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Abstract. This paper considers pattern forming nonlinear models arising in the
study of thermal convection and continuous media. A primary method for the deriva-
tion of symmetries and conservation laws is Noether’s theorem. However, in the ab-
sence of a Lagrangian for the equations investigated, we propose the use of partial
Lagrangians within the framework of calculating conservation laws. Additionally, a
nonlinear Kuramoto-Sivashinsky equation is recast into an equation possessing a per-
turbation term. To achieve this, the knowledge of approximate transformations on
the admissible coefficient parameters is required. A perturbation parameter is suit-
ably chosen to allow for the construction of nontrivial approximate symmetries. It is
demonstrated that this selection provides approximate solutions.
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1 Introduction

The family of nonlinear fourth-order partial differential equations (PDEs)

ut + λuux + αuxx + βuxxx + γuxxxx + ζ(u) = 0, α, β, γ, λ− constants,

describes several fundamental phenomena in physical processes. Indeed, it
encompasses the generalized Korteweg-de Vries equation (α = ζ = γ = 0, β =
λ = 1), Burger’s equation (β = ζ = γ = 0), Benny’s equation [3] (α = λ =

�
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γ = 1, ζ = 0) to describe instabilities on falling fluid films, among many
others. Broadly speaking, over a wide range of parameter values, this family of
equations possesses solutions that take the form of patterns such as pulses [15]
and spatio-temporal pattern formation in extended systems.

Our interest lies in a subclass of these equations called the Swift-Hohenberg
(SH) [28] and Kuramoto-Sivashinsky (KS) equations [17,27] that exhibit inter-
esting pattern formations. The former was introduced as a simple model for the
Rayleigh-Bénard instability of roll waves, but has since appeared in connection
with Taylor-Couette flow [25] and in the study of lasers [18]. It is considered a
model equation for various higher-order parabolic models arising in many con-
texts, such as the phase field models [4] and the extended Fisher-Kolmogorov
equation [6].

The latter PDE, the KS equation is one of the simplest physically interest-
ing nonlinear systems and is frequently encountered in the study of continuous
media which exhibits a chaotic behavior. In the literature, it has offered in-
sight on the turbulence in full-fledged Navier-Stokes boundary shear flows [7],
descriptions of stability of flame fronts, reaction diffusion systems, long waves
on the interface between two viscous fluids and unstable drift waves in plasmas.

These equations stem from different applications, but share the property
unique to only a few physical mechanisms: simple evolutionary PDEs that
produce intricate patterns. In this paper, we will perform a symmetry and
conservation law analysis with the aim of exploring the pattern mechanisms
via group-invariant solutions and visual representations.

In the past, solutions of these and related equations have been found using
numerical methods, see [5,16] and references therein. Recent studies involving
conservation laws and symmetries have provided interesting results for stream
functions [10], beams [13], biological models [21], nonlinear systems [2] and
diffusion equations [11].

We employ the use of partial Lagrangians in our analysis. Despite a critic
[26] of the method, it has proven to be quite useful and has an extended appli-
cation to Hamiltonians [20]. The method not only gives rise to conserved quan-
tities, but may also be used to obtain new closed form solutions [19]. Several
other works in the literature have involved partial Lagrangians, namely [3,8,12].

The plan of the paper is as follows. In Section 2, the partial Noether
operators of the SH equation are discovered. Section 3 discusses various ex-
act solutions of the KS class of equations based on classical and approximate
symmetries along with a conservation law. The conclusion and references are
presented subsequently.

2 The Swift-Hohenberg equation

Explicitly, the parabolic Swift-Hohenberg equation

ut = (−1 + k)u − f(u)− 2uxx − uxxxx, k − constant, (2.1)

is a model pattern-forming equation for a fluid that is thermally convectional.
The bifurcation parameter k plays the role of a temperature knob, measuring
how far the temperature is above the minimum temperature difference required
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for convection. Therefore, for k < 0 the heating at the bottom of the fluid is
too small to cause convection, while for k > 0 convection occurs.

The Lie point symmetries of this equation are X1 = ∂x, X2 = ∂t. Equation
(2.1) does not admit any conservation law multipliers and does not possess
a variational principle. Hence, in order to obtain conservation laws, one may
resort to other methods. In particular search for partial Noether operators [14].

2.1 Partial Noether symmetries and conservation laws

Equation (2.1) is an evolution equation associated with the partial Lagrangian

L =
1

2
u2
xx − u2

x +

∫
f(u)du+

1

2
(1− k)u2

with a corresponding partial Noether operator

X̄ = ξ1 (x, t, u) ∂t + ξ2 (x, t, u) ∂x + η (x, t, u) ∂u.

The coefficient functions ξ1, ξ2 and η are calculated by solving the partial
Noether determining equation

X̄L+ LDiξ
i = W

δL

δu
+DiB

i,

where W is the characteristic of X̄, Bi = Bi(x, t, u) and δ
δu is the Euler-

Lagrange operator. Since ξ1, ξ2 and η are independent of the derivatives of
u, the coefficients of like derivatives of u in the partial Noether determining
equation can be equated to yield an over determined system of linear PDEs.
Therefore, the determining system for the partial Noether operators yield

ξ1
u = 0, ξ1

x = 0, ξ2
u = 0, ξ1 = 0, ηuu = 0,

2ηxu − ξ2
xx = 0, ηu −

3

2
ξ2
x = 0, ηxx = 0,

ξ2 = 0, ηu = 0,−η +B1
u = 0, 2ηx +B2

u = 0,

ηf(u) + (1− k)ηu = B1
t +B2

x.

The analysis of the determining equation gives us partial Noether operators
and gauge terms (B1, B2) for f(u) = f0u + f1, where f0, f1 are constants.
That is:

(1) X̄1 = xe[f0+(1−k)]t ∂

∂u
, B1 =

[
u+

f1

f0 + (1− k)

]
× xe[f0+(1−k)]t + Fx− t, B2 = −2ue[f0+(1−k)]t + x. (2.2)

(2) X̄2 = e[f0+(1−k)]t ∂

∂u
, B1 =

[
u+

f1

f0 + (1− k)

]
× e[f0+(1−k)]t + Fx− t, B2 = x. (2.3)

The respective conserved vectors corresponding to the partial Noether opera-
tors and the gauge terms in (2.2) and (2.3) are found to be

(1) T 1 =

[
u+

f1

f0 + (1− k)

]
xe[f0+(1−k)]t + Fx− t, T 2 = −2ue[f0+(1−k)]t
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+ x+ 2xe[f0+(1−k)]tux − e[f0+(1−k)]tuxx + xe[f0+(1−k)]tuxxx,

(2) T 1 =

[
u+

f1

f0 + (1− k)

]
e[f0+(1−k)]t + Fx− t,

T 2 = x+ 2e[f0+(1−k)]tux + e[f0+(1−k)]tuxxx.

3 The Kuramoto-Sivashinsky equations

Consider the following class of pattern forming equations

ut + uux + αuxx + βuxxx + γuxxxx + σu = 0, σ − constant. (3.1)

This pattern forming PDE (commonly called the generalized Kuramoto-
Sivashinsky (gKS) equation) admits a conservation law multiplier (analogous
to an integrating factor) Q = eσt. Hence, it is straightforward to construct the
conserved density and flux, viz.

T t = −eσtu, T x = −1

2
eσt
(
u2 + 2α ux + 2β uxx + 2γ uxxx

)
.

Next, we consider special parameter values that enlarge the symmetry algebra.
The classifications of subgroups of Lie point symmetry groups is an essential
part in the analysis of differential equations. A classification of all three- and
four- dimensional subalgebras can be found in [24]. Classifications facilitate an
efficient computation of group-invariant solutions, while removing the occur-
rence of equivalent solutions. To this end, the classifications of subgroups of
symmetries is performed with the use of adjoint representations.

3.1 Case I: α = β = σ = 0.

The parameters of this case provide the generalized Burgers-KdV equation.
Recently in [23], a group analysis focused on variable-coefficient Burgers-KdV
equations was performed. This study included the generalized Burgers-KdV
equation (with constant coefficient), but did not provide the solutions, and so
to the best of our knowledge, the results below have not appeared elsewhere.
This case admits the symmetries

X1, X2, X3 = t∂x + ∂u, X4 = 4t∂t − 3u∂u + x∂x.

We also point out that other symmetry classifications involving the parameters
α, β have either appeared in numerous places in the literature (for one such
example, see the discussion and references contained in [23]) or produce no
further results of interest. The parameter σ can be considered as a linear
damping term.

For this case, we present the optimal system of one-dimensional subalge-
bras using the results in Table 1. The method used here for obtaining the
one-dimensional optimal system of subalgebras is that described in [22]. This
approach, in essence, is taking a general element from the Lie algebra and re-
ducing it to its simplest equivalent form by applying carefully chosen adjoint
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transformations

Ad(exp(εXi))Xj = Xj − ε[Xi, Xj ] +
1

2
ε2[Xi, [Xi, Xj ]]− · · · .

In order to limit the volume of the results, we omit the lengthy details of the
calculations and simply list the one-dimensional optimal system of subalgebras
which comprise of the vector fields: {X1}, {X2}, {X3 + εX2}, {X4}, where
ε = 0,±1. As mentioned above, inequivalent group-invariant solutions are
obtainable using one-dimensional optimal systems – we present the complete
symmetry reductions below.

Table 1. Lie brackets and adjoints of the vector fields.

[Xi, Xj ] X1 X2 X3 X4

X1 0 0 0 X1

X2 0 0 X1 4X2

X3 0 −X1 0 −3X3

X4 −X1 −4X2 3X3 0

Ad(εXi, Xj) X1 X2 X3 X4

X1 X1 X2 X3 −εX1 +X4

X2 X1 X2 −εX1 +X3 −4εX2 +X4

X3 X1 εX1 +X2 X3 3εX3 +X4

X4 eεX1 e4εX2 e−3εX3 X4

• The symmetry X1 leads to the solution u(x, t) = h(t), where h′(t) = 0,
or simply h(t) = A1 = const.

• The symmetry X2 leads to the solution u(x, t) = f(x) and the reduced
equation

f(x)f ′(x) + γf ′′′′(x) = 0. (3.2)

In turn, Equation (3.2) possesses the symmetries

X∗1 = ∂x, X
∗
2 = f∂f −

1

3
x∂x,

so a reduction using X∗2 leads to the solution f(x) = 120γ/x3.

• X3 + εX2 leads to the similarity variables

u(x, t) =
t+ εg(%)

ε
, % =

−t2 + 2xε

2ε
,

where g(%) satisfies the equation

1 + εg(%)g′(%) + γεg′′′′(%) = 0.

• X4 admits the solution u(x, t) = j(ψ)
t3/4

, ψ = x
t1/4

. In this case the reduced
equation is

j(ψ) (3− 4j′(ψ)) + ψj′(ψ)− 4γj′′′′(ψ) = 0.
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3.2 Case II: α, β, σ, γ 6= 0.

Here, the Lie point symmetries are

X1, X2, X5 = e−σt(σ∂u − ∂x).

Proceeding in the same manner as the previous subsection but with the use
of Table 2, the optimal system of one-dimensional subalgebras are {X2 +
aX1}, {X5 + εX1}, {X1}, where a is an arbitrary constant and ε = 0,±1.

Table 2. Lie brackets and adjoints of the vector fields.

[Xi, Xj ] X1 X2 X5

X1 0 0 0
X2 0 0 −σX5

X5 0 σX5 0

Ad(εXi, Xj) X1 X2 X5

X1 X1 X2 X5

X2 X1 X2 eεσX5

X5 X1 X2 − εσX5 X5

The corresponding group-invariant solutions are as follows.

• X2 + aX1 provides the travelling wave solution, with the invariants

ρ = x− at, u(x, t) = w(ρ).

The gKS reduces to −aw′ + w (σ + w′) + αw′′ + βw′′′ + γw′′′′ = 0.

• X5 + εX1 leads to the similarity variable

u(x, t) =
xσ

−1 + etσε
+ n(t), (3.3)

and the reduction

etσεσn(t) +
(
−1 + etσε

)
n′(t) = 0,

that has the solution

n(t) =
A2

1− etσε
, A2 − constant.

Figure 1 showcase various density plots of the solution (3.3) in order to
capture the distribution or pattern of the data values.

• Reduction by X1 yields
u(x, t) = m(t),

where σm(t) +m′(t) = 0. The solution of this ODE is

m(t) = A3e
−tσ, A3 − constant.

Math. Model. Anal., 25(2):198–207, 2020.
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a) b)

c) d)

Figure 1. Analytical solutions of (3.3) are presented, we select the parameter values:
a) A2 = 0.01, σ = 10, ε = +1, b) A2 = 0.1, σ = 1, ε = +1,
c) A2 = 0.01, σ = 10, ε = −1, d) A2 = 5, σ = 1, ε = −1.

3.2.1 Approximate solutions

Suppose we let β = 0 and α = γ = 1. If we treat σ � 1 as a small parameter,
then we obtain approximate symmetries X = X0 + σX1 +O

(
σ2
)
, where

XA = ξAt (t, x, u) ∂t + ξAx (t, x, u) ∂x + ηA (t, x, u) ∂u, A = 0, 1.

The X0 are determined in the usual way but with σ = 0. The X1 are calculated
by solving the determining equation for deformations

X1 (ut + uux + uxx + uxxxx) |ut+uux+uxx+uxxxx=0 +H = 0, (3.4)

where

H =
1

σ
X0
(
ut + uux + uxx + uxxxx + σu

)
modulo Equation(3.1).

We find H = H0 a constant and the determining system (3.4) is

ξ1
x,u = 0, ξ1

t,u = 0, ξ1
t,x = 0, η1

,uu = 0,

ξ1
t,t − 4ξ1

x,x = 0, ξ1
t,t − 2ξ1

x,x − 4ξ1
x,xxx + 6η1

,uxx = 0,

2η1
,ux − 3ξ1

x,xx = 0, uη1
,x + η1

,t + η1
,xx + η1

,xxxx +H0 = 0,

uξ1
t,t + η1 − ξ1

x,t − ξ1
x,xx − ξ1

x,xxxx + 2η1
,ux + 4η1

,uxxx − ξ1
x,x = 0.

The solution of the above system provides the approximate symmetries

X1, X2, X6 = σ (∂u + t∂x) , X7 = (−σt+ 1) ∂u +
(
t− σ

2
t2
)
∂x.
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Now, approximate symmetries lead to approximate reductions and solutions
[1, 9]. The approximate solutions of Equation (3.1) are presented below.

• The reduction by X7 results in the change of variables

t = t̄, u(x, t) = v −
(

2x− 2txσ

σt̄2 − 2t̄

)
. (3.5)

Equation (3.1) reduces to

t̄2v (̄t)σ2 + t̄2vt̄σ − 2 vt̄ t̄ − 2v = 0,

that solves to give

v =
c0 e−σ t̄

t̄ (σ t̄ − 2)
, c0 − constant.

• From the reduction by c1X1 + c2X6 (c1, c2 − constants), we find

t = t̄, u(x, t) = w +
c2σx

(c2σt̄+ c1)
.

In this case, Equation (3.1) reduces to

c2t̄wσ
2 + c2t̄wt̄σ + wc2σ + c1wσ + wtc1 = 0,

that gives w = c4 e−σ t̄/(c2t̄ σ + c1), c4 − constant.

Figure 2 provides data visualization of the solution (3.5).

a) b)

Figure 2. Analytical solutions of (3.5) are depicted, we select the parameter values:
a) c0 = 0.1, σ = 0.0001, b) c0 = 0.01, σ = 0.2.

4 Conclusions

A wide range of symmetry methods are applied to several renowned differ-
ential equations arising in pattern formations. Lie point symmetries of the
Swift-Hohenberg and a class of Kuramoto-Sivashinsky models are computed.
One-dimensional inequivalent subalgebras of the respective maximal Lie invari-
ance algebras are classified. Based on our classification, we determine group-
invariant solutions of the investigated differential equations. Since one of the
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models considered lacked a variational principle we showed that a conservation
law is obtainable via partial Lagrangians. Secondly, we selected a perturba-
tion parameter for the KS model. This lead to the derivation of nontrivial
approximate point symmetries and solutions.
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res. Lie symmetries and solitons in nonlinear systems with spa-
tially inhomogeneous nonlinearities. Phys. Rev. Lett., 98(064102), 2007.
https://doi.org/10.1103/PhysRevLett.98.064102.

[3] D.J. Benney. Long waves on liquid films. J. Math. and Phys., 45:150–155, 1966.
https://doi.org/10.1002/sapm1966451150.

[4] G. Caginal and P.C. Fife. Higher order phase field mod-
els and detailed anisotropy. Phys. Rev. B, 34:4940–4943, 1986.
https://doi.org/10.1103/PhysRevB.34.4940.

[5] P. Collet and J.P. Eckmann. Instabilities and fronts in extended systems.
Princeton Series in Physics, Princeton University Press, New Jersey, 1990.
https://doi.org/10.1515/9781400861026.

[6] G.T. Dee and W. van Saarloos. Bistable systems with propagating fronts
leading to pattern formation. Phys. Rev. Lett., 60:2641–2644, 1988.
https://doi.org/10.1103/PhysRevLett.60.2641.

[7] P. Holmes, J.L. Lumley and G. Berkooz. Turbulence, Coherent Structures, Dy-
namical Systems and Symmetry. Cambridge Univ. Press, Cambridge, 1996.
https://doi.org/10.1017/CBO9780511622700.

[8] I. Hussain, F.M. Mahomed and A. Qadir. Approximate partial Noether oper-
ators of the Schwarzschild spacetime. J. Non. Math. Phys., 17(1):13–25, 2013.
https://doi.org/10.1142/S1402925110000556.

[9] N.H. Ibragimov and V.F. Kovalev. Approximate and Renormgroup Symmetries.
Springer-Verlag, Berlin, 2009. https://doi.org/10.1007/978-3-642-00228-1.

[10] S. Jamal. Solutions of quasi-geostrophic turbulence in multi-
layered configurations. Quaest. Math., 41:409–421, 2018.
https://doi.org/10.2989/16073606.2017.1383947.

[11] S. Jamal and A. Mathebula. Generalized symmetries and recursive operators
of some diffusive equations. Bull. Malays. Math. Sci. Soc., 42:697–706, 2019.
https://doi.org/10.1007/s40840-017-0510-z.

[12] S.U. Jing-Rui, Z. Shun-Li and L. Ji-Na. Approximate Noether-type symmetries
and conservation laws via partial Lagrangians for nonlinear wave equation with
damping. Comm. Theor. Phys., 53:37–42, 2010. https://doi.org/10.1088/0253-
6102/53/1/08.

https://doi.org/10.1103/PhysRevLett.98.064102
https://doi.org/10.1002/sapm1966451150
https://doi.org/10.1103/PhysRevB.34.4940
https://doi.org/10.1515/9781400861026
https://doi.org/10.1103/PhysRevLett.60.2641
https://doi.org/10.1017/CBO9780511622700
https://doi.org/10.1142/S1402925110000556
https://doi.org/10.1007/978-3-642-00228-1
https://doi.org/10.2989/16073606.2017.1383947
https://doi.org/10.1007/s40840-017-0510-z
https://doi.org/10.1088/0253-6102/53/1/08
https://doi.org/10.1088/0253-6102/53/1/08


Partial and Approximate Symmetries 207

[13] A.G. Johnpillai, K.S. Mahomed, C. Harley and F.M. Mahomed. Noether sym-
metry analysis of the dynamic Euler-Bernoulli beam equation. Z. Naturforsch,
71(5):447–456, 2016. https://doi.org/10.1515/zna-2015-0292.

[14] A.H. Kara and F.M. Mahomed. Noether-type symmetries and con-
servation laws via partial Lagrangians. Non. Dyn., 45:367–383, 2006.
https://doi.org/10.1007/s11071-005-9013-9.

[15] T. Kawahara and S. Toh. Pulse interactions in an unstable dissipative-
dispersive nonlinear system. Phys. Fluids, 31:2103–2111, 1987.
https://doi.org/10.1063/1.866610.

[16] A.H. Khater and R.S. Temsah. Numerical solutions of the generalized Kuramoto-
Sivashinsky equation by Chebyshev spectral collocation methods. Comp. Math.
Appl., 56:1465–1472, 2008. https://doi.org/10.1016/j.camwa.2008.03.013.

[17] Y. Kuramoto and T. Tsuzuki. Persistent propagation of concentration waves
in dissipative media far from thermal equilibrium. Prog. Theor. Phys., 55:356,
1976. https://doi.org/10.1143/PTP.55.356.

[18] J. Lega, J.V. Moloney and A.C. Newell. Swift-Hohenberg
equation for lasers. Phys. Rev. Lett., 73:2978–2981, 1994.
https://doi.org/10.1103/PhysRevLett.73.2978.

[19] R. Naz. The applications of the partial Hamiltonian approach to
mechanics and other areas. Int. J. Non. Mech., 86:1–6, 2016.
https://doi.org/10.1016/j.ijnonlinmec.2016.07.009.

[20] R. Naz, F.M. Mahomed and A. Chaudhry. A partial Hamiltonian approach for
current value Hamiltonian systems. Comm. Non. Sci. Num. Sim., 19(10):3600–
3610, 2014. https://doi.org/10.1016/j.cnsns.2014.03.023.

[21] M.C Nucci and G. Sanchini. Noether symmetries quantization and
superintegrability of biological models. Symmetry, 8:1–9, 2016.
https://doi.org/10.3390/sym8120155.

[22] P. Olver. Application of Lie Groups to Differential Equations. Springer, New
York, 1993. https://doi.org/10.1007/978-1-4612-4350-2.

[23] S. Opanasenko, A. Bihlo and R.O. Popovych. Group analysis of gen-
eral Burgers-Korteweg-de Vries equations. J. Math. Phys., 58:081511, 2017.
https://doi.org/10.1063/1.4997574.

[24] J. Patera and P. Winternitz. Subalgebras of real three- and four-dimensional Lie
algebras. Math. Phys., 88:1449–1455, 1977. https://doi.org/10.1063/1.523441.

[25] Y . Pomeau and P. Manneville. Wave length selection in cellular flows. Phys.
Lett., 75(A):296–298, 1980. https://doi.org/10.1016/0375-9601(80)90568-X.

[26] W. Sarlet. A comment on ’Conservation laws of higher order nonlinear PDEs
and the variational conservation laws in the class with mixed derivatives’. J.
Phys. A Math. Theor., 43(45):458001, 2010. https://doi.org/10.1088/1751-
8113/43/45/458001.

[27] G.I. Sivashinsky. Instabilities, pattern-formation, and turbu-
lence in flames. Ann. Rev. Fluid Mech., 15:179–199, 1983.
https://doi.org/10.1146/annurev.fl.15.010183.001143.

[28] J. Swift and P. Hohenberg. Hydrodynamic fluctuations at
the convective instability. Phys. Rev. A, 15:319–328, 1977.
https://doi.org/10.1103/PhysRevA.15.319.

Math. Model. Anal., 25(2):198–207, 2020.

https://doi.org/10.1515/zna-2015-0292
https://doi.org/10.1007/s11071-005-9013-9
https://doi.org/10.1063/1.866610
https://doi.org/10.1016/j.camwa.2008.03.013
https://doi.org/10.1143/PTP.55.356
https://doi.org/10.1103/PhysRevLett.73.2978
https://doi.org/10.1016/j.ijnonlinmec.2016.07.009
https://doi.org/10.1016/j.cnsns.2014.03.023
https://doi.org/10.3390/sym8120155
https://doi.org/10.1007/978-1-4612-4350-2
https://doi.org/10.1063/1.4997574
https://doi.org/10.1063/1.523441
https://doi.org/10.1016/0375-9601(80)90568-X
https://doi.org/10.1088/1751-8113/43/45/458001
https://doi.org/10.1088/1751-8113/43/45/458001
https://doi.org/10.1146/annurev.fl.15.010183.001143
https://doi.org/10.1103/PhysRevA.15.319

	Introduction
	The Swift-Hohenberg equation
	Partial Noether symmetries and conservation laws

	The Kuramoto-Sivashinsky equations
	Case I: ===0.
	Case II: ,,,=0.

	Conclusions
	References

