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Abstract. Cryo-electron microscopy (cryo-EM) single particle method (SPM) re-
constructs the three-dimensional (3D) density map of biological macromolecules using
2D particle images with estimated orientations. The estimated orientations have er-
rors which result in the decrease in resolution of the reconstructed map. We propose
a wavelet orthonormal bases based iteration method by refining alternatively the ori-
entations and the map using Levenberg–Marquardt algorithm and soft-thresholding,
respectively. The convergence analysis of the proposed algorithm is provided and
numerical experiments for simulated particle images show its good performance.
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least squares, Haar wavelet.
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1 Introduction

In the past few decades, with the advance in the electron microscopes, spec-
imen preparation methods and image processing techniques, cryo-EM tech-
niques [6,8,12,13,17,24] have become indispensable tools for determining the 3D
structures of biological macromolecules, macromolecular complexes and cells.
Among all computerized techniques used in the cryo-EM technique, the SPM
is one of the most popular ones. The image processing in the SPM includes
image alignment and classification; image filtering and contrast transfer func-
tion correction; and 3D reconstruction (see [13,16,17,20,24] for more details).
These modules are integrated in an iterative framework to iteratively refine the
3D map using the projection matching method [23].
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The purpose of this paper is to develop a new algorithm to refine the recon-
structed maps of cryo-EM SPM so as to obtain better resolutions. The basis
principle of cryo-EM SPM 3D reconstruction lies in the 3D X-ray transform.
Let x− y − z be the global coordinate system and (θ, φ, ψ) be three Euler an-
gles, then the rotation matrix according to the Euler angles using z− y − z
convention is defined as

R = (e1, e2,d)> := cos θ cosφ cosψ− sin θ sinψ sin θ cosφ cosψ+ cos θ sinψ −sinφ cosψ
−cos θ cosφ sinψ− sin θ cosψ −sin θ cosφ sinψ+ cos θ cosψ sinφ sinψ

cos θ sinφ sin θ sinφ cosφ

 ,

where e1 − e2 − d defines the new local coordinate system after rotation, and
d = (cos θ sinφ, sin θ sinφ, cosφ)> ∈ S2 is the projection direction vector on the
unit sphere S2. The z− y − z convention defines the rotation matrix R by first
rotating around the original z axis, then rotating around the new y axis, and
finally rotating around the new z axis. The 3D X-ray transform (projection)
P and back-projection P∗ of function f : R3 7→ R along the direction d are
defined as

g(d, x, y) = P(θ, φ, ψ, x, y) :=

∫
R
f(xe1 + ye2 + td)dt

and

(P∗g)(x) :=

∫
S2
g
(
d, 〈x, e1〉, 〈x, e2〉

)
dd,

respectively.
For every orientation (θ, φ, ψ), a 2D particle image g, is imaged using

transmission electron microscope, which can be described as a group of 3D
X-ray transform for that orientation (θ, φ, ψ). The cryo-EM SPM imaging can
produce many particles images, each being a 2D projection of one biologi-
cal macromolecule with a randomly produced orientation (θ, φ, ψ). For SPM,
all the macromolecules are identical, hence we can obtain many projections
of the macromolecule with different orientations. The orientations can then
be estimated using common-line based methods [5, 6, 14, 16] and thereafter be
used to reconstruct an initial map. Since these particle images are picked up
from the original micrographs, the centers of the particles usually deviate from
the images’ centers. Therefore, translational alignments among these particles
should be performed before 3D reconstruction. Totally, we need five parame-
ters (θ, φ, ψ, δx, δy) in order to do reconstruction. As a result, we need to refine
the five parameters for every particle image during the projection matching
process. In this paper, we focus on the refinement of the three Euler angles,
the proposed algorithm can be easily extended to refine all the five parameters.

The projection matching refinement methods, first proposed in [23], mini-
mize the difference between projections and particle images. The most common
algorithm of the projection matching refinement methods starts from a coarse
initial angular increment (the second Euler angle φ), obtaining quasi-even dis-
tributions of projection directions on the unit sphere S2. Then it calculates
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the projection images using these directions. After that, it computes the simi-
larity between every projection and particle image using Euclidean distance or
cross-correlation in order to find the best matched projection for every particle
image. The five parameters of the particle image then can be refined accord-
ing to the best matched projection. After that, a new map is reconstructed
using the particle images with refined parameters. The new map is utilized to
perform new projection matching with a finer angular increment. The algo-
rithm has been realized in some cryo-EM softwares, including EMAN [21] and
Xmipp [25]. Another two refinement algorithms, one developed in the software
package Frealign [15], using the Powell optimization algorithm, the other pub-
lished in [18], utilizing the Nelder-Mead simplex minimization algorithm [22],
both maximize the correlation coefficients in the Fourier space.

One of the main obstacles in the cryo-EM SPM image processing is the
extremely low SNR of the particles, which results in the errors in the estima-
tion of orientations. Hence, the main task of the orientation refinement is to
overcome the affect of the noise as much as possible so as to reduce the errors
of the orientations. Recently, the development of the wavelet based methods
that find sparse solutions by minimizing `1-norm of wavelet orthonormal bases
or wavelet tight frame coefficients has obtained successful applications in the
image restorations [2, 3, 4, 9, 10, 11] and cryo-EM SPM 3D reconstruction [19].
That motivates us to involve this idea in the refinement of cryo-EM SPM map.
In this paper, we explore the wavelet orthonormal bases for its convenience in
the theoretical analysis.

2 Orthonormal Wavelet Based Alternative Iteration
Method

The proposed algorithm utilizes the sparse approximation of the 3D density
map under the wavelet orthonormal bases and performs the orientation refine-
ment and 3D reconstruction alternatively. In order to do 3D reconstruction,
we need to compute the discretized X-ray transform and back-projection.

Let f ∈ Rn3

denote the vector of the 3D density map with dimension
n×n×n, gi ∈ Rn2

(i = 1, . . . ,m) be the measured 2D particle images. Matrix

Pi ∈ Rn2×n3

is the discretized form of the group of 3D X-ray transforms P for
the orientation (θi, φi, ψi) and correspondingly [P>1 , . . . , P

>
m ] is the discretized

form of the back-projection operator P∗. Let

A =
[
P>1 , . . . , P

>
m

]>
, g =

[
g>1 , . . . , g

>
m

]>
, (2.1)

we obtain the linear system:
Af = g − ε,

where ε is the unknown noise. Since the size of matrix A and A> are huge for the
cryo-EM SPM problem, it is not efficient to save the matrix in the computer’s
memory. In practice, we only compute and save Af and A>g. Figure 1 shows
a 2D example for computing Af and A>g. Suppose that l is a line with a
given projection direction coming across the map f and intersecting it with
some pixels in f . We simply sum these pixel values to obtain the discrete
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approximation of X-ray transform, as Figure 1 (a) shows. We loop all the
directions and lines to obtain Af . In order to compute u = A>g, for each pixel
ui of u, we sum these pixel values of g whose back-projection directions come
across ui, as shown in Figure 1 (b). We loop all the pixels in ui to obtain u.

 

l 

f 

g 

(a)

 

l1 

u 

g1 g2 
l2 

(b)

Figure 1. (a) Discretized 2D X-ray tranform; (b) Discretized 2D back projection.

In order to reconstruct a 3D density map from its 2D cryo-EM SPM images
and refine the Euler angles, we propose the following minimization problem:

min
Λ,f

E(f, Λ) =
κ

2

m∑
i=1

∥∥Pi(αi)f − gi∥∥2

2
+
∥∥diag(λ)Wf

∥∥
1
, (2.2)

s.t. αi ∈ Ωi, i = 1, . . . ,m,

where κ > 0, λ ∈ Rn3

+ , Λ = (α1, . . . , αm)>, αi = (θi, φi, ψi)
>, and Ωi ⊂ R3,

i = 1, . . . ,m are bounded closed convex subsets. W is the orthonormal wavelet
decomposition matrix satisfying W>W = I, WW> = I. Suppose that we
have obtained the initial estimations of Λ and f , denoted by Λ0 and f0. Our
goal is to refine these parameters Λ and f so as to improve the resolution of
the 3D map. Hence, we propose to solve the following alterative minimization
problems:

αk+1
i = arg min

αi∈Ωi

κ

2

∥∥Pi(αi)fk − gi∥∥2

2
, i = 1, . . . ,m; (2.3)

fk+1 = arg min
f

κ

2

m∑
i=1

∥∥Pi(αk+1
i )f − gi

∥∥2

2
+
∥∥diag(λ)Wf

∥∥
1
. (2.4)

The subproblem (2.3) is a nonlinear least square problem and can be solved

using the Levenberg–Marquardt algorithm. Let F ki (αi) := Pi(αi)f
k−gi ∈ Rn2

,

matrix Jki (αi) ∈ Rn2×3 is the Jacobian matrix of F ki (αi) defined by

Jki (αi) =


∂Fk

i,1

∂θi

∂Fk
i,1

∂φi

∂Fk
i,1

∂ψi

...
. . .

...
∂Fk

i,n2

∂θi

∂Fk
i,n2

∂φi

∂Fk
i,n2

∂ψi

 .
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We consider the linearized problem of (2.3) at the point αki

ski = arg min
si

1

2

∥∥F ki (αki )+ Jki
(
αki
)
si
∥∥2

2
.

The Levenberg–Marquardt algorithm gives

ski = −
[
Jki
(
αki
)>
Jki
(
αki
)

+ µki I
]−1

Jki
(
αki
)>
F ki
(
αki
)
,

and the updating scheme of αi is given by

αk+1
i = αki − σki

[
Jki
(
αki
)>
Jki
(
αki
)

+ µki I
]−1

Jki
(
αki
)>
F ki
(
αki
)
.

The subproblem (2.4) can be solved by the iterative soft-thresholding algorithm:

fk+1 = W>Tλ/κW

(
fk − κσkf

m∑
i=1

Pi
(
αk+1
i

)>
F ki
(
αk+1
i

))
, (2.5)

where Tλ/κ is defined by

Tλ/κ
(
[u1, u2, . . . , un3 ]>

)
=
[
tλ1/κ(u1), tλ2/κ(u2), . . . , tλn3/κ(un3)

]>
with the soft-thresholding operator tλi/κ(ui) = sgn(ui) max(|ui|−λi/κ, 0). Us-
ing (2.1) the iteration scheme (2.5) can be reformulated as

fk+1 = W>Tλ/κW
(
fk − κσkf

(
Ak+1

)>(
Ak+1fk − g

))
.

The stepsizes σki and σkf are choosen using the following Armijo rule.

Definition 1. Armijo rule [1]. Given the descent direction dk of function
E(x), s, β and ρ with s > 0, 0 < β < 1, and 0 < ρ < 1, choosing mk as the
first nonnegative integer m satisfying

E
(
xk
)
− E

(
xk + βmsdk

)
≥ −ρβms∇E

(
xk
)>
dk,

then set the stepsize σk = βmks.

Then the algorithm solving the orientation refinement problem (2.2) is pro-
posed as follows.

Algorithm 1 Given κ > 0, 0 < ρ < 1, s > 0, 0 < β < 1, α0
i ∈ Ωi, µ0

i ≥ 0,

i = 1, . . . ,m and f0 ∈ Rn3

. For k = 0, 1, 2, . . . ,

1. for i = 1, . . . ,m

(1) ski = −[Jki (αki )>Jki (αki ) + µki I]−1Jki (αki )>F ki (αki ).

(2) Choose a stepsize σki = βmks satisfying the Armijo rule∥∥F ki (αki + σki s
k
i

)∥∥2 ≤
∥∥F ki (αki )∥∥2

+ ρσki
[
Jki
(
αki
)>
F ki
(
αki
)]>

ski . (2.6)
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(3) If αki + σki s
k
i /β 6∈ Ωi, then let µk+1

i = 4µki , α
k+1
i = αki , i = i + 1, go

to (1).

(4) αk+1
i = αki + σki s

k
i , µ

k+1
i = 0.5µki , i = i+ 1.

2. dkf = −κ(Ak+1)>(Ak+1fk − g)

(1) Choose a stepsize σkf > 0 satisfying the Armijo rule

E
(
W>Tλ/κW

(
fk + σkfd

k
f

)
, Λk+1

)
≤ E

(
fk, Λk+1

)
− ρσkfdkf

>
dkf . (2.7)

3. fk+1 = W>Tλ/κW (fk + σkfd
k
f ).

In the implement of the Algorithm 1, the jacobian matrix Jki (αi) is approx-
imately calculated by employing the finite difference scheme. For example, in
order to compute

∂Fi,1

∂θi
, we have

∂Fi,1
∂θi

≈ Fi,1(θki + hk, φki , ψ
k
i )− Fi,1(θki , φ

k
i , ψ

k
i )

hk
.

3 Convergence Analysis

In this section, we analyze the convergence of the proposed algorithm. The
result is given by the following theorem.

Theorem 1. Let Ωi ⊂ R3, i = 1, . . . ,m be bounded closed convex subsets,

and {Ak>Ak} be a nonsingular matrix sequence for αi ∈ Ωi, i = 1, . . . ,m and
uniformly bounded. Then we have

(1) the sequences {αki }, i = 1, . . . ,m and {fk} generated by Algorithm 1 have
convergent subsequences, denoted by {αki }K, i = 1, . . . ,m, and {fk}K,
where K ⊆ {0, 1, . . . , }.

(2) Let lim k→∞
k∈K

αki = a∗i , i = 1, . . . ,m; lim k→∞
k∈K

fk = f∗. If there exists two

positive scalars c1, c2 and µki > 0, such that

c1‖x‖2 ≤ x>
[
Jki
(
αki
)>
Jki (αki )+µki I

]−1
x ≤ c2‖x‖2, ∀x ∈ R3, i = 1, . . . ,m

(3.1)
for all k, then (f∗, α∗1, . . . , α

∗
m) is a stationary point.

Proof. (1). For i = 1, 2, . . . ,m, since {αki } ⊂ Ωi, then there exists a convergent
subsequence {αki }K1 (K1 ⊆ {0, 1, . . . , }).

Taking the spectral norm of the matrix, we have

‖I‖ = 1, ‖W‖2 = ‖WTW‖ = 1, ‖W‖ = ‖WT‖ = 1,

and according to the result in [7], Tλ is nonexpansive, then ∀u, v ∈ Rn3

,∥∥W>TλWu−W>TλWv
∥∥ =

∥∥W>(TλWu− TλWv)
∥∥

≤
∥∥W>∥∥‖TλWu− TλWv‖

≤ ‖Wu−Wv‖ = ‖u− v‖.

By taking v = 0, we have ‖W>TλWu‖ ≤ ‖u‖.

Math. Model. Anal., 20(3):396–408, 2015.
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Since the matrix Ak
>
Ak is nonsingular and uniformly bounded, there exist

σM , σm > 0 such that 0 < ‖Ak‖ < σM , and for all k = 1, . . . , the minimal
singular value σmin(Ak) > σm. Take 1

2σ2
M
< κ < 1

σ2
M

, then

0 < ‖I − κAk>Ak‖ < 1− 0.5σ2
m/σ

2
M .

Denote ω = 1− 0.5σ2
m/σ

2
M , then∥∥fk+1

∥∥ =
∥∥W>Tλ/κW [(I − κAk>Ak)fk + κAk

>
g
]∥∥

≤
∥∥(I − κAk>Ak)fk + κAk

>
g
∥∥ ≤ ω∥∥fk∥∥+ κσM‖g‖

≤ ωk+1
∥∥f0

∥∥+ κσM‖g‖
1− ωk+1

1− ω
≤
∥∥f0

∥∥+
‖g‖

σM (1− ω)
.

Therefore, there exists a convergent subsequence {fk}K⊆K1
.

(2). From the left inequality of (3.1) we can deduce that [Jki (αki )>Jki (αki ) +
µki I]−1 is positive definite, and [Jki (αki )>F ki (αki )]>ski < 0, the Armijo rule (2.6)
implies that ∥∥F ki (αki + σki s

k
i

)∥∥ ≤ ∥∥F ki (αki )∥∥,
then for i = 1, . . . ,m we have

E
(
fk, αk+1

1 , . . . , αk+1
i , αki+1, . . . , α

k
m

)
≤ E

(
fk, αk+1

1 , . . . , αki , α
k
i+1, . . . , α

k
m

)
.

(3.2)
The Armijo rule (2.7) implies that

E
(
fk+1, αk+1

1 , . . . , αk+1
m

)
≤ E

(
fk, αk+1

1 , . . . , αk+1
m

)
. (3.3)

Using (3.2) and (3.3), we obtain

E
(
fk+1, αk+1

1 , . . . , αk+1
m

)
≤ E

(
fk, αk1 , . . . , α

k
m

)
.

Hence {E(fk, αk1 , . . . , α
k
m)} is nonincreasing. Since {(fk, αk1 , . . . , αkm)}k∈K con-

verges to (f∗, α∗1, . . . , α
∗
m) and E is continuous, we have

lim
k→∞
k∈K

E
(
fk, αk1 , . . . , α

k
m

)
= E

(
f∗, α∗1, . . . , α

∗
m

)
.

Then from (2.6) and (2.7) we have{
σki
[
Jki
(
αki
)>
F ki
(
αki
)]>

ski
}
→ 0, i = 1, . . . ,m, (3.4){

σkfd
k
f

>
dkf
}
→ 0. (3.5)

Suppose that {ski }K 9 0 and {dkf}K 9 0. By possibly restricting to sub-

sequences of {ski }K and {dkf}K, we assume that for some δ > 0, ‖ski ‖ ≥ δ,

‖dkf‖ ≥ δ, for all k ∈ K. Then, from (3.4) and (3.5), we have {σki }K → 0,

i = 1, . . . ,m and {σkf}K → 0. By the Definition 1 of the Armijo rule, and the
Algorithm 1, we have for i = 1, . . . ,m∥∥F ki (αki )∥∥2 −

∥∥F ki (αki +
(
σki /β

)
ski
)∥∥2

< −ρ
(
σki /β

)[
Jki
(
αki
)>
F ki
(
αki
)]>

ski , ∀k ∈ K, (3.6)
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where αki + (σki /β)ski ∈ Ωi. Denote pki = ski /‖ski ‖, σ̄ik = σk‖ski ‖/β, then from
(3.6) we have

‖F ki (αki )‖2 − ‖F ki (αki + σ̄i
kpki )‖2

σ̄ik
< −ρ

[
Jki
(
αki
)>
F ki
(
αki
)]>

pki , ∀k ∈ K.

By using the mean value theorem, this relation becomes

−
[
Jki
(
αki +σ̃i

kpki
)>
F ki
(
αki +σ̃i

kpki
)]>

pki < −ρ
[
Jki
(
αki
)>
F ki
(
αki
)]>

pki , ∀k ∈ K,
(3.7)

where σ̃i
k ∈ [0, σ̄i

k]. From the right inequality of (3.1) we can deduce that
‖[Jki (αki )>Jki (αki ) + µki I]−1‖ ≤ c2, then

σk
∥∥ski ∥∥ ≤ σk∥∥[Jki (αki )>Jki (αki )+ µki I

]−1∥∥∥∥Jki (αki )>F ki (αki )∥∥
≤
√
σk
∥∥[Jki (αki )>Jki (αki )+ µki I

]−1∥∥(‖σk[Jki (αki )>F ki (αki )]>ski ‖
c1

)1/2

.

Using (3.4) we have {σ̄ik}K → 0, and since ‖pki ‖ = 1,∀k ∈ K, there exists a
subsequence {pki }K̄⊆K such that{

pki
}
K̄ → pi

∗,
∥∥pi∗∥∥ = 1.

Taking limits in the equation (3.7) we obtain

−
[
Ji
(
α∗i
)>
Fi
(
α∗i
)]>

p∗i ≤ −ρ
[
Ji
(
α∗i
)>
Fi
(
α∗i
)]>

p∗i ,

or

0 ≤ (1− ρ)
[
Ji
(
α∗i
)>
Fi
(
α∗i
)]>

p∗i .

Since 0 < ρ < 1, it follows that[
Ji
(
α∗i
)>
Fi
(
α∗i
)]>

p∗i ≥ 0. (3.8)

On the other hand,

[
Jki
(
αki
)>
F ki
(
αki
)]>

pki =
[Jki (αki )>F ki (αki )]>ski

‖ski ‖
< 0.

By taking the limits as k ∈ K̄, k →∞,[
Ji
(
α∗i
)>
Fi
(
α∗i
)]>

p∗i < 0,

which arrives at a contradiction. Hence, we have {ski }K → 0, and it follows
that Ji(α

∗
i )
>Fi(α

∗
i ) = 0 for i = 1, . . . ,m.

From the boundedness of ‖Ak+1‖ and ‖Ak+1fk− g‖ we can deduce that dkf
is bounded. And then using the Armijo rule (2.7) we can prove that d∗f = 0
similarly. Hence, (f∗, α∗1, . . . , α

∗
m) is a stationary point of E(f, Λ). Part (2) of

the theorem is proved. ut
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Based on the discretization method of the X-ray transform we used, the
matrix Pi is full row rank since no two lines can go through the same set of
voxels. For the cryo-EM SPM problem, the number of orientations is normally
far more than the number of images, that is m � n. When the orientations

of the images are distributed even uniformly on the unit sphere, Ak
>
Ak is

nonsingular. The uniformly boundedness of Ak
>
Ak can be satisfied if Ak is

uniformly bounded. In fact, from the discretization method of the X-ray trans-
form we proposed, the elements of Ak are 1 or 0. Therefore, for m orientations
and n images, the Frobenius norm of ‖Ak‖F satisfies ‖Ak‖F ≤

√
mn3, which

means Ak is uniformly bounded. Finally, the condition (3.1) can be satisfied
by Algorithm 1 by adjusting the parameter µki at each iteration.

4 Numerical Experiments

In this experiment, we simulate the cryo-EM SPM particle images using the
E. coli ribosome crystal structure 3I1M.pdb1 and 3I1N.pdb2. A 3D density
map of E. coli ribosome with pixel size 2.82 Å and volume size 131× 131× 131
is generated by first combining the two crystal structure into one and then
filtering it using Gaussian convolution. After that, 5000 simulated particle
images with size 131×131 pixels are generated from this 3D density map using
randomly orientations, part of which are shown in Figure 2.

Figure 2. Simulated E. coli ribosome cryo-EM SPM particle images.

Each orientation for one image is saved as three Euler angles (θ, φ, ψ). In
order to construct the dataset for the proposed algorithm, we disturb the set
of Euler angles to produce inaccurate Euler angles (θ̃, φ̃, ψ̃), that is |θ̃i − θi| <
δ, |φ̃i−φi| < δ and |ψ̃i−ψi| < δ for i = 1, . . . , 5000. We takes δ = 1◦, 3◦, 9◦, 21◦

and 39◦ respectively to obtain five sets of inaccurate Euler angles Λ0
i , i =

1, . . . , 5 and these five sets of Euler angles are used to reconstruct five errored
3D maps f0

i , i = 1, . . . , 5. Each pair of (Λ0
i , f

0
i ) are used to test the pro-

posed algorithm. The proposed algorithm is implemented using Haar wavelet
orthonormal base, parallelized using MPI (message passing interface), and run
on the computer cluster3 with totally 100 processes. These test results are
shown in Table 1. The mean square error (MSE) is used to evaluate the algo-
rithm which defines as follows

MSE
(
Λ,Λk

)
=

1

m

∥∥Λ− Λk∥∥
F
,

1 http://www.rcsb.org/pdb/explore.do?structureId=3i1m
2 http://www.rcsb.org/pdb/explore.do?structureId=3I1N
3 Computer cluster “LSSC3” in ICMSEC at CAS with totally 282 nodes annd 24 GB mem-

ory each

http://www.rcsb.org/pdb/explore.do?structureId=3i1m
http://www.rcsb.org/pdb/explore.do?structureId=3I1N
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where ‖ · ‖F is the Frobenius norm, Λ and Λk are the correct Euler angles
and the refinement results at the iteration k, respectively. Define InitMSE =
MSE(Λ,Λ0) as the initial error.

Table 1. Orientation refinement results for the simulated cryo-EM SPM particle images.

clean image 1◦ 3◦ 9◦ 21◦ 39◦

InitMSE 0.02451 0.0733 0.2213 0.5137 0.9559
MSE 0.01096 0.0169 0.0250 0.0554 0.2408
iterations 30 38 48 48 57

From Table 1 we can conclude that the algorithm improve the errors of the
Euler angles, even for the big angles errors 39◦. The output reconstructions
are shown in Figure 3, from which we can see that the resolutions of the 3D
maps are improved apparently by the proposed algorithm.

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

Figure 3. The comparisons of the initial maps (first row) and the refinement maps
(second row) using the proposed algorithm. The maps from column (a) to column (e) show

the cases for 1◦, 3◦, 9◦, 21◦ and 39◦ respectively.

Since cryo-EM SPM particle images have extremely low SNR, in our second
experiment, Gaussian white noise is added on each image to obtain noisy image
with SNR = 0.1. Part of these simulated noisy particle images are shown in
Figure 4.

Figure 4. Simulated E. coli ribosome cryo-EM SPM particle images with SNR = 0.1.

We run the proposed algorithm for the five pairs of initial values (Λ0
i , f

0
i ), i =

1, . . . , 5 again for the noisy images. Table 2 gives the results. We can see that

Math. Model. Anal., 20(3):396–408, 2015.
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Table 2. Orientation refinement results for the simulated noisy particle images.

SNR= 0.1 1◦ 3◦ 9◦ 21◦ 39◦

InitMSE 0.02451 0.0733 0.2213 0.5137 0.9559
MSE 0.02384 0.0550 0.1007 0.1911 0.5258
iterations 12 15 33 42 49

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

Figure 5. The comparisons of the initial maps (first row) and the refinement maps
(second row) using the proposed algorithm for the noisy images. The maps from column (a)

to column (e) show the cases for 1◦, 3◦, 9◦, 21◦ and 39◦ respectively.

the errors can still be improved even for the worst case 39◦. The reconstructed
maps for the refinement Euler angles are given in Figure 5. We can conclude
that for the noisy images, the reconstructed maps using the proposed algorithm
have obtained improved resolutions compared with the initial maps.

5 Conclusions

In this paper we have proposed the alternative iteration orientation refinement
method combining the Levenberg–Marquardt algorithm and wavelet orthonor-
mal bases based iterative soft-thresholding. The convergence analysis and nu-
merical experiments show that the proposed algorithm is effective and efficient
for the simulated cryo-EM SPM particle images. For the true cryo-EM SPM
experimental particle images, since the noise in the images is a combination of
several different noise sources coming from the imaging process, the algorithm
will be improved in the future to deal with the non-Gaussian noise images.
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