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Abstract. In this paper, we discuss the existence of solutions for nonlinear q-
difference equations with nonlocal q-integral boundary conditions. The first part
of the paper deals with some existence and uniqueness results obtained by means of
standard tools of fixed point theory. In the second part, sufficient conditions for the
existence of extremal solutions for the given problem are established. The results are
well illustrated with the aid of examples.
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1 Introduction

In recent years, there has emerged a great interest in the subject of q-calculus
(also known as quantum calculus). The concept of q-calculus distinguishes itself
from the classical one in the sense that it does not require the notion of limit.
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The idea of limit (up-to our thinking) means that the world can be divided up to
infinity. On the other hand, the modern science relying mainly on observation
indicates that the world is organized in a different manner and depends on
size of its constituents. This kind of consideration about the world gave birth
to new types of calculus such as h-calculus (the origin of numerical analysis
and computer modeling) and q-calculus, based respectively on finite difference
principle and finite difference re-scaling. Eulers identities for q-exponential
functions and q-binomial formula due to Gauss were the first few results in
the field of q-calculus. This led to remarkable discovery of Heines formula for
a q-hypergeometric function as a generalization of the hypergeometric series
and its connection to the Ramanujan product formula, relation between Eulers
identities and the Jacobi Triple product identity in the 19th century. The
systematic research on q-difference equations owes to Jackson [27], Carmichael
[18], Mason [33] and Adams [2] in the first quarter of 20th century. For some
real applications of q-calculus, we refer the reader to the models [32,37] and the
references cited therein. An important characteristic of q-difference equations is
that they are always completely controllable and hence appear in the q-optimal
control problems [15]. The q-analogue of continuous variational calculus is
termed as variational q-calculus in which the extra-parameter q may be physical
or economical in its nature. The number of results on q-calculus and their
applications to different areas, for example, approximation theory can be found
in articles [11,12,13,30,31].

The variational calculus on the q-uniform lattice studies the q-Euler equa-
tions and its applications to the isoperimetric and Lagrange problems and com-
mutation equations. In other words, it suffices to solve the q-Euler-Lagrange
equation for finding the extremum of the functional involved rather than solv-
ing the Euler-Lagrange equation [14]. As a matter of fact, there are numerous
applications of q-difference equations in a variety of disciplines such as special
functions, super-symmetry, operator theory, combinatorics, etc. For details, we
refer the reader to a series of books [8,9,21,22,28] and papers [1,3,16,34] and
the references cited therein.

Besides the traditional treatment of quantum calculus, many interesting
questions and problems concerning the theory of initial and boundary value
problems of q-difference equations either remained open or were partially an-
swered. In recent years, this aspect of q-difference equations has been addressed
by several researchers and an account of recent development of the topic can
be found in the papers [4,5,6,7,10,17,20,23,26,35]. However, there are indeed
several aspects of boundary value problems of q-difference equations that need
to be developed. For instance, q-difference equations with nonlocal and integral
boundary conditions are not explored in detail. It is imperative to note that in-
tegral boundary conditions are used to regularize ill-posed parabolic backward
problems in time partial differential equations, see, e.g. mathematical models
for bacterial self-regularization [19].

In this paper, we study a nonlinear boundary value problem of q-difference
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equations with nonlocal q-integral boundary condition given by{
Dqu(t) = f(t, u(t), u(φ(t))), t ∈ Iq,
u(0) = λ

∫ η
0
g(s, u(s))dqs+ µ,

(1.1)

where Dqu(t) denote the q-derivative of u at t ∈ Iq, f ∈ C(Iq × R × R,R),
g ∈ C(Iq × R,R), φ ∈ C(Iq, Iq), η ∈ Iq, λ, µ ∈ R, Iq = {qn : n ∈ N} ∪ {0, 1},
q ∈ (0, 1) is a fixed constant.

Now let us recall some basic concepts of q-calculus [8,28]. The q-derivative
of a real valued function f is defined as

Dqf(t) =
f(t)− f(qt)

(1− q)t
, Dqf(0) = lim

t→0
Dqf(t).

The q-integral of a function f is defined as∫ x

a

f(t)dqt := (1− q)
∞∑
n=0

qn[xf(xqn)− af(aqn)], x ∈ [a, b],

and for a = 0, we denote

Iqf(x) =

∫ x

0

f(t)dqt =

∞∑
n=0

x(1− q)qnf(xqn),

provided the series converges. If a ∈ [0, b] and f is defined on the interval [0, b],
then ∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.

Similarly, we have

I0q f(t) = f(t), Inq f(t) = IqI
n−1
q f(t), n ∈ N.

Observe that
DqIqf(x) = f(x),

and if f is continuous at x = 0, then IqDqf(x) = f(x) − f(0). In q-calculus,
the product rule and integration by parts formula are

Dq(gh)(t) = Dqg(t)h(t) + g(qt)Dqh(t),∫ x

0

f(t)Dqg(t) dqt =
[
f(t)g(t)

]x
0
−
∫ x

0

Dqf(t)g(qt) dqt.

The rest of the paper is organized as follows. In Section 2, we present an
auxiliary lemma and a comparison result, which are vital in establishing our
main work. Section 3 contains some existence and uniqueness results which are
based on Banach’s contraction mapping principle, Leray-Schauder nonlinear
alternative and Krasnoselskii’s fixed point theorem. In Section 4, we discuss
the existence of extremal solutions for the given problem. We emphasize that
we have investigated a new class of problems consisting of q-difference equa-
tions with a nonlinearity of the form f(t, u(t), u(φ(t))) and nonlocal q-integral
boundary conditions with two parameters. Our results are new in the given
setting and are well illustrated with the aid of examples.
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2 Preliminaries

Definition 1. We say that u(t) is a lower solution of problem (1.1) if{
Dqu(t) ≤ f(t, u(t), u(φ(t))), t ∈ Iq,

u(0) ≤ λ
∫ η
0
g(s, u(s))dqs+ µ,

and it is an upper solution of (1.1) if the above inequalities are reversed [29].

Lemma 1. Let λη 6= 1 and y ∈ C(Iq,R). Then the linear q-integral boundary
value problem {

Dqu(t) = y(t), t ∈ Iq,

u(0) = λ
∫ η
0
u(s)dqs+ µ

(2.1)

has a unique solution

u(t) =

∫ t

0

y(s) dqs+
λ

1− λη

∫ η

0

(η − qs)y(s) dqs+
µ

1− λη
.

Proof. Integrating both sides of the equation Dqu(t) = y(t) and applying the

condition u(0) = λ

∫ η

0

u(s)dqs+ µ, we have

u(t) = Iqy(t) + u(0) =

∫ t

0

y(s)dqs+ λ

∫ η

0

u(s) dqs+ µ. (2.2)

Letting

∫ η

0

u(s)dqs = B, and integrating both sides of (2.2), we get

B =

∫ η

0

u(t)dqt =

∫ η

0

∫ t

0

y(s)dqsdqt+

∫ η

0

(λB + µ)dqt

=

∫ η

0

∫ t

0

y(s)dqsdqt+ η(λB + µ).

Changing the order of integration, we obtain

B =

∫ η

0

∫ η

qs

y(s)dqtdqs+ η(λB + µ)

=

∫ η

0

(η − qs)y(s)dqs+ η(λB + µ),

which yields

B =
1

1− λη

∫ η

0

(η − qs)y(s)dqs+
ηµ

1− λη
.

Substituting the value of B in (2.2), we obtain the unique solution of problem
(2.1). This completes the proof. ut
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Remark 1. If t ∈ Iq\{0} and Iq contains a neighborhood of the point t such that
f is differentiable at t, then limq→1Dqf(t) = f ′(t). If t = 0 and f ′(0) exists,
then Dqf(0) = f ′(0). However, Dqf(0) may exist for a function f without
being differentiable or even continuous at zero. For more details, see Section
1.3 in [8]. Thus our results are different from the similar ones for classical
ordinary differential equations in aforementioned sense.

Lemma 2. (Comparison Result) If there exists a nonnegative constant λ
satisfying 0 < λη < 1 such that{

Dqu(t) ≥ 0, t ∈ Iq,

u(0) ≥ λ
∫ η
0
u(s) dqs.

Then u(t) ≥ 0, ∀t ∈ Iq.

Proof. By Lemma 1, the conclusion of Lemma 2 is obvious, so we omit the
proof. ut

3 Some Existence Results

In the sequel, we denote by C = C(Iq,R) the space of all continuous functions
from Iq → R equipped with the norm supt∈Iq |u(t)| = ‖u‖.

In view of Lemma 1, we define an operator G : C (Iq,R) → C (Iq,R) asso-
ciated with the problem (1.1) as follows

Gu(t) =

∫ t

0

f(s, u(s), u(φ(s)))dqs+
λ

1− λη

∫ η

0

(η − qs)f(s, u(s), u(φ(s)))dqs

+
1

1− λη

(∫ η

0

[g(s, u(s))− λu(s)]dqs+ µ
)
. (3.1)

Now we are in a position to show the existence and uniqueness of solutions
continuous at 0 for the problem (1.1).

Theorem 1. Assume that f : Iq×R×R→ R and g : Iq×R→ R are continuous
functions such that supt∈Iq |f(t, 0, 0)| = M1, supt∈Iq |g(t, 0)| = M2 for given
positive constants Mj , j = 1, 2, and that there exists q-integrable functions Li :
Iq → R+, i = 1, 2 such that

(S1) |f(t, u(t), u(φ(t)))− f(t, v(t), v(φ(t)))| ≤ L1(t)|u− v|, t ∈ Iq, u, v ∈ R.

(S2) |g(t, u(t))− g(t, v(t))| ≤ L2(t)|u− v|, t ∈ Iq, u, v ∈ R.

If A1 < 1, then the problem (1.1) has a unique solution on Iq, where

A1 =

∫ 1

0

L1(s)dqs+
1

|1− λη|

∫ η

0

(
|λ|[(η − qs)L1(s) + 1] + L2(s)

)
dqs. (3.2)
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Proof. In the first step, using the given hypotheses, we show that GBρ ⊂ Bρ,
where G is defined by (3.1), Bρ = {x ∈ C : ‖x‖ ≤ ρ} and ρ ≥ A2/(1−A1) with
A1 given by (3.2) and

A2 =
1

|1− λη|

(
M1(|1− λη|) +

M1|λ|η2

1 + q
+M2η + |µ|

)
. (3.3)

For u ∈ Bρ, t ∈ Iq, we have

|f(t, u(t), u(φ(t)))| ≤ |f(t, u(t), u(φ(t)))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ L1(t)‖u‖+M1 ≤ L1(t)ρ+M1,

|g(t, u(t))| ≤ |g(t, u(t))− g(t, 0)|+ |g(t, 0)| ≤ L2(t)‖u‖+M2

≤ L2(t)ρ+M2.

Then

|Gu(t)| ≤
∫ t

0

(
L1(s)ρ+M1

)
dqs+

|λ|
|1− λη|

∫ η

0

(η − qs)
(
L1(s)ρ+M1

)
dqs

+
1

|1− λη|

(∫ η

0

[(L2(s) + |λ|)ρ+M2]dqs+ |µ|
)
≤ ρA1 +A2 ≤ ρ.

This shows that GBρ ⊂ Bρ.

Now, for u, v ∈ C and t ∈ Iq, we obtain

‖(Gu)− (Gv)‖ ≤ sup
t∈Iq

{∫ t

0

|f(s, u(s), u(φ(s)))− f(s, v(s), v(φ(s)))|dqs

+
|λ|

|1− λη|

∫ η

0

(η − qs)|f(s, u(s), u(φ(s)))− f(s, v(s), v(φ(s)))|dqs

+
1

|1− λη|

∫ η

0

(
|g(s, u(s))− g(s, v(s))|+ |λ||u(s)− v(s)|

)
dqs
}

≤ ‖u− v‖ sup
t∈Iq

{∫ t

0

L1(s)dqs+
|λ|

|1− λη|

∫ η

0

(η − qs)L1(s)dqs

+
1

|1− λη|

∫ η

0

(L2(s) + |λ|)dqs
}

= A1‖u− v‖,

where we have used (3.2). As A1 ∈ (0, 1) by the given assumption, therefore G
is a contraction. Hence Banach’s contraction principle applies and the problem
(1.1) has a unique solution. ut

Corollary 1. In case Li(t) = Li, i = 1, 2 (Li are constants), then the assump-
tions (S1), (S2) and A1 in the condition A1 < 1 take the following form:

(S̄1) |f(t, u(t), u(φ(t)))− f(t, v(t), v(φ(t)))| ≤ L1|u− v|, t ∈ Iq, u, v ∈ R,

(S̄2) |g(t, u(t))− g(t, v(t))| ≤ L2|u− v|, t ∈ Iq, u, v ∈ R

Math. Model. Anal., 20(5):604–618, 2015.
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and

Ā1 = L1

[
1 +

|λ|η2

|1− λη|(1 + q)

]
+

(|λ|+ L2)η

|1− λη|
.

Next we show the existence of solutions via Leray-Schauder nonlinear al-
ternative.

Theorem 2. (Nonlinear alternative for single valued maps) [24]. Let E be a
Banach space, C a closed, convex subset of E, U an open subset of C and
0 ∈ U. Suppose that F : U → C is a continuous, compact (that is, F (U) is a
relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and κ ∈ (0, 1) with u = κF (u).

Theorem 3. Let f : Iq × R × R → R and g : Iq × R → R be continuous
functions. In addition, we assume that

(S3) there exist functions m1,m2, n1, n2∈L1(Iq,R+), and nondecreasing func-
tions ψi : R+ → R+(i = 1, 2) such that

|f(t, u(t), u(φ(t)))| ≤ m1(t)ψ1(‖u‖) +m2(t),

|g(t, u(t))| ≤ n1(t)ψ2(‖u‖) + n2(t),

for each (t, u(t), u(φ(t))) ∈ Iq × R× R, (t, u(t)) ∈ Iq × R;

(S4) there exists a number M > 0 such that

M [1− |λ|η(|1− λη|)−1]

ψ1(M)ν1 + ν2 + ψ2(M)ω1 + ω2 + |µ|(|1− λη|)−1
> 1,

where

νi =

∫ 1

0

mi(s)dqs+
|λ|

|1− λη|

∫ η

0

(η − qs)mi(s)dqs, (3.4)

ωi =
1

|1− λη|

∫ η

0

ni(s)dqs, i = 1, 2. (3.5)

Then the boundary value problem (1.1) has at least one solution on Iq.

Proof. We split the proof into several steps. In the first step, it will be shown
that the operator G maps bounded sets into bounded sets in C(Iq,R). For
that, let Br = {u ∈ C(Iq,R) : ‖u‖ ≤ r} be a bounded set in C(Iq,R) for some
r > 0. Notice that the operator G : C (Iq,R) → C (Iq,R) defined by (3.1) is
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continuous. Then, in view of the assumption (S3), we have

|Gu(t)| ≤
∫ t

0

[m1(s)ψ1(‖u‖) +m2(s)]dqs

+
|λ|

|1− λη|

∫ η

0

(η − qs)[m1(s)ψ1(‖u‖) +m2(s)]dqs

+
1

1− λη

(∫ η

0

[[n1(s)ψ2(‖u‖) + n2(s)] + |λ|‖u‖]dqs+ |µ|
)
,

≤ ψ1(r)
{∫ 1

0

m1(s)dqs+
|λ|

|1− λη|

∫ η

0

(η − qs)m1(s)dqs
}

+

∫ 1

0

m2(s)dqs+
|λ|

|1− λη|

∫ η

0

(η − qs)m2(s)dqs

+
ψ2(r)

|1− λη|

∫ η

0

n1(s)dqs+
1

|1− λη|

∫ η

0

n2(s)dqs+
|λ|rη + |µ|
|1− λη|

,

which, by using (3.4) and (3.5), yields

‖Gu‖ ≤ ψ1(r)ν1 + ν2 + ψ2(r)ω1 + ω2 +
|λ|rη + |µ|
|1− λη|

≤ r.

Now we show that G maps bounded sets into equicontinuous sets of C(Iq,R).
Let t1, t2 ∈ Iq with t1 < t2 and x ∈ Br, where Br is a bounded set of C(Iq,R).
Then

‖(Gu)(t2)− (Gu)(t1)‖

≤
∣∣∣ ∫ t2

0

(t2−qs) f(s, u(s), u(φ(s)))dqs−
∫ t1

0

(t1−qs) f(s, u(s), u(φ(s)))dqs
∣∣∣

≤
∣∣∣ ∫ t1

0

(t2 − t1)[m1(s)ψ1(r) +m2(s)]dqs

+

∫ t2

t1

(t2 − qs) [m1(s)ψ1(r) +m2(s)]dqs
∣∣∣,

which tends to zero independently of u ∈ Br as t2 − t1 → 0. Hence the Arzelá-
Ascoli theorem applies and that G : C(Iq,R)→ C(Iq,R) is completely contin-
uous.

Now let κ ∈ (0, 1) and let u = κGu. Then for t ∈ Iq, we have

|u(t)| ≤ ψ1(‖u‖)
{∫ 1

0

m1(s)dqs+
|λ|

|1− λη|

∫ η

0

(η − qs)m1(s)dqs
}

+

∫ 1

0

m2(s)dqs+
|λ|

|1− λη|

∫ η

0

(η − qs)m2(s)dqs

+
ψ2(‖u‖)
|1− λη|

∫ η

0

n1(s)dqs+
1

|1− λη|

∫ η

0

n2(s)dqs+
|λ|‖u‖η + |µ|
|1− λη|

,

which implies that

‖u‖[1− |λ|η(|1− λη|)−1]

ψ1(‖u‖)ν1 + ν2 + ψ2(‖u‖)ω1 + ω2 + |µ|(|1− λη|)−1
≤ 1.

Math. Model. Anal., 20(5):604–618, 2015.
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By the condition (S4), we can find M such that ‖u‖ 6= M . We define

V = {u ∈ C(Iq,R) : ‖u‖ < M}.

Note that the operator G : V → C(Iq,R) is continuous and completely continu-
ous. From the choice of V , there does not exist any u ∈ ∂V satisfying u = κGu
for some κ ∈ (0, 1). Hence, by the Leray-Schauder alternative (Theorem 2), we
can deduce that the operator G has a fixed point u ∈ V which is a solution of
the problem (1.1). This completes the proof. ut

Our next existence results is based on Krasnoselskii’s fixed point theorem.

Lemma 3. (Krasnoselskii) [36]. Let Y be a closed, bounded, convex and non-
empty subset of a Banach space X. Let W1,W2 be the operators such that (i)
W1x + W2y ∈ Y whenever x, y ∈ Y ; (ii) W1 is compact and continuous; (iii)
W2 is a contraction. Then there exists y ∈ Y such that y = W1y +W2y.

Theorem 4. Let f : Iq × R × R → R and g : Iq × R → R be continuous
satisfying the condition (S1) and (S2). Further, the following conditions hold:

(S5) there exists functions σi ∈ C(Iq,R+) and nondecreasing functions χi ∈
C(Iq,R+), i = 1, 2 with

|f(t, u(t), u(φ(t)))| ≤ σ1(t)χ1(|u|), |g(t, u(t))| ≤ σ2(t)χ2(|u|)

for (t, u(t), u(φ(t))) ∈ Iq × R× R, (t, u(t)) ∈ Iq × R;

(S6) there exists a constant r with

r ≥
(

1− |λ|η
|1− λη|

)−1[
‖σ1‖χ1(r)

{
1 +

|λ|η2

|1− λη|(1 + q)

}
+

1

|1− λη|

{
‖σ2‖χ2(r)η + µ

}]
,

(3.6)

where ‖σi‖ = supt∈Iq |σi(t)|.

If

1

|1− λη|

∫ η

0

(
|λ|[(η − qs)((L1(s) + L2(s))) + 1] + L3(s)

)
dqs < 1, (3.7)

then the boundary value problem (1.1) has at least one solution on Iq.

Proof. Let us consider a set Br = {u ∈ C(Iq,R) : ‖u‖ ≤ r} and define the
operators G1 and G2 on Br as

(G1u)(t) =

∫ t

0

f(s, u(s), u(φ(s)))dqs,

(G2u)(t) =
λ

1− λη

∫ η

0

(η − qs)f(s, u(s), u(φ(s)))dqs

+
1

1− λη

(∫ η

0

[g(s, u(s))− λu(s)]dqs+ µ
)
, t ∈ Iq.
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For u, v ∈ Br, we can obtain

|(G1u+ G2v)(t)| ≤
(

1− |λ|η
|1− λη|

)−1[
‖σ1‖χ1(r)

{
1 +

|λ|η2

|1− λη|(1 + q)

}
+

1

|1− λη|

{
‖σ2‖χ2(r)η + µ

}]
≤ r.

Thus, (G1u+ G2v)(t) ∈ Br. It follows from (S1) and (3.7) that G2 is a contrac-
tion. Continuity of f implies that the operator G1 is continuous. Also, G1 is
uniformly bounded on Br as ‖G1u‖ ≤ χ1(r)‖σ1‖. Now, for any x ∈ Br, and
t1, t2 ∈ Iq with t1 < t2, we have

|(G1u)(t2)− (G1u)(t1)|

≤
∣∣∣∣∫ t2

0

(t2−qs) f(s, u(s), u(φ(s)))dqs−
∫ t1

0

(t1−qs) f(s, u(s), u(φ(s)))dqs

∣∣∣∣
≤ χ1(r)‖σ1‖

∣∣∣∣∫ t1

0

(t2 − t1)dqs+

∫ t2

t1

(t2 − qs) dqs
∣∣∣∣ ,

which is independent of u and tends to zero as t2 → t1. Thus, G1 is equicontin-
uous. So G1 is relatively compact on Br. Hence, it follows by the Arzelá-Ascoli
Theorem that G1 is compact on Br. Thus all the assumptions of Lemma 3 are
satisfied. So the conclusion of Lemma 3 implies that the problem (1.1) has at
least one solution on Iq. This completes the proof. ut

3.1 Examples

Example 1. Consider the problem{
D 1

3
u(t) = f(t, u(t), u(φ(t))), t ∈ [0, 1] 1

3
,

u(0) = 1
12

∫ 1
2

0
g(s, u(s)dqs.

(3.8)

Here q = 1/3, f(t, u(t), u(φ(t))) =
1

5
tan−1 u(t) +

1

3

u( 1
3 t) sin2 t

1 + u( 1
3 t)

+ (t+ 1)2, λ =

1/12, η = 1/2( 6∈ [0, 1] 1
3
), µ = 0, g(t, u(t)) =

1

4
cos(u(t)) +

√
t2 + 1. With the

given data, L1 = 1/5, L2 = 1/3 and Ā1 = 247
345 < 1. Clearly all the conditions

of Corollary 1 are satisfied. Hence, it follows by the conclusion of Corollary 1
that the problem (3.8) has a unique solution.

Example 2. Let us consider Example 1 with

f(t, u(t), u(φ(t))) =
1

6

|u(t)|2

(1 + |u(t)|2)
+
|u( 1

4 t)|
3

1 + |u( 1
4 t)|3

+ 1, (3.9)

g(t, u(t)) =
1

3
sin(u(t)) +

1

8
.

Clearly |f(t, u(t), u(φ(t)))| ≤ 7/6 + 1, |g(t, u(t))| ≤ 1

3
‖u‖+

1

8
. Letting m1(t) =

1 = m2(t), ψ1(‖u‖) = 7/6, n1(t) = 1/3, ψ2(‖u‖) = ‖u‖, n2 = 1/8, we find that
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ν1 = 187/184 = ν2, ω1 = 4/23, ω2 = 3/46. By the condition (S4), it is found
that M > 2503/864. Thus the hypotheses of Theorem 3 hold and consequently
there exists a solution for the problem (3.8) with f(t, u(t), u(φ(t))) and g(t, u(t))
given by (3.9).

4 Extremal solutions

In the sequel, we need the following known result.

Theorem 5. [25] Let [a, b] be an order interval in a subset Y of an ordered
Banach space X and let Q : [a, b]→ [a, b] be a nondecreasing mapping. If each
sequence {Qxn} ⊂ Q([a, b]) converges, whenever {xn} is a monotone sequence
in [a, b], then the sequence of Q-iteration of a converges to the least fixed point
x∗ of Q and the sequence of Q-iteration of b converges to the greatest fixed point
x∗ of Q. Moreover,

x∗ = min{y ∈ [a, b] : y ≥ Qy} and x∗ = max{y ∈ [a, b] : y ≤ Qy}.

Theorem 6. (Extremal solutions). Assume that u0, v0 ∈ C(Iq,R) are lower
and upper solutions of (1.1) respectively, and that u0(t) ≤ v0(t), ∀t ∈ Iq.
Further, the following conditions hold:

(H1) the function f ∈ C(Iq×R2,R) is nondecreasing with respect to second
and third variables;

(H2) there exists a nonnegative constant λ satisfying λη < 1 such that

g(t, u)− g(t, v) ≥ λ(u− v)

for u0(t) ≤ v ≤ u ≤ v0(t), ∀t ∈ Iq.
Then there exist extremal solutions u∗, v

∗ ∈ [u0, v0] for the nonlinear q-
integral boundary value problem (1.1) which can be obtained via the explicit
iterative sequences:

un+1(t) =

∫ t

0

f(s, un(s), un(φ(s)))dqs

+
λ

1− λη

∫ η

0

(η − qs)f(s, un(s), un(φ(s)))dqs

+
1

1− λη

(∫ η

0

[g(s, un(s))− λun(s)]dqs+ µ
)
,

vn+1(t) =

∫ t

0

f(s, vn(s), vn(φ(s)))dqs

+
λ

1− λη

∫ η

0

(η − qs)f(s, vn(s), vn(φ(s)))dqs

+
1

1− λη

(∫ η

0

[g(s, vn(s))− λvn(s)]dqs+ µ
)
.

(4.1)

Moreover, the sequences {un}, {vn} converge to u∗, v
∗ respectively satisfying the

relation:

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u∗ ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.
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Proof. We consider the linear q-integral boundary value problem{
Dqu(t) = f(t, σ(t), σ(φ(t))), t ∈ Iq,

u(0) =
∫ η
0

[g(s, σ(s)) + λ(u− σ)(s)]dqs+ µ.
(4.2)

It follows from Lemma 1 that the linear problem (4.2) has a unique solution

u(t) =

∫ t

0

f(s, σ(s), σ(φ(s)))dqs+
λ

1−λη

∫ η

0

(η−qs)f(s, σ(s), σ(φ(s)))dqs

+
1

1− λη

(∫ η

0

[g(s, σ(s))− λσ(s)]dqs+ µ
)
.

For any σ ∈ [u0, v0], we define an operator G with u(t) = Gσ(t). Then the
operator G is nondecreasing and G : [u0, v0]→ [u0, v0].

Indeed, we set u1 = Gu0, v1 = Gv0. Then u1, v1 are well defined and
respectively satisfy{

Dqu1(t) = f(t, u0(t), u0(φ(t))), t ∈ Iq,

u1(0) =
∫ η
0

[g(s, u0(s)) + λ(u1 − u0)(s)]dqs+ µ,
(4.3)

and {
Dqv1(t) = f(t, v0(t), v0(φ(t))), t ∈ Iq,

v1(0) =
∫ η
0

[g(s, v0(s)) + λ(v1 − v0)(s)]dqs+ µ.
(4.4)

Noting that u0 is a lower solution of problem (1.1), we let w = u1 − u0. Then,
it follows from (4.3) that {

Dqw(t) ≥ 0, t ∈ Iq,

w(0) ≥ λ
∫ η
0
w(s)dqs.

(4.5)

By Lemma 2, we have w(t) ≥ 0,∀t ∈ Iq, which implies that Gu0 ≥ u0. Similarly,
applying the definition of upper solution and (4.4), we can obtain Gv0 ≤ v0.
Thus G : [u0, v0]→ [u0, v0].

Setting e = v1 − u1 and making use of (4.3) and (4.4) with the conditions
(H1), (H2), we obtain

Dqe(t) = f(t, v0(t), v0(φ(t)))− f(t, u0(t), u0(φ(t))) ≥ 0, (4.6)

e(0) =

∫ η

0

[g(s, v0(s)) + λ(v1 − v0)(s)]dqs

−
∫ η

0

[g(s, u0(s)) + λ(u1 − u0)(s)]dqs ≥ λ
∫ η

0

e(s)dqs.

Likewise, we get e(t) ≥ 0 by means of Lemma 2. Thus, Gu0 ≤ Gv0. This,
together with u0 ≤ Gu0 and Gv0 ≤ v0, implies that G is nondecreasing and
G : [u0, v0]→ [u0, v0].

Assume that {wn} ⊂ [u0, v0] is a monotone iterative sequence. Then, u0 ≤
Gwn ≤ v0. By means of Arzelá-Ascoli theorem, one can show that the sequence
{Gwn} ⊂ G([u0, v0]) converges.
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With the aid of Theorem 5, it is easy to see that the sequence of G-iteration
with u0 converges to the least fixed point u∗ of G and the sequence of G-
iteration with v0 converges to the greatest fixed point v∗ of G. This, in turn,
implies that the nonlocal q-integral boundary value problem (1.1) has extremal
solutions u∗, v

∗ ∈ [u0, v0], which can be achieved by the corresponding iterative
sequences {un}, {vn} defined in (4.1). Obviously, the following conclusion holds

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u∗ ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

This completes the proof. ut

Example 3. Consider a nonlinear q-integral boundary value problem given by
D 1

2
u(t) =

1

4
t3 +

1

8
tu2(t) +

t2

10

u( 1
2 t)

1 + u( 1
2 t)

, t ∈ [0, 1] 1
2
,

u(0) = 3
14

∫ 1
4

0
(
1

7
u2(s) + 1

14e
u(s))d 1

2
s+ 1

2 .

(4.7)

Here q =
1

2
, λ = 3

14 , η =
1

4
, µ =

1

2
, φ(t) = 1

2 t, f(t, u(t), u(φ(t))) =
1

4
t3 +

1

8
tu2(t) +

t2

10

u( 1
2 t)

1 + u( 1
2 t)

and g(t, u(t)) =
1

7
u2(t) +

1

14
eu(t).

To show the applicability of the conclusion of Theorem 6, we shall verify that
all conditions of Theorem 6 are satisfied.

Take u0 = 0, v0 = 1 + t. It is easy to verify that u0 and v0 are lower and

upper solutions of problem (4.7) respectively. Since f(t, u, v) =
1

4
t3 +

1

8
tu2 +

t2

10

v

1 + v
, the condition (H1) holds.

With g(t, u) =
1

7
u2 +

1

14
eu, η =

1

4
, and for λ =

3

14
, λη =

3

56
< 1, the func-

tion g satisfies the condition (H2). Thus, by Theorem 6, we conclude that the
problem (4.7) has extremal solutions u∗, v

∗, which can be obtained by means
of the iterative sequences {un}, {vn} defined by the expressions in (4.1).
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[19] R. Čiegis and A. Bugajev. Numerical approximation of one model of the bacterial
self-organization. Nonlinear Analysis: Modelling and Control, 17(3):253–270,
2012.

[20] M. El-Shahed and H.A. Hassan. Positive solutions of q-difference equation. Proc.
Amer. Math. Soc., 138:1733–1738, 2010. http://dx.doi.org/10.1090/S0002-9939-
09-10185-5.

[21] T. Ernst. A Comprehensive Treatment of q-Calculus. Springer, 2012.
http://dx.doi.org/10.1007/978-3-0348-0431-8.

[22] G. Gasper and M. Rahman. Basic Hypergeometric Series. Cambridge University
Press, Cambridge, 1990. http://dx.doi.org/10.1002/zamm.19920720709.

[23] G. Gasper and M. Rahman. Some systems of multivariable or-
thogonal q-Racah polynomials. Ramanujan J., 13:389–405, 2007.
http://dx.doi.org/10.1007/s11139-006-0259-8.

[24] A. Granas and J. Dugundji. Fixed Point Theory. Springer-Verlag, New York,
2003. http://dx.doi.org/10.1007/978-0-387-21593-8.

[25] S. Heikkila and V. Lakshmikantham. Monotone Iterative Techniques for Discon-
tinuous Nonlinear Differential Equations. Marcel Dekker, New York, 1994.

[26] M.E. Ismail and P. Simeonov. q-difference operators for orthog-
onal polynomials. J. Comput. Appl. Math., 233(3):749–761, 2009.
http://dx.doi.org/10.1016/j.cam.2009.02.044.

[27] F.H. Jackson. On q-functions and a certain difference operator. Trans. Roy. Soc.
Edinburgh, 46:253–281, 1909. http://dx.doi.org/10.1017/S0080456800002751.

[28] V. Kac and P. Cheung. Quantum Calculus. Springer, 2002.
http://dx.doi.org/10.1007/978-1-4613-0071-7.

[29] G.S. Ladde, V. Lakshmikantham and A. S. Vatsala. Monotone Iterative Tech-
niques for Nonlinear Differential Equations. Pitman, Boston, 1985.
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