)t − phvh‖2 −−−→

t→ 0
0, where for any w ∈ L2[a, b] we use the notation

wt(x) = w(x+ t). Now, we can formulate the lemma (cp. Lemma 4.4 in [2]).

Lemma 5. The family phvh satisfying

‖phvh −Aphvh‖2 = min
uh∈B(0,c)

‖phuh −Aphuh‖2, (3.11)

is compact with h→ 0.

Proof. Let phvh satisfy (3.11). To prove the boundedness of ‖phvh‖2 we follow
[10] and denote the cubic spline phvh by sh and write it in the form

sh(x) = fi−1pi(x) + fiqi(x) + βi−1ui(x) + βivi(x) for x ∈ [xi−1, xi], (3.12)

with

pi(x) =
(x− xi)2

h3
[
h+ 2(x− xi−1)

]
, qi(x) =

(x− xi−1)2

h3
[
h− 2(x− xi)

]
,

ui(x) =
(x− xi)2(x− xi−1)

h2
, vi(x) =

(x− xi−1)2(x− xi)
h2

,

where sh(xi) = fi, i = 0, 1, . . . , N , s′h(xi) = βi, i = 1, 2, . . . , N − 1, β0 and

βN are defined by formulas (3.7) and (3.8). Vector ~β = (β1, . . . , βN−1) satisfies

the system of equations A~β = ~f with A = D + B, where D = 4diag (1/h), B

is a symmetric tridiagonal matrix with bii = 0, bi±1,i = 1/h and ~f = (3(f2 −
f0)/h2 − β0/h, 3(f3 − f1)/h2, . . . , 3(fN−1 − fN−3)/h2, 3(fN − fN−2)− βN/h).

Now, we can use Theorem 2.1 from [10], and for 1 ≤ p < ∞ get the
inequality ∥∥A−1∥∥ ≤ h

2
. (3.13)

The boundedness of ‖phvh‖2 follows from the form of formula (3.12), formulas

for β0, βN and estimate of vector ~β obtained from inequality (3.13). The
remaining part of the proof goes exactly like in the proof of Lemma 4.4 in [2].
ut

Math. Model. Anal., 20(3):369–381, 2015.
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4 Numerical Experiments

Example 1. Consider the following boundary value problem ( [5]):

ε2y′′(x)− 2y(x− δ)− y(x) = 1,

y(x) = 1 for − δ ≤ x ≤ 0, y(1) = 0. (4.1)

The maximum absolute errors EN = max1≤i≤N−1 |yNi −y2N2i | obtained by using
the presented method and comparison with the absolute errors given in [5] are
shown in Table 1.

Table 1. Errors EN : ε = 0.1, δ = 0.06.

Method ↓ N → 100 200 300 400 500

Our method 0.000106 0.000052 0.000027 0.000016 0.000007

Difference method [5] 0.000327 0.000082 0.000036 0.000020 0.000013

Figure 1 depicts the graphs of the solution of the problem and absolute
errors for N = 500.
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Figure 1. Numerical solution of problem (4.1) (solid line) and its absolute error (dotted
line).

On the basis of the errors given in Table 1 we can conclude that the numer-
ical average order of the proposed method is equal to 1.36.

Example 2. Consider the following boundary value problem [8]:

− ε2y′′(x) +
y − 1

2− y
+ f(x) = 0,

y(0) = 0, y(1) = 0, (4.2)
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Table 2. Absolute errors for ε = 2−6 and N = 512.

Method (H,S) & (mH,S) (mH,B) (H,B) (mH,B, var q) (ZB,AB)

Error 3.6 · 10−4 2.4 · 10−8 7.4 · 10−8 1.5 · 10−7 7.5 · 10−9

(H,S) (Hermite scheme, Shishkin-type mesh)

(mH,S) (modified Hermite scheme, Shishkin-type mesh)

(mH,B) (modified Hermite scheme, Bakhvalov-type mesh)

(H,B) (Hermite scheme, Bakhvalov-type mesh)

(mH,B, var q) (modified Hermite scheme, Bakhvalov-type mesh, variable q)

(ZB,AB) uniform mesh used by the authors of the paper

where f is chosen in such a way that the exact solution is:

yε(x) = 1− exp(−x/ε) + exp((x− 1)/ε)

1 + exp(−1/ε)
.

The maximum absolute errors obtained by using the presented method and
comparison with errors given in [8] are shown in Table 2.

In Figure 2 we present the graph of the solution of (4.2) (solid line, the y-
axis on the left), the graph of the absolute error of the solution of (4.2) (dotted
line, the y-axis on the right) and the graph of the absolute error of the first
derivative of the solution of (4.2) (dashed line, the y-axis in the center).
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Figure 2. Numerical solution of problem (4.2) (solid line), absolute error of solution
(dotted line) and absolute error of the first derivative (dashed line).
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5 Conclusions

We presented a fixed-point approach to solve boundary value problem for sec-
ond order singularly perturbed delay differential equation (1.1)–(1.2). Using
the auxiliary problem (2.3)–(2.4) we reduce problem (2.1)–(2.2) to a fixed point
problem. The proposed method can be extended in a way similar to that used
in [3] so that it can be applied to systems of singularly perturbed delay dif-
ferential equations with general linear boundary conditions. The developed
method can be applied to linear and nonlinear problems assuming only the
existence and uniqueness of solution and continuity of the right-hand side of
the differential equation. We showed that in the case considered in this paper
the sought fixed-point v is the second derivative y′′ of the unknown function y.
The function y and its derivative y′ are given by (2.10) and (2.11) respectively.
So, in addition to the solution y at the same time we obtain at no cost y′′

and at a low cost y′, which is one of the advantages of the method. In the
development of solution methods for the problems under consideration there
are two difficulties: the first one is caused by the presence of a delay term and
the second one is due to the singular perturbation parameter. To cope with
the first difficulty it was enough to approximate the fixed-point of the suitably
chosen operator with a piecewise linear function. To cope with the presence of
boundary layers caused by the singular perturbation parameter we employed
the cubic spline approximation of the fixed-point. The numerical experiments
show that for not too small singular perturbation parameters the obtained ap-
proximate solutions are accurate and comparable to those obtained by other
robust methods or even slightly better. However, in the case of small singular
perturbation parameter, even though formula (2.10) for v replaced with a cubic
spline produces a quintic spline, we cannot obtain a satisfactory accuracy of
an approximate solution. Another drawback of the proposed method is that it
uses minimization of L2 norm of a residuum (see, for example, formula (3.11))
and converts linear problems into nonlinear problems. So, in the case of a
specific form of the right-hand side of equation (1.1) other (direct and specific
oriented) methods usually will be more time-effective.
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