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Abstract. We study one-dimensional integrate-and-fire models of the general type
ẋ = F (t, x) and analyze properties of the firing map which iterations recover con-
secutive spike timings. We impose very week constraints for the regularity of the
function F (t, x), e.g. often it suffices to assume that F is continuous. If addition-
ally F is periodic in t, using mathematical study of the displacement sequence of
an orientation preserving circle homeomorphism, we provide a detailed description of
the regularity properties of the sequence of interspike-intervals and behaviour of the
interspike-interval distribution.

Keywords: integrate-and-fire neuron, firing map, interspike intervals, ordinary differential

equations, circle maps.

AMS Subject Classification: 37E10; 37E45; 37M25; 37A05; 92B20.

1 Introduction

We consider one-dimensional integrate-and-fire (IF) models of the general type:

ẋ = F (t, x), F : R2 → R (1.1)

lim
t→s+

x(t) = xr if x(s) = xT , (1.2)

where for the equation (1.1) we assume that for any initial condition x(t0) = x0,
t0, x0 ∈ R, it has the property of existence and uniqueness of the solution x(t)
(not necessarily defined on the whole R) and (1.2) is the resetting mechanism
added to this continuous dynamics given by (1.1), explained below.

In these systems, most commonly used as simplified models of neuron’s ac-
tivity (cf. [4,6,7,10,16]), the continuous dynamics of the variable x(t), standing
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for the membrane voltage of the cell, is interrupted by the so-called threshold-
reset behaviour (1.2), which is supposed to mimic spiking (generation of action
potential). However, IF systems (and circle mappings induced by them in
case of periodic forcing) can also be used in modeling of cardiac rhythms and
arrhythmias [2], in some engineering applications (e.g. electrical circuits of
certain type, see [5]) or as models of many other phenomena, which involve
accumulation and discharge processes that occur on significantly different time
scales.

Integrate-and-fire models belong to the so-called hybrid systems, coupling
continuous-time nonlinear dynamics with discrete events, which are ubiquitous
in applied science. Beyond neuroscience, they have a broad range of applica-
tions (impact physical systems, control theory, economics. . . ) and the theory of
hybrid dynamical systems has been the subject of recent advances in dynamical
systems (see, for instance, [9]).

In integrate-and-fire models the dynamical variable x(t) evolves according
to the differential equation (1.1) until it reaches the threshold-value x = xT ,
say at some time t1. Next it is immediately reset to the resting value x = xr
and the system continues again from the new initial condition (t1, xr) until
possibly next time t2 when the threshold is reached again, etc. Thus the
forward-solutions x(t), t ≥ t0, of the system (1.1)–(1.2) with the initial con-
dition (t0, x0), x0 < xT , are piece-wise differentiable functions x̃(t), which in
the intervals (tn−1, tn) satisfy (1.1) and at the discontinuity points tn fulfill
x̃(tn) = xT and limt→t+n x̃(t) = xr. Of course, it might happen that the solu-
tion starting from (t0, x0) never spikes, i.e. always stays below xT and in this
case the solution of the spiking system (1.1)–(1.2) is the continuous solution
of (1.1).

We set for simplicity xr = 0 and xT = 1. It is also possible to consider
varying (i.e. time-dependant) threshold and reset, which allows to introduce
some other biologically realistic phenomena (such as refractory periods and
threshold modulation [10]). However, from the mathematical point of view, of-
ten analysis of models with varying threshold and reset can be reduced through
the appropriate nonlinear change of variables to studying the case of constant
xr and xT (see e.g. [4]).

Below we introduce basic concepts necessary for our further considerations.

Definition 1. The firing map for the system (1.1)–(1.2) with xr = 0, xT = 1
is defined as

Φ(t) := inf
{
s > t : x(s; t, 0) ≥ 1

}
, t ∈ R,

where x(·; t, 0) denotes the solution of (1.1) satisfying the initial condition (t, 0).

Note that the firing map Φ(t) does not need to be well defined for every
t ∈ R since for some t it might happen that the solution x(·; t, 0) never reaches
the value x = 1. Thus the natural domain of Φ is the set (compare with [6]):

DΦ =
{
t ∈ R : there exists s > t such that x(s; t, 0) = 1

}
.

Later on we will give sufficient conditions for the firing map Φ : R→ R of the
models considered to be well-defined (Lemma 1, Lemma 2 and Proposition 1).
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Iterations of the firing map yield consecutive firing times tn:

tn = Φn(t0) = Φ(tn−1) = inf
{
s > Φn−1(t0) : x

(
s;Φn−1(t0), 0

)
= 1
}
,

and corresponding interspike-intervals (time intervals between the consecutive
resets):

ISIn(t0) := tn − tn−1 = Φn(t0)− Φn−1(t0).

The basic quantity associated with the integrate-and-fire systems is the
firing rate:

FR(t0) = lim
n→∞

n

tn
= lim
n→∞

n

Φn(t0)
.

Its multiplicative inverse is in turn the average interspike-interval:

aISI(t0) = lim
n→∞

tn
n

= lim
n→∞

Φn(t0)

n
.

Obviously, in general the limits above might not exist or depend on the
initial condition (t0, 0).

In [16] the following observation for periodically driven models was made
(the remark was not directly formulated in this way but it is a well-know fact):

Fact 1 If the function F in (1.1) is periodic in t (that is, there exists T such
that F (t, x) = F (t + T, x) for all x and t), then the firing map Φ has periodic
displacement Ψ := Φ− Id. In particular for T = 1 we have Φ(t+ 1) = Φ(t) + 1
and thus Φ is a lift of a degree one circle map under the standard projection
p : t 7→ exp(2πıt).

In case of periodic forcing, the underlying circle map ϕ : S1 → S1 such that
Φ is a lift of ϕ, is referred to as the firing phase map.

One of the most popular linear IF models is Leaky Integrate-and-Fire model
(LIF):

ẋ = −σx+ f(t), (1.3)

which for σ = 0 reduces to the Perfect Integrator (PI):

ẋ = f(t). (1.4)

There are few purely analytical works on one-dimensional IF models and
they include e.g. [4,6,10,20]. Combination of analytical and numerical approach
to the firing map was taken, for example, in [7] (phase-locking and Arnold
tongues), [16] (LIF model with sinusoidal input), [21] (LIF with periodic input)
and [25] (LIF with periodic input and noise).

Analytical results concerning the firing map Φ were obtained assuming that
F (t, x) is regular enough (always at least continuous) and often periodic in t.
However, in [20] (and in the thesis [24]) it was proved that for the linear models,
LIF and PI, many required properties (e.g. continuous dependence of the firing
map on the input function f in appropriate topology), hold even if f is just
locally-integrable (and thus not-necessary continuous).

In this paper we consider the whole class of IF models (1.1)–(1.2), thus
including also non-linear systems. We show that even for such a general case,
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rigorous results on the behaviour of the firing map and interspike-intervals can
be proven. We impose not so restrictive constraints for the regularity of the
function F (t, x) (as for instance the authors of [6], who considered analytical
functions F ) since usually, as we will see, it suffices to assume that F is con-
tinuous and such that (1.1) has the property of existence and uniqueness of
solutions (thus e.g. that F is Lipschitz in x).

Firstly, we prove general properties of the firing map arising from the system
ẋ = F (t, x), where the function F is continuous and positive. Then assuming
that F is also periodic in t, we give a detailed description of the sequence of
interspike-intervals and interspike-interval distribution. Here we make use of
mathematical result concerning displacement sequence of an orientation pre-
serving circle homeomorphism proved in [19] and [24].

Although for the firing map of systems with continuous (and sometimes
also periodic) drive some rigorous results have been proved (e.g. in [4, 6, 10]),
the sequence of interspike-intervals even in such a case has not been inves-
tigated in detail yet. It is worth mentioning that sometimes the sequence of
interspike-intervals might be of greater importance than the exact spiking times
themselves [23] since interspike-intervals are said to take part in information
encoding by neurons (see e.g. [11] and references therein).

This work together with our previous paper [20] provides detailed and com-
plete description of interspike-intevals for periodically driven one-dimensional
integrate-and-fire models. This is the natural extension of [20] where we studied
only linear models.

The main results, under assumptions (1.)–(3.)

(1.) F (t, x) is continuous on R× R,

(2.) F (t, x) > 0 on R× R,

(3.) F (t, x) is periodic in t (with period T = 1 without the loss of generality),

are Theorems A and B on the interspike-interval distribution, proved in part 4:

Theorem A. Consider the systems ẋ = F (t, x) and ẋ = Fn(t, x), n ∈ N,
where the functions F and Fn satisfy (1.)–(3.), have continuous and uniformly
bounded partial derivatives with respect to x on U = R × [0, 1] (i.e. there
exists K such that ∂F

∂x (t, x) < K and also ∂Fn
∂x (t, x) < K for (t, x) ∈ U , at

least for n sufficiently large) and moreover F (t, x) > m > 0 for some m.
Suppose that all the induced firing maps Φn and Φ have irrational rotation

numbers, %n and %, respectively. By µ
(n)
ISI and µISI denote the interspike-interval

distributions, correspondingly for Φn and Φ, with respect to the corresponding
invariant measures µ(n) and µ of their firing phase maps.

If Fn → F in C0(R× R), then

µ
(n)
ISI =⇒ µISI.

Theorem B. Consider the integrate-and-fire systems ẋ = FΘ1
(t, x) and ẋ =

FΘ2
(t, x), where FΘi again satisfy (1.)–(3.) and FΘi and

∂FΘi
∂x are continuous

and bounded on U = R×[0, 1], i = 1, 2. By ΦΘ1 and ΦΘ2 denote the firing maps
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emerging from the corresponding systems. Suppose that the rotation number
associated with ΦΘ1

is irrational and that FΘ1
(t, x) > m > 0.

For any ε > 0 there exists a neighborhood N of FΘ1 in C0(R2) (in supR2-
topology) such that if FΘ2 ∈ N , then for every initial condition (t, 0) we have

dF

(
lim
n→∞

ω
(Θ2)
n,t , µ

(Θ1)
ISI

)
< ε,

where ω
(Θ2)
n,t is the empirical interspike-interval distribution for the run of the

system ẋ = FΘ2
(t, x) starting from (t, 0) and µ

(Θ1)
ISI is the interspike-interval

distribution for ẋ = FΘ1(t, x) with respect to its invariant measure µ(Θ1).

We remark that for the other choice of values xr and xT , the above theorems
remain true under replacement of U = R × [0, 1] by U := R × [xr, xT ]. It is
also worth pointing out that although we assume that the partial derivatives
of F and Fn (at least with respect to x) are continuous, we only require the
convergence Fn → F in C0(R × R). Similarly, it is not necessary that the
functions Fn and F are bounded on the whole plane R2.

These results are at the end illustrated by the numerical example involving
quadratic integrate-and-fire model.

2 General Properties of the Firing Map

For the linear integrate-and-fire models such as ẋ = −σx + f(t) we are able
to easily prove the required properties of the firing map Φ. However, when
we deal with non-linear ones, different methods shall be used since usually we
cannot write down the solution x(t) of the differential equation in the explicit
form.

One of the most popular non-linear models is the quadratic integrate-and-
fire (QIF) model:

ẋ = x2 + f(t), (2.1)

in which the threshold value xT should be ∞ (since x(t) blows to ∞ in finite
time) but in practise we set xT big but finite value. Since the equation (2.1)
is a Riccati type equation, sometimes we can solve it, get the implicit formula
for the firing map and use similar technics as in case of the LIF-model in [20]
to prove desired properties of the firing map and the sequence of interspike-
intervals. However, we will not discuss QIF in details. Instead, we consider the
general case of ẋ = F (t, x).

To this purpose we can use, for example, a number of theorems on the
continuous dependence of solutions on parameters. In this work we extent
results for the LIF and PI models obtained for locally integrable input functions
f(t) in [20] to the general model ẋ = F (t, x) at the cost of more restrictive
constraints on F . Here the technical problem remains often to assure that the
firing map Φ(t) is defined for all t ∈ R.

The following theorem was proved in [6] (“Injectivity theorem” and “Con-
tinuity theorem”):

Math. Model. Anal., 20(5):529–551, 2015.
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Theorem 2. [6] Assume that Ω is a region that contains the strip {−∞ <
t <∞, 0 ≤ x ≤ 1} and that the function F : Ω ⊂ R2 → R is analytic. Then

1. The firing map Φ is injective in int(DΦ) if and only if F (t, 0) ≥ 0 for all
t ∈ int(DΦ).

2. The firing map Φ is continuous in int(DΦ) if and only if F (t, 1) ≥ 0 for
all t in a neighborhood of Φ(τ), τ being any point in int(DΦ).

(int(DΦ) denotes the interior of DΦ, the domain of the definition of the firing
map.)

This theorem allows to determine whether the firing map Φ is continuous
and injective or not. However, the assumption that F is analytic seems too
restrictive and we will show that if we assume instead that F is continuous and
positive, then Φ is continuous and injective as well.

Another important thing is to assert that the firing map Φ : R→ R is well
defined, which is necessary if we want later on Φ to be a lift of the circle home-
omorphism. In [4] the integrate-and-fire models ẋ = F (t, x) were investigated
under the hypothesis I or II:

I. ∂F
∂x < 0 for every x ∈ R (i.e. if Ft(·) is a decreasing C1-function),

II. F (t, 0) > 0 for all t.

Calling a run a spiking trajectory x̃(·; t0, 0) of the system ẋ = F (t, x) starting
from (t0, 0), the author proves that when at least one of the conditions I or II
is satisfied, then

Theorem 3. [4, Theorem 1] All runs have infinitely many spikes or all runs
have finitely many spikes.

Moreover,

Theorem 4. [4, Proposition 5] Suppose that the map t 7→ F (t, x) is periodic
and that the hypothesis I. is satisfied. Then there are infinitely many spikes if
and only if sup x∗(·) > 1, where x∗(·) is the unique periodic solution of equation
ẋ = F (t, x).

Notice that the fact that for every t0 ∈ R the run x̃t0 := x̃(·, t0, 0) has
infinitely many spikes, means in particular that Φ(t0) ∈ R is defined for all
t0 ∈ R. However, in our approach in order to assure that Φ : R → R is well
defined, in general we do not assume that I. or II. are satisfied. Instead we
provide the following sufficient condition for sustained firing:

Lemma 1. Suppose that F (t, x) is continuous on R2 and such that the eq. (1.1)
for every initial condition (t0, x0) ∈ R2 has the unique solution x(t; t0, x0)
defined on the whole R. Further, assume that F (t, x) satisfies

∀x:R→R continuous function lim sup
t→∞

∫ t

0

F
(
u, x(u)

)
du =∞. (2.2)

Then the firing map Φ : R→ R is well-defined.
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Proof. Choose t0 ∈ R. The solution of (1.1) with the initial condition (t0, 0)

satisfies x(t; t0, 0) =
∫ t
t0
F (u, x(u; t0, 0)) du. For every t0 ∈ R the integral∫ t0

0
F (u, x(u)) du < ∞ is a finite real number because F (u, x(u)) is continu-

ous and thus also locally integrable. Now if lim supt→∞
∫ t
0
F (u, x(u)) du =∞,

then also lim supt→∞ x(t; t0, 0) = ∞. Consequently, there exists t∗ such that
x(t∗; t0, 0) ≥ 1 and Φ(t0) is defined. ut

Remark 1. We added additional constraint that the solution x(t; t0, x0) of the
initial value problem is defined on the whole R in order to guarantee that it does
not blow up in finite time (to +∞ or −∞) and hence that x(·; t0, x0) : R→ R
is well-defined and continuous on the whole real line, which enabled us to make
use of the assumption (2.2).

Note that, for instance, by Picard–Lindelöf Theorem (see e.g. Theorem 1.1
in [14]), every solution of (1.1) with given initial condition can be extended onto
the whole line R, if F (t, x) is bounded, continuous in R2 and uniformly Lipschitz
continuous in x on the whole R2. On the other hand, if the solution x(·, t0, 0)
blows up to ∞, i.e. there exists t̂ > t0 such that limt→t̂− x(t, t0, 0) = ∞, then
certainly there exists t∗, t̂ > t∗ > t0, such that x(t∗, t0, 0) ≥ 1 and Φ(t0) ∈ R is
defined.

We remark that the condition (2.2) is not equivalent to

∀x∈R lim sup
t→∞

∫ t

0

F (u, x) du =∞. (2.3)

Indeed,

F (t, x) =

{
t if |x| ≤ 1,

t/x4 otherwise

is an example of a continuous function which satisfies (2.3) but does not satisfy
(2.2) (take for instance x(t) = t). These two conditions are not equivalent even
for functions F periodic in t. The function

F (t, x) =

{
|sin t| if |x| ≤ 1,

|sin t|/x4 otherwise

is continuous, periodic, satisfies (2.3) but does not satisfy (2.2) with x(t) = t.
The condition (2.2) might not be so easy to verify but we formulate another
condition which is more effective:

Lemma 2. Suppose that F : R2 → R is continuous. Let the function ω : R+ →
R+, where R+ = [0,∞), be locally integrable on R+, non-increasing on (0,∞)
and such that

∫∞
0
ω(u) du =∞. If F (t, x) > ω(

√
t2 + x2) for every (t, x) ∈ R2,

then the firing map Φ : R→ R is well-defined.

In particular, ω(u) might be any locally integrable function on [0,∞), which
is positive (at least for u > 0) and goes to 0 monotonically with u→∞ (at least
for u > 0), but slowly enough so that

∫∞
0
ω(u) du = ∞. We do not demand

that ω is continuous. Examples include

ω(u) =

{
1 if u ∈ [0, 1],

1/u if u > 1

Math. Model. Anal., 20(5):529–551, 2015.
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and

ω(u) =

{
c if u = 0,

1/
√
u if u > 0.

Proof of Lemma 2. Fix t0 ∈ R. Suppose on the contrary that Φ(t0) is not
defined. Let x(t) be a solution of ẋ = F (t, x) with the initial condition x(t0) =
0. Since F (t, x) is non-negative, x(t) is non-decreasing and, consequently, either
x(t) blows to +∞ in finite time or x(t) is defined on the whole R. The first
possibility immediately asserts that Φ(t0) > t0 is defined. Suppose that x(t)
does not blow up. Then Φ(t0) not defined means that 0 ≤ x(t) < 1 for all
t ≥ t0. We calculate

lim sup
t→∞

x(t) = lim
t→∞

x(t) = lim
t→∞

∫ t

t0

F
(
u, x(u)

)
du

≥ lim
t→∞

∫ t

t0

ω
(√

u2 + x2(u)
)
du

≥ lim
t→∞

∫ t

t0

ω
(√

u2 + 1
)
du = lim

t→∞

∫ √t2+1

√
t20+1

ω(s)
s√

s2 − 1
ds

≥ lim
t→∞

∫ √t2+1

√
t20+1

ω(s)
s√
s2
ds = lim

t→∞

∫ √t2+1

√
t20+1

ω(s) ds =∞,

where the last equality is explained by the fact that for ω locally integrable,
limt→∞

∫ t
0
ω(u) du = ∞ means that limt→∞

∫ t
a
ω(u) du = ∞ for any a > 0.

Thus limt→∞ x(t) = ∞ and consequently there exists t∗ such that x(t∗) = 1.
This contradicts the assumption that Φ(t0) is not defined and the proof is
completed. ut

However, if additionally F is periodic in t the sufficient condition for the
firing map is even simpler:

Proposition 1. Let F (t, x) be continuous and positive on R2. If F is periodic
in t, then the firing map Φ : R→ R is well-defined.

Proof. Let x(t) be the solution of the differential equation ẋ = F (t, x) with
the initial condition (t0, 0). Suppose that Φ(t0) is not defined. Again, this
means that 0 ≤ x(t) < 1 for every t ≥ t0. Thus due to the periodicity of F in t
and the fact that x(t) is bounded we have:

1 > x(t0 + 1) =

∫ t0+1

t0

F
(
u, x(u)

)
du ≥ ς > 0,

where ς := min(t,x)∈[0,1]2 F (t, x). Consequently, the solution x(·) increases at
least by ς on the interval [t0, t0 + 1]. Similarly, we justify that x(·) increases at
least by nς on [t0, t0 + n], n ∈ N, which contradicts the assumption that x(t)
is bounded for t > t0. It follows that x(t) is not bounded (in particular not
bounded from above) and Φ(t0) is defined. ut
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Proposition 2. Let F (t, x) be continuous and positive on R2. Then Φ is in-
jective in its domain DΦ of definition.

Proof. Choose t1, t2 ∈ DΦ such that t1 < t2. If Φ(t1) > t2, then Φ(t2) >
Φ(t1) by definition of the firing map and the fact that the increasing solutions
x(·; t1, 0) and x(·; t2, 0) cannot cross. If Φ(t1) ≤ t2 then also Φ(t2) > Φ(t1) since
always Φ(t) > t. This shows that the firing map is increasing in DΦ and ends
the proof. ut

Proposition 3. Let F (t, x) be continuous and positive on R2. Suppose that
the firing map Φ : R→ R is well-defined. Then Φ is continuous.

In proving the continuity of the firing map we will make use of the contin-
uous dependence of the solutions on initial conditions which we formulate as
the following lemma:

Lemma 3. Suppose that F : R × R → R is continuous. Choose the closed
intervals J and I such that J ⊂ I = [a, b] and that for every t0 ∈ J , the unique
solution x(·; t0, 0) with the initial condition (t0, 0), exists on some open interval
Ωt0 ⊃ I. Then the map t 7→ x(·; t, 0) is continuous from J to C(I), where C(I)
denotes the space of all continuous functions on I with the uniform norm.

Proof. The statement is a consequence of the continuous dependence of the
solutions of differential equations on initial conditions (which is uniform con-
tinuity on closed intervals, see e.g. Theorem 2.1 in [14] or, alternatively, the
proof of Lemma 8.10 in [6]). ut

Proof of Proposition 3. Choose t0 ∈ R. Let J = [t0 − δ, t0 + δ] ⊂ I =
[t0−δ, Φ(t0+δ)] for some δ, 1 > δ > 0. Note that since Φ is increasing, I contains
all the points Φ(t0 − δ), Φ(t0), Φ(t0 + δ), with Φ(t0 − δ) < Φ(t0) < Φ(t0 + δ).
By definition of the firing map

x
(
Φ(t0 + δ); t0 + δ, 0

)
= x

(
Φ(t0); t0, 0

)
⇒

x
(
Φ(t0+δ); t0, 0

)
−x
(
Φ(t0+δ); t0 + δ, 0

)
= x

(
Φ(t0 + δ); t0, 0

)
− x
(
Φ(t0); t0, 0

)
.

But

x
(
Φ(t0 + δ); t0, 0

)
− x
(
Φ(t0); t0, 0

)
= F

(
ξ, x(ξ; t0, 0)

)(
Φ(t0 + δ)− Φ(t0)

)
≥ ζ
(
Φ(t0 + δ)− Φ(t0)

)
for some ξ ∈ (Φ(t0), Φ(t0 + δ)) ⊂ [t0 − 1, Φ(t0 + 1)] and

ζ := min
u∈[t0−1,Φ(t0+1)]

F
(
u, x(u; t0, 0)

)
> 0.

Now fix ε > 0. From Lemma 3 it follows that x(Φ(t0 + δ); t0, 0)− x(Φ(t0 +
δ); t0 + δ, 0) < ζε for δ small enough. Finally, Φ(t0 + δ) − Φ(t0) < ε and Φ is
right continuous at t0. In the same way we show that Φ is left continuous and
thus Φ is continuous at t0. Since t0 was arbitrary, the statement follows. ut

Math. Model. Anal., 20(5):529–551, 2015.
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3 Periodic Drive for IF Models

Proposition 4. Let F : R × R → R be continuous and positive. Suppose that
F (t, x) is periodic in t. Then the firing map for the system ẋ = F (t, x) is a lift
of an orientation preserving circle homeomorphism.

Proof. Under these assumptions the firing map Φ : R→ R is well-defined. It is
continuous, increasing and satisfies Φ(t+T ) = Φ(t)+T on the account of Fact 1.
Consequently, it is a lift of an orientation preserving circle homeomorphism
(cf. [15, Chapter 11]). ut

In what follows we assume that

(1.) F (t, x) is continuous on R× R,

(2.) F (t, x) > 0 on R× R,

(3.) F (t, x) is periodic in t (with period T = 1 without the loss of generality).

3.1 Regularity properties of the sequence of interspike-intervals

By ϕ : S1 → S1 we denote the underlying circle homeomorphism of the firing
map Φ, i.e. ϕ ∼ Φ mod 1 and ϕ is called the firing phase map.

Following the classical Poincaré rotation theory, the rotation number

%Φ(t) := lim
n→∞

Φn(t)

n

of Φ at t exists and does not depend on t (cf. Proposition 11.1.1 in [15]).
Moreover, we can set % := %Φ(t) mod 1 to be the unique rotation number
associated with the firing phase map ϕ. It is then uniquely defined, irrespec-
tively of the choice of t and the lift Φ. If the rotation number % of the firing
map Φ (which is exactly the average interspike-interval) is rational, then ϕ nec-
essarily has periodic orbits (cf. Proposition 11.1.4 in [15]). However, unless it
is not strictly conjugated to the rational rotation, there are also non-periodic
orbits. Nevertheless, these non-periodic orbits are attracted to the periodic
ones (Proposition 11.2.2 in [15]) which leads to the following theorem:

Proposition 5. If the rotation number % = p/q of the firing map is rational,
then the sequence of interspike intervals is asymptotically periodic with period q,
i.e. for every initial condition (t0, 0) we have

∀ε>0 ∃N∈N ∀n>N ∀k∈N
∣∣ISIn+kq(t0)− ISIn(t0)

∣∣ < ε.

We only remark that when ϕ is conjugated to the rational rotation, then
the sequence ISIn(t0) is purely periodic for every t0. However, determining
for which parameter values λ a given model ẋ = Fλ(t, x) is conjugated to the
rotation is often not so easy to settle (see discussion in [4] for the LIF model).
The asymptotic q-periodicity with the winding number p which is stable under
small change of parameters corresponds to the so-called phase-locking [7,10,21].

The case of irrational rotation number is more interesting from the mathe-
matical point of view but before we will discuss it, we make the simple obser-
vation:
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Remark 2. If ϕ is a rigid rotation r% by % = %(Φ), then the sequence ISIn(t) is
constant: ISIn(t) = %.

In this special case, which holds when F (t, x) =: F̂ (x) does not depend on t,
the rotation number does not influence periodicity of the sequence of interspike-
intervals, i.e. the sequence is periodic, no matter whether % is rational or not.
The above remark follows from the fact that the rotation is an isometry and in
this case Φ(t) = t+ % (up to mod 1) for every t.

In order to make the forthcoming considerations more clear we remind that
when ϕ : S1 → S1 has irrational rotation number and is transitive (i.e. there
exists an orbit {ϕn(z0)}n∈N dense in S1), then it is conjugated to the rotation
by %, meaning that for some orientation preserving circle homeomorphism γ
we have γ ◦ ϕ = r% ◦ ϕ (in fact, γ is unique up to an additive constant in the
lift). When it is not transitive, it is still semi-conjugated to the rotation, which
means that γ ◦ ϕ = r% ◦ ϕ holds but the lift Γ of γ is a continuous, surjective,
non-decreasing and non-invertible function (thus γ is not a homeomorphism;
see Theorem 11.2.7 in [15]). Independently of its transitivity, ϕ is metrically
isomorphic to the irrational rotation. The unique (up to normalization) invari-
ant ergodic measure µ is the Lebesgue measure transported by γ where γ is the
(semi-)conjugacy: µ(A) = Λ(γ(A)). In non-transitive case µ is concentrated on
the minimal set ∆ ⊂ S1 and the semi-conjugacy γ becomes a strict conjugacy
on the set ∆̂ ⊂ ∆ which is the set ∆\E for some countable subset E (we might

think of ∆̂ as of ∆ with identified endpoints of the intervals complementary
to ∆; cf. [15, pp. 399]).

Theorem 5. Consider the model ẋ = F (t, x) where F is as above and %(Φ) ∈
R \Q. Then

5.1 if ϕ is transitive, then the sequence of interspike-intervals {ISIn(t0)} for
every t0 ∈ R is almost strongly recurrent, i.e.

∀ε>0 ∃N∈N ∀n∈N ∀k∈N∪{0} ∃i∈{0,1,...,N}
∣∣ISIn+k+i(t0)− ISIn(t0)

∣∣ < ε;

5.2 if ϕ is not-transitive, then the sequence {ISIn(t0)} is almost strongly re-
current for all t0 ∈ ∆̃, where ∆̃ is a lift to R of the underlying minimal
set ∆ of the firing phase map ϕ.

Proof. Since the firing phase map ϕ is a circle homeomorphism with the ir-
rational rotation number, the statement follows from the fact that every point
z ∈ S1 for ϕ transitive (similarly, every point z ∈ ∆ for non-transitive case) is
almost periodic under the dynamical system (ϕ, S1). This was shown in [19]
basing on the fact (the classical result proved in [13]) that every point x ∈ X
is almost-periodic under ϕ, if X is a compact metric space and X is minimal
for ϕ (the set is minimal if it is non-empty, closed, invariant and such that no
proper subset of it shares all these properties). ut

The property of almost strong recurrence of the sequence ISIn(t0) means
that for every ε and every n the sequence of indexes rk = k + i such that the
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element ISIn+rk(t0) equals ISIn(t) with ε-accuracy, has gaps bounded by some
N and that this constant N can be chosen uniformly for all n.

Notice also that ϕ with irrational rotation number is transitive, whenever
F ∈ C2(R2) (positive, periodic) since then also ϕ ∈ C2(S1) and on the account
of Denjoy’a Theorem ϕ is conjugated to the rotation r% (compare with the
proof of Proposition 8).

3.2 Interspike-interval distribution

In the remaining part of the article we will work with the case of irrational
rotation number. Let then µ be the unique invariant probability measure of
the firing phase map ϕ. Note that µ gives the distribution of phases of firing
times, i.e. it is the limit distribution of points Φn(t0) with n → ∞ for a.e.
initial condition t0 (by distribution we mean a normalized measure).

Definition 2. The interspike-interval distribution µISI with respect to the in-
variant measure µ is defined as follows:

µISI(A) := µ
({
t ∈ [0, 1] : Φ(t)− t ∈ A

})
= µ

(
Ψ−1(A)

)
, A ⊂ R,

where Ψ(t) := Φ(t)−t, t ∈ [0, 1], is the displacement function associated with Φ.

Note that since Φ mod 1 is periodic with period 1, we consider only t ∈
[0, 1]. Moreover, although the measure µ has support contained in [0, 1], as
it is the invariant measure for Φ mod 1 : [0, 1] → [0, 1], the measure µISI

has support equal to Ψ([0, 1]), which in general might not be contained in
[0, 1] but it is always contained is some interval of length not greater than 1
(Φ maps intervals of length 1 onto intervals of length 1 due to the fact that
Φ(t+1) = Φ(t)+1 for every t and the resulting interval, containing supp(µISI ),
is shifted by a from its projection mod 1 into [0, 1], where a > 0 is such that
Φ(0) = a). We can consider µΨ (A), where A is an arbitrary subset of R, if we
adopt the convention that µISI is defined on the whole R but it simply vanishes
everywhere in R outside its support.

In [19] we proved many properties of the displacement distribution µΨ of
an orientation preserving circle homeomorphism ϕ with an irrational rotation
number which is defined exactly as in Definition 2, up to taking mod 1. Thus
interspike-interval distribution µISI of the firing map Φ has exactly the same
properties as the displacement distribution µΨ .

By Λ denote the Lebesgue measure on [0, 1].

Proposition 6. Consider the model ẋ = F (t, x), where F is as above and
the rotation number % = %Φ is irrational. By Γ denote the lift of γ (semi-)
conjugating ϕ with r%. Under these assumptions:

1) If ϕ is transitive, then the sequence ISIn(t0) for every t0 ∈ R is dense in the
interval

S = Ψ
(
[0, 1]

)
= Ω

(
[0, 1]

)
, (3.1)

where Ψ(t) = Φ(t)− t is the displacement function of Φ and Ω(t) := Γ−1(t+
%)− Γ−1(t). Moreover, S is the support of the distribution µISI with
µISI(A) = Λ(Ω−1(A)), A ⊂ R.
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2) If ϕ is not transitive, then the sequence ISIn(t0) for t0 ∈ ∆̃ (the total lift of
∆ to R) is dense in the set

Ŝ = Ψ(∆̃) = Ω̂(∆̂0),

where ∆̂0 is a lift to [0, 1] of a subset ∆̂ ⊂ ∆, such that the semi-conjugacy γ

is invertible on ∆̂, and Ω̂ := Γ̂−1(t+%)− Γ̂−1(t), where Γ̂ := Γ � ∆̂0 is a lift

of γ cut to the set ∆̂0 on which Γ is invertible. In this case supp(µISI) = Ŝ
and µISI(A) = Λ(Ω̂−1(A)), A ⊂ Ŝ.

Moreover, when one takes t0 ∈ R \ ∆̃, then for every t ∈ ∆̃ there exists an
increasing sequence nk, k ∈ N such that for every l ∈ N we have

lim
k→∞

ISIl
(
Φnk(t0)

)
= lim
k→∞

Φnk+l(t0)− Φnk+l−1(t0)

= Φl(t)− Φl−1(t) = ISIl(t).

Proof. The theorem is an immediate consequence of Proposition 2.1 in [19].
ut

With the use of Birkhoff Ergodic Theorem and unique ergodicity of the
firing phase map ϕ = Φ mod 1 we justify

Proposition 7. Under the assumptions of Proposition 6 (regardless the tran-
sitivity of ϕ), for A ⊂ R we have

lim
n→∞

]{0 ≤ i ≤ n− 1 : ISIi(t) ∈ A}
n

= µISI(A),

where ] denotes the number of elements of the set, and the above convergence
is uniform (with respect to t ∈ R).

The average interspike interval aISI (which equals the rotation number %(Φ))
is the mean of the distribution µISI:

aISI =

∫
R
Φ(t)− t dµ(t) =

∫
R
t dµISI(t).

Under stronger assumption on the regularity of F we prove:

Proposition 8. If F ∈ C2(R×R) and F (t, x) > 0 is periodic in t, then Φ is a
lift of C2-diffeomorphism ϕ : S1 → S1 and every sequence ISIn(t0) is dense in
the interval S = Ψ([0, 1]).

Proof. By the Implicit Function Theorem, if F is Ck, then Φ is Ck in the
neighbourhood of any t such that F (Φ(t), 1) > 0 (compare with Theorem 2
in [4]). Thus under stated assumptions Φ is locally C2 but since Φ is also
invertible and F is periodic in t, Φ is in fact a lift of C2-diffeomorphism ϕ :
S1 → S1. Due to Denjoy Theorem [8] ϕ is transitive and on the grounds of
Proposition 6 the statement follows. ut

We will use the following theorem, which can be found in [1, Theorem 1.4.2,
p. 31] but because of the lack of a direct proof there, we provide the proof here:
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Theorem 6. Suppose that ‖ ∂F∂xi (t, x)‖, ‖ ∂G∂xi (t, x)‖ ≤ K, i = 1, 2, . . . , n for

(t, x) ∈ U ⊂ R × Rn with F , G, ∂F
∂xi

and ∂G
∂xi

continuous on U , where F =
(F1, F2, . . . , Fn), G = (G1, G2, . . . , Gn), x = (x1, x2, . . . , xn) ∈ Rn and ‖ · ‖
denotes the Euclidean (or any equivalent) norm in Rn. Let x(t) and y(t) be the
solutions, correspondingly, of ẋ = F (t, x) and ẏ = G(t, y) satisfying x(t0) = x0

and y(t0) = y0, existing on a common interval α < t < β such that t0 ∈ (α, β)
and (α, β) ⊂ U1, where U1 is the projection of U onto the first coordinate. If
‖F (t, x)−G(t, x)‖ ≤ ε on U , then∥∥x(t)− y(t)

∥∥ ≤ ∥∥x0 − y0∥∥eK|t−t0| + ε(β − α)eK|t−t0| (3.2)

for all t, α < t < β.

Proof. Since x(t) and y(t) are the solutions of the corresponding differential
equations, for α < t < β we have

x(t) = x0 +

∫ t

t0

F
(
u, x(u)

)
du and y(t) = y0 +

∫ t

t0

G
(
u, y(u)

)
du,

where the integral
∫ t
t0
F (u, x(u))du is to be understood as a vector∫ t

t0

F (u, x(u))du=
(∫ t

t0

F1(u, x(u))du,

∫ t

t0

F2(u, x(u))du, . . . ,

∫ t

t0

Fn(u, x(u))du
)

(correspondingly for
∫ t
t0
G(u, x(u))du).

Hence∥∥x(t)− y(t)
∥∥ ≤ ∥∥x0 − y0∥∥+

∥∥∥∥∫ t

t0

F (u, x(u))−G(u, x(u)) du

∥∥∥∥
+

∥∥∥∥∫ t

t0

G
(
u, x(u)

)
−G

(
u, y(u)

)
du

∥∥∥∥
≤
∥∥x0 − y0∥∥+ ε|t− t0|+K

∥∥∥∥∫ t

t0

x(u)− y(u) du

∥∥∥∥.
Using Gronwall’s inequality we obtain∥∥x(t)− y(t)

∥∥ ≤ [∥∥x0 − y0∥∥+ ε|t− t0|
]
eK|t−t0|,

where |t− t0| < β − α. ut

Now we can prove the following

Theorem 7. Let some constant K > 0 be fixed. Consider the integrate-and-fire
system ẋ = F (t, x), where the function F : R2 → R satisfies the assumptions
(1.)–(3.), the hypothesis of Theorem 6 with K and U = R× [0, 1]. The mapping
F 7→ Φ, from a subset of such functions F in C0(R × R), is continuous from
supR2-topology into supR-topology at every point F , where F (t, x) > m > 0 on
R2 for some m > 0.
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By supR2-topology (and similarly for supR) we mean the topology induced
by the metric dsupR2

(F,G) := sup(t,x) |F (t, x) − G(t, x)|. The above theorem
says that the firing maps ΦF and ΦG arising from the systems ẋ = F (t, x)
and ẋ = G(t, x), respectively, are arbitrarily close in uniform (supR) topology
whenever F and G are sufficiently close, provided that F and G fulfill certain
conditions.

Proof of Theorem 7. Suppose that F and G satisfy (1.)–(3.) and the assump-
tions of Theorem 6 with the constant K and additionally that F (t, x) > m > 0.
Let sup(t,x)∈R2 |F (t, x) − G(t, x)| < δ ≤ min{1/m,m/2}. Choose t0 ∈ R
and assume firstly that ΦF (t0) > ΦG(t0). Since x(t) =

∫ t
t0
F (u, x(u)) du and

y(t) =
∫ t
t0
G(u, y(u)) du, where x(t) and y(t) are the solutions of the equations

ẋ = F (t, x) and ẋ = G(t, x) satisfying x(t0) = y(t0) = 0, by the definition of
the firing map we get

1 =

∫ ΦF (t0)

t0

F
(
u, x(u)

)
du =

∫ ΦG(t0)

t0

G
(
u, y(u)

)
du,

which implies that∣∣∣∣∫ ΦG(t0)

t0

F
(
u, x(u)

)
−G

(
u, y(u)

)
du

∣∣∣∣ =

∫ ΦF (t0)

ΦG(t0)

F
(
u, x(u)

)
du

> m
(
ΦF (t0)− ΦG(t0)

)
. (3.3)

But then∣∣∣∣∫ ΦG(t0)

t0

F
(
u, x(u)

)
−G

(
u, y(u)

)
du

∣∣∣∣ =
∣∣x(ΦG(t0)

)
− y
(
ΦG(t0)

)∣∣
< δ

2

m
eK(ΦG(t0)−t0) <

2δ

m
e2K/m,

as follows from (3.2) since it is enough to consider the solutions x(t) and y(t)
on the common interval of length less than 2/m, which includes all the points
t0, ΦG(t0) and ΦF (t0) (we might estimate that ΦF (t0) − t0 < 1/m for every
t0 ∈ R using the definition of Φ and the fact that F (t, x) > m for all t and x;
by the same argument we have ΦG(t0)− t0 < 2/m). Combining this with (3.3)
we obtain that

ΦF (t0)− ΦG(t0) <
2δ

m2
e2K/m.

When ΦG(t0) > ΦF (t0), then we can estimate

ΦG(t0)− ΦF (t0) <
2δ

m(m− δ)
e2K/m <

4δ

m2
e2K/m.

Thus δ ≤ min{ 1
m ,

m
2 ,

m2ε
4eK/m

} yields |ΦF (t0)−ΦG(t0)| < ε and the statement
follows from arbitrary choice of t0. ut
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4 Main Results: Approximation of the Interspike-Inter-
val Distribution

In this part we are concern with interspike-interval distribution for parameter-
dependant IF systems. We will see what kind of assumptions guarantee that
the distribution µISI changes continuously with parameters. For this purpose
we recall the notion of the weak convergence of measures:

Definition 3 [see e.g. [3]]. Let X be a complete separable metric space and
M(X) the space of all finite measures defined on the Borel σ-field B(X) of
subsets of X.

A sequence µn of elements of M(X) is called weakly convergent to µ ∈
M(X) if for every bounded and continuous function f on X

lim
n→∞

∫
X

f(x) dµn(x) =

∫
X

f(x) dµ(x).

We denote the weak convergence as µn =⇒ µ.

One can show (cf. [22]) that µn =⇒ µ if and only if for each continuity set A
of µ, limµn(A) = µ(A) (a Borel set A is said to be a continuity set for µ if A
has µ-null boundary, i.e. µ(∂A) = 0).

Next theorems can be proved by the arguments involving the continuity of
the mapping F 7→ Φ within some class of functions F , asserted by Theorem 7.

Theorem A. Consider the systems ẋ = F (t, x) and ẋ = Fn(t, x), n ∈ N,
where the functions F and Fn satisfy (1.)–(3.), have continuous and uniformly
bounded partial derivatives with respect to x on U = R × [0, 1] (i.e. there
exists K such that ∂F

∂x (t, x) < K and also ∂Fn
∂x (t, x) < K for (t, x) ∈ U , at

least for n sufficiently large) and moreover F (t, x) > m > 0 for some m.
Suppose that all the induced firing maps Φn and Φ have irrational rotation

numbers, %n and %, respectively. By µ
(n)
ISI and µISI denote the interspike-interval

distributions, correspondingly for Φn and Φ, with respect to the corresponding
invariant measures µ(n) and µ of their firing phase maps.

If Fn → F in C0(R× R), then

µ
(n)
ISI =⇒ µISI.

Proof. By Theorem 7, if Fn → F in C0(R × R), then also Φn → Φ, where
Φn and Φ are the corresponding firing maps, being the lifts of corresponding
orientation preserving circle homeomorphisms (firing phase maps) ϕn → ϕ
with irrational rotation numbers. But since ϕn → ϕ in C0(S1), also the dis-

placement distributions converge weakly: µ
(n)
Ψn
→ µΨ (this is directly asserted

by Proposition 2.8 in [19]). Since distributions µ
(n)
Ψn

and µΨ correspond to
interspike-interval distributions, the statement follows. ut
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4.0.1 Empirical approximation of the interspike-interval distribu-
tion

In next, we would like to tackle the case when the IF system with irrational
firing rate is approximated by another system, for which we do not demand
that the rotation number is irrational too. To formulate the result in a mathe-
matically rigorous way, we introduce the concepts of the Fortet-Mourier metric
and of the empirical interspike-interval distribution:

Definition 4. Let µ and ν be the two Borel probability measures on a mea-
surable space (Ω,F), where Ω is a compact metric space. Then the distance
between the measures µ and ν is defined as

dF (µ, ν) := sup

{∣∣∣∣∫
Ω

f dµ−
∫
Ω

f dν

∣∣∣∣ : f is 1-Lipschitz

}
.

Definition 5. Let Φ be the firing map arising from the IF system ẋ = F (t, x).
Choose the initial condition (t, 0) (xr = 0). Then the empirical interspike-
interval distribution for the run of length n (i.e. having n-spikes) starting at
(t, 0) equals

ωn,t =
1

n

n−1∑
i=0

δISIi(t),

where δISIi(t) is the Dirac delta centered at the point ISIi(t) = Φi+1(t)−Φi(t).

Thus ωn,t(A) = 1
n ]{0 ≤ i ≤ n− 1 : Φi+1(t)− Φi(t) ∈ A}, A ⊂ R.

Note that if ϕ̃ with rotation number %̃ is close in C0(S1)-metric to ϕ with
rotation number %, then the rotation numbers %̃ and % are also close due to
the continuity of the rotation number in C0(S1) (cf. Proposition 11.1.6 in [15])
but, of course, in general %̃ might be rational, even if we take irrational %.

Theorem B. Consider the integrate-and-fire systems ẋ = FΘ1
(t, x) and ẋ =

FΘ2(t, x), where FΘi again satisfy (1.)–(3.) and FΘi and
∂FΘi
∂x are continuous

and bounded on U = R×[0, 1], i = 1, 2. By ΦΘ1 and ΦΘ2 denote the firing maps
emerging from the corresponding systems. Suppose that the rotation number
associated with ΦΘ1

is irrational and that FΘ1
(t, x) > m > 0.

For any ε > 0 there exists a neighborhood N of FΘ1
in C0(R2) (in supR2-

topology) such that if FΘ2
∈ N , then for every initial condition (t, 0) we have

dF

(
lim
n→∞

ω
(Θ2)
n,t , µ

(Θ1)
ISI

)
< ε,

where ω
(Θ2)
n,t is the empirical interspike-interval distribution for the run of the

system ẋ = FΘ2(t, x) starting from (t, 0) and µ
(Θ1)
ISI is the interspike-interval

distribution for ẋ = FΘ1
(t, x) with respect to its invariant measure µ(Θ1).

Proof. Now this result is a direct consequence of Theorem 2.17 in [19] about
approximation in the Fortet-Mourier metric by the sample displacement dis-
tribution of a homeomorphism which is just close enough to the given homeo-
morphism. ut
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As the convergence under Fortet-Mourier metric implies weak convergence
of measures [12], we conclude:

Corollary 1. Under the notation as in Theorem B, for every t ∈ R we have

lim
n→∞

ω
(θ2)
n,t =⇒ µ

(θ1)
ISI .

Theorem A says that the interspike-interval distribution with respect to the
invariant measure behaves continuously (in terms of the weak convergence of
measures) with the small change of the input in uniform topology (in fact the
general form of the equation ẋ = F (t, x) in our considerations allows to change
the input and the intrinsic dynamics of the cell as well, i.e. simply we can make
an acceptable change of the right-hand side of the differential equation). Note
that we can speak formally of the interspike-interval distribution µISI only when
the unique invariant probability measure µ exists, which means only in case
of the irrational rotation number. However, basically we are often not able to
compute directly the rotation number and due to numerical approximations we
work in fact with systems with rational rotation number (rational firing rate),
which well approximates the entire irrational rotation number. Nevertheless,
Theorem B assures that empirically obtained interspike-interval distribution
by tracking a trajectory of the “close” system (for which we admit irrational
and rational rotation number, as well), well approximates (in Fortet-Mourier
metric) the theoretical interspike-interval distribution for the given system.

In order to illustrate this phenomenon we encourage the reader to look, for
example, at the histograms of firing phases and interspike-intervals in section 5
of [16] for the model du

dτ = −σu+S(1+B cos τ) with fixed σ and S and varying
B, such that the induced firing maps are homeomorphisms. Indeed, for B = 0
we have irrational rotation (implying, in particular, that the rotation number
for B = 0 is irrational) and for B = 0.1 and B = 0.2 we see that the histograms
evolve continuously.

Below we provide another simple example when the mathematical scheme
developed in this work allows to anticipate the phenomena observed in the
model.

Example. Let us consider the quadratic integrate-and-fire with periodic forcing:

ẋ = ax2 + λ sin(2πt) + κ, (4.1)

where a, λ and κ are real parameters. We fix a = 0.2 and κ = 0.5 and
consider λ ∈ [0, 0.5]. Notice that for any λ < 0.5 it holds that Fλ(t, x) :=
ax2 + λ sin(2πt) + κ ≥ κ − λ > 0, thus the function Fλ is separated from 0.
Simultaneously, for any choice of reset xr and threshold xT values Fλ(t, x) is
bounded on R × [xr, xT ]. We take xr = 0 and xT = 1. However, one can
also consider taking bigger value of the threshold potential since the spiking
solution of (4.1) has many subthreshold oscillations of the potential x(t) and
thus taking higher value of xT allows to better distinguish between spikes and
oscillations of relatively smaller amplitude.

For any λ < 0.5 the function Fλ fulfills conditions (1.)–(3.). Moreover,
Fλ and its partial derivatives are bounded on the sets R × J , where J is an
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arbitrary bounded interval. We notify that the parameter value λ = 0.5 is
a border value for these assumptions since at λ = 0.5 Fλ(t, x) can vanish for
x = 0. Nevertheless, we decided to include this case in the below simulations,
where we plotted histograms of interspike-intervals for different values of λ. In
particular, for λ = 0 by solving the equation directly we are able to compute
exactly the rotation number % =

√
10 arctan(

√
2/
√

5) ≈ 1.7833, which is equal
to the average interspike-interval. For this parameter value the induced firing
map Φ is simply a lift of the irrational rotation by % mod 1 and thus phases
of firing times are uniformly distributed in [0, 1], whereas the distribution of
interspike-intervals is a Dirac delta centred at % (see Figure 1). According to
Theorems A and B as λ → 0 we should have ωλt =⇒ µ0

ISI, where ωλt :=
limn→∞ ωλn,t are the empirical interspike-interval distributions obtained for the
spiking solution of ẋ = Fλ(t, x) starting at (t, xr). Note that for λ = 0 we can
define the formal distribution µ0

ISI as we are able to assure that the rotation
number is irrational so that the unique invariant measure µ0, giving distribution
of points of the orbits, exists.

In Figure 1 we include numerically computed histograms of interspike-
intervals for different values of λ which indeed evolve “continuously” when
varying λ.

Remark 3. Note that due to the properties of an orientation preserving circle
homeomorphism, corresponding statements of Proposition 5, Theorem 5 and
Theorems A and B are also true for the sequence of firing phases {Φn(t0)
mod 1}.

Another question which one can ask is concern with the absolute continuity
of the interspike-interval distribution with respect to the Lebesgue measure,
i.e. with the existence of the density of measure µISI. We recall that even if the
invariant measure µ, which gives the distribution of firing phases, is absolutely
continuous, it might not be so for the interspike-interval distribution µISI as
happens for example for the system ẋ = F̂ (x) + I with constant input I, where
the firing map Φ is a lift of the rotation and the interspike-interval distribution
is Dirac delta centered at %, being the rotation number of Φ (and thus µISI is
singular). We formulate the following theorem which is just a paraphrase of
its correspondence for the displacement sequence of a circle homeomorphism
(diffeomorphism), Theorem 2.14 in [19], and thus will be stated without the
proof:

Theorem 8. Suppose that the firing map Φ arising from the system ẋ = F (t, x)
is a C1-diffeomorphism with irrational rotation number %, which is conjugated
with the translation by % via a C1-diffeomorphism Γ and that the set CΨ :=
{t ∈ [0, 1] : Φ′(t) = 1} ⊂ [0, 1] of critical points of the displacement function
Ψ �[0,1] (Ψ = Φ− Id) is of Lebesgue measure 0.

Then the distribution µISI is absolutely continuous with respect to the Le-
besgue measure Λ with the density ∆(y) equal to

∆(y) =

{
0 if y /∈ supp(µISI);∑
t∈Ψ−1(y) Γ

′(t) 1
|Φ′(t)−1| if y ∈ supp(µISI),

(4.2)

Math. Model. Anal., 20(5):529–551, 2015.



548 J. Signerska-Rynkowska

Figure 1. Histograms of interspike-intervals for the model ẋ = ax2 + λ sin(2πt) + κ
(a = 0, κ = 0.5). Additionally, bottom right: histogram of firing phases for λ = 0.
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where the latter is well-defined almost everywhere in supp(µISI), i.e. in
supp(µISI) \V (CΨ ), with V (CΨ ) denoting the set of critical values of Ψ � [0, 1].

The above formula is most effective for the simplest linear model, i.e. the
Perfect Integrator ẋ = f(t), where we have the exact formula for the conju-
gating homeomorphism Γ (see [4]). However, the real content of this theorem,
which is the existence of the density for µISI, might be applied for every type
of IF model for which we are able to verify the condition on the zero measure
of the set of critical points of the displacement function of the firing map.

5 Discussion

We have shown many specific properties of the interspike-interval sequence
arising from general class of periodically driven integrate-and-fire models for
which the emerging firing phase map is a circle homeomorphism. Although the
obtained results might not seem surprising to the specialists in computational
neuroscience, their implications, especially Theorems A and B on stability of
the interspike-interval distribution, extend some numerical results on this dis-
tribution presented by some other authors (see e.g. ISI histograms in [16]) that
so far have lacked analytical explanation.

The natural extension of this research includes first of all obtaining such
rigorous results on interspike-intervals for periodically driven integrate-and-fire
models for which the firing phase map ϕ is not necessary a homeomorphism,
but just a circle map (even for continuous circle mappings one might expect sig-
nificantly different properties due to the fact that in this case we have rotation
intervals instead of the unique rotation number). Further development, math-
ematically more challenging, would be a detailed description of the interspike-
interval sequence for IF systems with an almost periodic input, for which a
formal framework was prepared in [18] and [24]: Namely, we proved that in
linear systems ẋ = −σx+ f(t) the almost periodic input function f(t) (in the
sense of Stepanov, to include also not continuous input functions) induces the
firing map with uniformly almost periodic displacement. This is generalization
of the Fact 1 which enables, perhaps, analysis of the firing map and interspike-
intervals arising from almost-periodically driven integrate-and-fire models with
the use of locally compact topological groups (with the special case of S1 for
purely periodic input) due to the Bohr compactification of the reals [17]. This
is not only a theoretical task, since almost periodic inputs include sums of
periodic inputs with rationally incommensurable periods and thus could cor-
respond to different periodic signals which a neuron is receiving from different
sources (from presynaptic neurons or injected electrodes).

Systems which recently attract a lot of attention, are bidimensional IF mod-
els (see, for instance, [26]). They could be another field of investigation in terms
of exact results on the interspike-interval sequence.
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