
Mathematical Modelling and Analysis Publisher: Taylor&Francis and VGTU

Volume 20 Number 5, September 2015, 619–640 http://www.tandfonline.com/TMMA

http://dx.doi.org/10.3846/13926292.2015.1088903 ISSN: 1392-6292

c©Vilnius Gediminas Technical University, 2015 eISSN: 1648-3510

Parallel Optimization Algorithm for
Competitive Facility Location

Algirdas Lančinskasa, Pilar Mart́ınez Ortigosab and
Julius Žilinskasa

aVilnius University, Institute of Mathematics and Informatics

Akademijos str. 4, LT-08663 Vilnius, Lithuania
bUniversidad de Almeŕıa
ceiA3, ctra. Sacramento s/n, La Canada de San Urbano 04120, Almeŕıa,

Spain

E-mail: algirdas.lancinskas@mii.vu.lt

E-mail: ortigosa@ual.es

E-mail(corresp.): julius.zilinskas@mii.vu.lt

Received June 10, 2015; revised August 17, 2015; published online September 15, 2015

Abstract. A stochastic search optimization algorithm is developed and applied to
solve a bi-objective competitive facility location problem for firm expansion. Parallel
versions of the developed algorithm for shared- and distributed-memory parallel com-
puting systems are proposed and experimentally investigated by approximating the
Pareto front of the competitive facility location problem of different scope. It is shown
that the developed algorithm has advantages against its precursor in the sense of the
precision of approximation. It is also shown that the proposed parallel versions of
the algorithm have almost linear speed-up when solving competitive facility location
problems of different scope reasonable for practical applications.

Keywords: optimization, facility location, parallel computing.

AMS Subject Classification: 90C29; 68W10.

1 Introduction

It is believed that Facility Location (FL) as a science has originated from
Pierre de Fermat, Battista Cavallieri, and Evangelistica Torricelli since they
independently proposed the basic Euclidean spatial median problem early in
the seventeenth century [6]. However formally, the most important starting
point in the history of location science is assumed to be the Alfred Weber’s
book [23]. The location of facilities is important for the firms providing services
to customers in a certain geographical region. There are a lot of models of FL
proposed in literature, e.g. [8, 10, 18, 20], which differ on their properties such

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2015.1088903
mailto:algirdas.lancinskas@mii.vu.lt
mailto:ortigosa@ual.es
mailto:julius.zilinskas@mii.vu.lt

620 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

as location space, describing possible locations for the facilities, attractiveness
of facilities, or behavior of customers when choosing a facility to get a service.

1.1 Competitive FL for firm expansion

Consider a firm FA is planning to locate a set of facilities (or a single facility) in
a region where other firms already have facilities and provide a service. The firm
FA has to compete for the market share in the region and take the competition
into account when determining locations for the new facilities. Such a kind of
FL problems are known as Competitive Facility Location Problems (CFLP).

Suppose that the firm FA is already in the market (has preexisting facilities
and already provides service to the customers in the region) and planning to
extend its market share by establishment a set of new facilities. Thus the firm
FA faces the CFLP for Firm Expansion (CFLP/FE). Despite the maximization
of the market share captured by the new facilities, the impact of the new
facilities on the preexisting ones belonging to the expanding firm should be
simultaneously taken into account in CFLP/FE.

Consider the firms FA and FB , providing a service to a set I of demand
points. The firm FA has a set of nA preexisting facilities and the firm FB

has a set of nB preexisting facilities, providing service for customers in a given
geographical region and competing for the market share. The firm FA wants
to increase its market share by establishing a set FX of nX new facilities. The
new facilities can attract new customers from the facilities of the firm FB thus
increasing the total market share of FA. On the other hand the new facilities
can attract customers who are already served by own facilities of the firm
FA, thus giving raise of the effect of cannibalism [9]. Therefore the firm FA

faces a bi-objective optimization problem with the following objectives: (1) to
maximize the market share of the facilities being located and (2) to minimize
the loss of market share of the preexisting facilities of the firm FA (the effect
of cannibalism).

A single evaluation of the utility of the new facilities and the effect of can-
nibalism requires to determine the most attractive facility for every demand
point. In order to determine the most attractive facility for a certain demand
point i ∈ I, the attractiveness of the demand point to each of the facilities in
FA, FB , and FX must be evaluated, thus requiring to perform nA + nB + nX
such evaluations. Thus, considering the evaluation of the attractiveness which
customers from a certain demand point feel to a certain facility as the basic
operation, the complexity of the evaluation of the utility and the effect of the
cannibalism can be expressed as nI × (nA + nB + nX), where nI stands for
the number of demand points. After such a number of the evaluations of the
attractiveness, we are able to determine the most attractive facility for each
demand point and evaluate the utility of the facilities in FX by summing the
buying power of all demand points which feel the maximum attractiveness to
the facilities from FX ; the effect of cannibalism can be evaluated by the differ-
ence of the market share of the facilities in FA before and after the expansion.
Although the complexity of the procedure above can be reduced by optimizing
the computational work according to the certain model of customers’ behavior,

Parallel Optimization Algorithm for CFL 621

we are interested in development of a general parallel algorithm which would
be independent on the model of customers’ behavior.

1.2 Multi-objective optimization

In general a CFLP/FE can be expressed as a mathematical optimization prob-
lem to find a decision vector

x = (x1, x2, . . . , xd),

describing the locations of the the new facilities, which would be optimal with
respect to the values of the objective functions: f1(x) describing market share of
the new facilities and f2(x) describing the effect of cannibalism. The decision
vector x can be selected from a set D ⊂ Rd of all possible decision vectors,
called search space, where d is the number of problem variables.

Due to conflicting objectives usually it is impossible to find a single solution
which would be the best by both objectives. Moreover, comparison of two
decision vectors by the value of a single objective is meaningless as a decision
vector better by one objective can be worse or even the worst by another one.
On the other hand, the fitness of two different decision vectors x and y can be
compared by the dominance relation. In terms of multi-objective optimization
two different decision vectors x and y can be related with each other in three
different ways: x dominates y and vice versa, as well as none of them are
dominated by the other. It is said that the decision vector x dominates the
decision vector y (denoted by x � y) if (1) x is not worse than y by any of
the objectives and (2) x is strictly better than y by at least one objective. If
x � y, then x is called a dominator of y; if none of two decision vectors can be
distinguished as a dominator of the other, they are considered as indifferent in
the sense of the dominance relation.

A decision vector x which has no dominators in the whole search space D
is called non-dominated, or Pareto-optimal, and a set of non-dominated deci-
sion vectors is called the Pareto set. The corresponding set of the values of
the objective functions for non-dominated decision vectors is called the Pareto
front.

Determination of the exact Pareto front of a multi-objective optimization
problem usually is a hard and time consuming task, which can be even in-
tractable within an acceptable time. On the other hand solution of practical
problems usually does not require to find the exact Pareto front, but rather its
approximation by a limited set of non-dominated objective vectors. Therefore
multi-objective optimization methods approximating the Pareto front are usu-
ally used to tackle practical problems. A well known class of such algorithms
are Evolutionary Algorithms (EAs), which require little knowledge about the
problem being solved, are easy to implement, and can be parallelized [1].

1.3 Related works

There is a great amount of work devoted to an approximation of the Pareto front
of CFLP. For example, Redondo et al. [19] proposed a general multi-objective

Math. Model. Anal., 20(5):619–640, 2015.

622 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

optimization heuristic algorithm and applied it for CFLP; Zitzler et al. [24]
proposed the Strength Pareto Evolutionary Algorithm (SPEA2) and Huapu
and Jifeng [11] utilized it to solve a bi-level optimization problem related to
distribution centers; Deb et al. [5] proposed the Non-dominated Sorting Genetic
Algorithm (NSGA-II) and Villegas et al. [22] utilized it to solve a bi-objective
FL problem by minimizing operational cost of Colombian Coffee supply network
and maximizing the demand.

Although EAs are popular due to applicability to various practical prob-
lems, their performance can be notably improved by incorporating a local
search thus deriving so called memetic algorithms. For example, Medaglia
et al. [17] utilized hybrid NSGA-II and mixed-integer programming approach
to solve bi-objective obnoxious FL problem related to the hospital waste man-
agement network; Multi-objective Single Agent Stochastic Search (MOSASS)
has been proposed in [13] and has been incorporated into the NSGA-II, thus
developing a hybrid multi-objective optimization algorithm called NSGA/LSP.

There are also some works devoted to parallel algorithms to tackle FL
problems. For example, Belloch and Tangwongsan [2] analyzed metric FL,
k-median, k-means, and k-center problems, de Silva and Abramson [4] devel-
oped a parallel interior point method for FL.

A parallel algorithm suitable for multi-objective FL, in particular, NSGA-II
have been proposed in [14], some version of which have been applied to solve
the CFLP using a large scale computing system in [15]. Consequently the
parallel version of NSGA/LSP, suitable for hybrid distributed-shared memory
architecture of parallel computing system, has been proposed and applied to
solve the CFLP in [16]. The main disadvantage of the parallel NSGA/LSP
appears to be a sequential local optimization of a single solution, which leads
to an idle time of some processing units during the local optimization procedure.

In this paper we will focus on development and investigation of the paral-
lel multi-objective local search algorithms, by modifying previously proposed
Multi-Objective Single Agent Stochastic Search (MOSASS), as well as on ap-
plication of the developed parallel algorithms to solve bi-objective CFLP/FE
using shared- and distributed-memory parallel computing systems. The pro-
posed shared-memory parallel algorithm is based on a general model for shared-
memory parallel computing [12], where the main concern is to guarantee the
consistent access to the shared memory. The proposed distributed-memory
parallel algorithm is based on the master-slave model [12], where one of the
processors is responsible for the organization of the workload of the slaves as
well as for the communication between them. For the application of the master-
slave model to parallelize genetic and other algorithms we refer to [3,7,21]. The
main concern in development of the distributed-memory parallel algorithm is
the organization of the effective workload of the slave (and master) process-
ing units, what is not a trivial task due to the nature of the algorithm being
parallelized.

The remainder of the paper is organized as follows: Section 2 consists
of description of multi-objective optimization stochastic search algorithm de-
rived from MOSASS; Section 3 describes the parallel multi-objective stochas-
tic search algorithms for shared- and distributed-memory parallel computing

Parallel Optimization Algorithm for CFL 623

systems; Section 4 presents description and results of the experimental inves-
tigation of the proposed parallel algorithms.

2 Multi-objective stochastic search algorithm

Multi-Objective Stochastic Search (MOSS) algorithm has been developed from
its precursor MOSASS [13]. The concept of MOSASS as well as of its precursor
SASS for single-objective optimization is based on generation of a new solution
x′ in a neighborhood of a single decision vector x and consideration of an
opposite decision vector x′′ if x′ is not acceptable; the decision vector x is
updated only if a dominating decision vector is found. Since the decision to
consider x′′ can be made after the evaluation of x′, parallelization of process is
complicated. Therefore we propose to use multi-agent search strategy, where
parent decision vector is randomly selected from the archive of non-dominated
decision vectors, thus giving availability to simultaneously use an arbitrary
number of decision vectors x and parallelize the process.

Scheme of MOSS algorithm is presented in Figure 2. The algorithm begins
with an initial non-empty archive A of the decision vectors which are non-
dominated among themselves; the initial archive can also consist of a single
decision vector, which is naturally non-dominated in the archive. A new de-
cision vector x′ is generated by applying mutation to the decision vector x
sampled from A. The mutation is performed by adding mutation vector

ξ = (ξ1, ξ2, . . . ξd)

to the sampled decision vector x:

x′ = x + ξ. (2.1)

Each element ξi of the mutation vector is generated following the expression

ξi =

{
N (0, σ), if ri ≤ 1/d,

0, if ri > 1/d,
(2.2)

where N (0, σ) stands for a random number, generated following the Gaussian
distribution with the zero bias and the standard deviation σ, ri is a random
number uniformly generated over [0, 1], d is the number of problem variables,
and i = 1, 2, . . . , d. Such a probabilistic method for generation of a neighbor
decision vector leads to the change of a single coordinate in average; see [13]
for details and advantages of the method.

The newly generated decision vector can obtain one of the following three
states: (a) the decision vector x′ is non-dominated in A and does not dominate
any of decision vectors in A; (b) the decision vector x′ is non-dominated in A
and dominates at least one decision vector in A; (c) the decision vector x′ is
dominated by at least one decision vector in archive A.

In the first case, the archive A is supplemented by the decision vector x′,
and the algorithm proceeds to the next iteration assuming the current iteration
to be successful. If x′ is non-dominated in A and there exists at least one

Math. Model. Anal., 20(5):619–640, 2015.

624 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

decision vector dominated by x′ (the second case), then the archive is updated
by including x′ and removing the dominated decision vectors:

A← (A ∪ {x′}) \ {y ∈ A : x′ � y}.

The algorithm proceeds to the next iteration assuming the current iteration
as successful. In the last case the decision vector x′ is rejected assuming the
iteration to be failed and the opposite decision vector

x′′ = x− ξ (2.3)

is considered following the same scheme as it was done for x′.

(a) (b) (c)

Figure 1. Illustration of three cases of the newly generated decision vector.

The principle of updating the archive is illustrated in Figure 1, where the
left image illustrates inclusion of the newly generated decision vector into the
archive; the middle image – inclusion of the decision vector with removal of the
dominated ones; the right image – rejection of the newly generated decision
vector. The square in the images stands for the newly generated decision
vector, and crossed points – for the rejected decision vectors.

The standard deviation of the Gaussian perturbation in (2.2) is dynami-
cally adjusted with respect to the number of repetitive successful and failed
iterations: if the number of repetitive successful iterations exceeds 3, then the
standard deviation is doubled; in the case of 3 repetitive failures the standard
deviation is reduced by half. If the standard deviation reaches its lower bound,
then it is set to the upper bound in order to avoid stuck in a local optimum;
the check for violation of the upper bound is not reasonable as the standard
deviation will be automatically reduced due to repetitive failed iterations when
the search starts to be chaotic enough.

3 Parallel multi-objective stochastic search

The MOSS algorithm can be briefly separated into three main parts: the ini-
tialization of the algorithm, where loading of initial data and assignment of
initial values of the parameters take place, the main loop, where iterative pro-
cess of approximation of the Pareto set takes place, and the finalization, where
processing and output of the obtained results take place.

Parallel Optimization Algorithm for CFL 625

Figure 2. Scheme of MOSS algorithm.

Math. Model. Anal., 20(5):619–640, 2015.

626 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

The second part of the algorithm usually is the most time consuming as the
evaluation of objective function values usually takes the main computational
effort. The first and the third parts are much less time-consuming and their
consideration as sequential parts should not make a significant impact on the
performance of a parallel algorithm. Assuming that the evaluations of the
objective values of different decision vectors can be considered as independent
tasks, they can be assigned to different processing units. In such a distribution
of tasks the information about the archive A of all non-dominated decision
vectors found so far as well as values of other parameters of the algorithm (the
standard deviation σ, the counters of repetitive successful and failed iterations
as well as the total number of performed iterations) must be accessed by all
processing units.

3.1 Shared memory ParMOSS

In shared-memory parallel computing systems all processing units have equal
privileges to access the information stored in the shared-memory. On the other
hand a consistent access to the archive A and parameters of the algorithm
must be guaranteed, i.e. if one of the processing units is updating a parameter
(or the archive), access of any other processing unit to that parameter (or the
archive) is blocked in order to keep the memory or data consistency. Taking
the latter considerations into account, the parallel version of MOSS, called
ParMOSS/OMP, has been developed using Application Programming Interface
(API) specification OpenMP for shared-memory parallel programing.

ParMOSS/OMP begins with initialization of the parameters of the algo-
rithm as well as the data and parameters of the optimization problem to be
solved. This part of the algorithm is insignificant in the sense of computational
effort, and therefore, is performed by a single processing unit – the master.
The master processing unit initializes the archive A of non-dominated decision
vectors; the archive can consist of a single decision vector generated at ran-
dom over the search space, or can be loaded from an external resource, e.g.
non-dominated decision vectors found by other multi-objective optimization
algorithm.

Further the computational effort is distributed among all processing units
being used for the computations. Each of the units randomly selects a decision
vector x from A, generates its neighbors x′ and x′′ following (2.1) and (2.3), and
evaluates objective values of x′. After the values of the objectives are evaluated,
the dominance relation of x′ with those stored in A is checked. During this
procedure the access for updating the archive A is blocked for other processing
units due to requirements for consistent memory access.

3.2 Distributed memory ParMOSS

In contrast with shared-memory parallel programming, processing units of a
distributed-memory parallel computing system do not have a common mem-
ory. Therefore information about decision vectors in the archive A and values
of parameters of the algorithm must be transfered by passing messages through

Parallel Optimization Algorithm for CFL 627

Message Passing Interface (MPI). In order to guarantee consistent communica-
tion between processing units one of them is devoted for the management of the
communication and overall process of the algorithm. Thus the parallel version
of MOSS algorithm ParMOSS/MPI for distributed-memory parallel comput-
ing systems is developed following the master-slave strategy, where the master
processing unit is responsible for management and communication whereas the
slaves evaluate objective values of decision vectors requested by the master.

The ParMOSS/MPI algorithm begins with an initial non-empty archive A
of non-dominated decision vectors which is initialized by the master processing
unit. The master selects a random decision vector xi from A, generates a pair of
candidate solutions (x′

i,x
′′
i) following (2.1) and (2.3), and sends the generated

pair to the i-th processing unit (a slave) with the request to evaluate the first
decision vector x′

i. Here i varies from 1 to the number of processing units p thus
ensuring that a pair of decision vectors will be generated for each processing
unit (the master processing unit normally is indexed by 0). After each slave i
is equipped by a pair of decision vectors (x′

i,x
′′
i), the master processing unit

proceeds to the main loop and waits for the response from any of the slaves
with an evaluated decision vector.

Although all slaves are requested to evaluate x′
i, some of them can also

be requested to evaluate x′′
i in the later stage of the algorithm. In general the

master processing unit proceeds depending on whether evaluation of x′
i or x′′

i is
received and the fitness of the received decision vector with respect to decision
vectors in the archive A. The possible cases are the following:

(a) The evaluation of x′
i is received and x′

i is non-dominated in A. Then A
is updated by including x′

i and removing all decision vectors dominated
by x′

i. A new pair (x′
i,x

′′
i) is generated and sent to i-th processing unit

with request to evaluate x′
i.

(b) The evaluation of x′
i is received, but x′

i is dominated in A. Then x′
i is

rejected and i-th processing unit is requested to evaluate x′′
i .

(c) The evaluation of x′′
i is received and x′′

i is non-dominated in A. Then A
is updated by including x′′

i and removing all decision vectors dominated
by x′′

i . A new pair (x′
i,x

′′
i) is generated and sent to i-th processing unit

with request to evaluate x′
i.

(d) The evaluation of x′′
i is received, but x′′

i is dominated in A. Then x′′
i is

rejected. A new pair (x′
i,x

′′
i) is generated and sent to i-th processing unit

with request to evaluate x′
i.

If the archive is supplemented either by x′ or x′′ then the counter of repet-
itive successful iterations is increased by 1 and the counter of repetitive failed
iterations is set to zero; otherwise the counter of repetitive failed iterations is
increased by 1 and the counter of repetitive successful iterations is set to zero.

Such an iterative process is continued till the counter of function evaluations
reaches E − (p− 1), where E is the maximum number of function evaluations,
and p is the number of processing units. The check for stopping criterion is
performed before sending request for evaluation of a decision vector to a slave.

Math. Model. Anal., 20(5):619–640, 2015.

628 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

It means one slave as well as the master do not have evaluated decision vector,
but p− 2 evaluations will be received from the remaining slaves. Therefore, if
E − (p− 1) function evaluations is reached, the master starts sending requests
for finalization (instead of request for evaluation of a decision vector) to the
slaves.

The scheme of the ParMOSS/MPI algorithm for the master processing unit
is presented in Figure 3. The request for evaluation of a decision vector or
finalization of the algorithm is transfered through tags of the message: the tag
value 1 means request for evaluation of decision vector x′

i, the tag value 2 –
request for evaluation of decision vector x′′

i , and the tag value 3 – request for
the finalization.

All slave processing units work independently from each other and commu-
nicate with the master only. Each slave evaluates the requested decision vector
and sends it together with values of the objective functions to the master. At
the beginning of the algorithm all slaves are requested to evaluate x′

i, though
later some of the slaves can be requested to evaluate the second decision vector
– x′′

i ; i.e. if x′
i is dominated by other non-dominated solution found so far

(see description of MOSS in Section 2). The slave processing unit is active till
request for finalization is received from the master.

The scheme of the ParMOSS/MPI algorithm for the slave processing unit is
presented in Figure 4. Whether evaluation of x′

i or x′′
i is being sent is indicated

by tag of the message.
Considering α and β (α+β = 1) as the ratio of time required for the function

evaluations (α) and for other computational effort (β) in the sequential MOSS
algorithm, the speed-up of the parallel ParMOSS algorithm on p processing
units can be approximately evaluated by

p− 1

α+ β(p− 1)
− ε(p), (3.1)

where ε(p) stands for the ratio of computational effort required for communi-
cation between p processing units. Expression (3.1) shows that increment of α
and thus reduction of β, increases the speed-up of the algorithm and vice versa
– reduction of α and thus increase of β, reduces the speed-up of the algorithm.

The master processing unit might be idle for some time, especially using
a small number of slaves. In order to avoid that, a modified version of Par-
MOSS/MPI – the ParMOSS/MPIwM has been developed, where the master
performs some function evaluations.

A single function evaluation requires to determine the most attractive fa-
cility for every demand point. That means that for CFLP with 5000 demand
points we need to determine the most attractive facility for 5000 demand points.
Therefore a single function evaluation can be separated into 5000 subtasks
which is performed in a sequential fashion by a single processor. If the master
processor detects that there are no messages from the slaves, it continues with
performing subtasks of a function evaluation and checks for incoming messages
after completion of each subtask. If the master detect an incoming message,
it stops with function evaluation procedure and continues with process of the
received decision vector in the same fashion as ParMOSS/MPI; after processing

Parallel Optimization Algorithm for CFL 629

Figure 3. Scheme of ParMOSS algorithm for the master processing unit.

Math. Model. Anal., 20(5):619–640, 2015.

630 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

Figure 4. Scheme of ParMOSS algorithm for the i-th slave processing unit, where
i = 1, 2, . . . , p.

the received decision vector, the master continues with the function evaluation
if there are no messages from the slaves.

4 Numerical experiments

The proposed algorithm MOSS (Section 2) as well as its parallel versions Par-
MOSS/OMP (Section 3.1) and ParMOSS/MPI (Section 3.2) have been exper-
imentally investigated by solving bi-objective CFLP/FE.

The real data, consisting of coordinates and population of 5000 cities and
towns in Lithuania has been used in the investigation. It was assumed that
the firms FA and FB have nA = nB = 10 preexisting facilities. The facilities
of the firm FB are located in the largest towns with populations from 543071
to 31142, whereas facilities of the firm FA are located in the next 10 largest
cities with populations from 29850 to 17244. The simplest model of behavior of
the customers when choosing the most attractive facility has been considered,
assuming that all customers from a single demand point choose the nearest
facility. In case of equal distances to more than one facility, the demand is
equally divided among all equidistant facilities.

Its was considered that the firm FA wants to extend its market share by
establishing 3 new facilities thus solving the bi-objective optimization problem
with 6 variables (2 variables per facility); see Section 1.1 for details of the
optimization problem. The Pareto front of the problem has been approximated
by 25000 function evaluations. Due to stochastic nature of the algorithms, each
experiment has been performed 100 times, using different randomly generated
initial decision vector, and the average results have been computed.

Parallel Optimization Algorithm for CFL 631

 0

 1

 0 1

C
a
n

n
ib

a
li

s
m

Market share

r

Figure 5. Illustration of the hyper-volume metric.

4.1 Metrics of precision and performance

The precision of the approximation of the Pareto front has been evaluated
by the Hyper-Volume (HV) metric, proposed by Zitzler and Thiele in [25].
The HV measures the area captured by the points in the obtained Pareto
front approximation and the given reference point r. The concept of the HV
metric is illustrated in Figure 5, where the filled points stand for non-dominated
decision vectors in the objectives space, hollow point – the reference point,
and the dashed line marks the boundaries of the dominated area. The larger
dominated area means better approximation of the Pareto front. The obtained
approximation of the Pareto front has been scaled to the interval [0, 1]2 with
respect to the extreme values of the objectives – the maximal possible utility
(the market share of the new facilities), which is equal to the total market
share of both firms FA and FB , and the maximal possible cannibalism, which
is equal to the market share of the firm A. The reference point is then chosen
to be (0, 1).

The performance of the parallel algorithm has been evaluated by the
speed-up Sp = T0/Tp of the algorithm, where T0 stands for the time needed
to solve the problem using the sequential algorithm and Tp stands for the time
needed to solve the problem using a parallel algorithm on p processing units.
Here p = 1, 2, . . . and T1 might differ from T0 as the behavior of a parallel algo-
rithm on a single processing unit might differ from the behavior of a sequential
algorithm.

4.2 Impact on the precision

Since MOSS has been derived from MOSASS by changing the strategy for
selection of the decision vector from the set of non-dominated ones, the impact
of the modification on the quality of the approximation must be investigated.
It has been investigated by solving the CFLP with 5000 demand points using
sequential versions of MOSASS and MOSS.

The obtained results are presented in Figure 6. One can see from the

Math. Model. Anal., 20(5):619–640, 2015.

632 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

figure that the proposed MOSS algorithm notably outperforms its precursor
MOSASS independent on the number of function evaluations devoted for the
approximation.

 0.08

 0.09

 0.1

 0.11

 0.12

 0 5000 10000 15000 20000 25000

H
y

p
er

-v
o

lu
m

e

Number of function evaluations

MOSS

MOSASS

Figure 6. Values of hyper-volume, obtained using different algorithms and different
numbers of function evaluations

The parallel algorithms ParMOSS/OMP and ParMOSS/MPI do not have
exactly the same behavior as the sequential MOSS, therefore it must be verified
if the quality of the approximation has not been reduced when parallelizing.
The verification has been done by solving the CFLP of different scope: 1000
and 5000 demand points. The problems have been solved by the parallel al-
gorithm ParMOSS/OMP using different numbers of processing units: 2, 4, 8,
and 16. The obtained results have been additionally compared with the results
obtained by the sequential version of the algorithms. The corresponding in-
vestigation has been performed for the distributed-memory parallel algorithm
ParMOSS/MPI, using the same numbers of demand points, but different num-
bers of processing units: 32, 64, 128, 160, and 192. The obtained results are
illustrated in Figures 7 and 8, where two first pairs of columns show aver-
age HV, obtained by sequential versions of MOSASS and MOSS, respectively,
whereas the following ones show average HV, obtained by the ParMOSS/OMP
(Figure 7) and ParMOSS/MPI (Figure 8) algorithms using different numbers
of processing units; different columns in a pair represent different number of
demand points.

One can see from the figures that the variation of values of HV, obtained
using ParMOSS/OMP and ParMOSS/MPI on different numbers of process-
ing units is very slight and can be considered as insignificant. This leads to
the conclusion that the parallelization of MOSS does not negatively effect the
precision of the approximation.

4.3 Speed-up of the parallel algorithms

The performance of the parallel algorithms ParMOSS/OMP and Par-
MOSS/MPI have been evaluated by solving the CFLP/FE using four different

Parallel Optimization Algorithm for CFL 633

 0.08

 0.09

 0.1

 0.11

 0.12

MOSASS MOSS 2 PUs 4 PUs 8 PUs 16 PUs

H
y
p
er

-v
o
lu

m
e

ParMOSS/OMPSequential

1000 demand points 5000 demand points

Figure 7. Average values of hyper-volume, obtained by sequential MOSASS and MOSS
and parallel shared-memory MOSS (ParMOSS/OMP) using different numbers of processing

units.

 0.08

 0.09

 0.1

 0.11

 0.12

MOSASS MOSS 32 PUs 64 PUs 96 PUs 128 PUs 160 PUs 192 PUs

H
y
p
er

-v
o
lu

m
e

ParMOSS/MPISequential

1000 demand points 5000 demand points

Figure 8. Average values of hyper-volume, obtained by sequential MOSASS and MOSS
and parallel distributed-memory MOSS (ParMOSS/MPI) using different numbers of

processing units.

Math. Model. Anal., 20(5):619–640, 2015.

634 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

numbers of demand points: 5000, 1000, 500, and 100 for ParMOSS/OMP; 5000
and 1000 – for ParMOSS/MPI. The Pareto front of each instance has been ap-
proximated by 25000 function evaluations. Each experiment has been run for
100 times and average duration has been evaluated. The average duration of a
single approximation by sequential MOSS was around 728 seconds using 5000
demand points, around 145 seconds – using 1000 demand points, around 73 –
using 500 demand points, and around 14 seconds – using 100 demand points.

The main effort of the computational resources (more than 99%) has been
devoted to the function evaluation in all the cases, except the smallest one –
100 demand points, when function evaluations require a little bit less than 99%
of all computational resources.

The time needed to approximate the Pareto front of the problem with 5000
demand points using MOSS was 0.3–0.4% larger comparing with its precursor
MOSASS whereas ParMOSS/OMP on one processing unit requires 0.3–0.4%
more time than sequential MOSS. Due to the nature of the ParMOSS/MPI
algorithm it cannot be executed on a single processing unit – the smallest
number of processing units is 2. The behavior of the ParMOSS/MPI algorithm
using 2 processing units coincides with the behavior of MOSS, but requires
around 0.5% more time due to additional cost for message passing.

2

4

8

16

2 4 8 16

Sp

p

5000 1000 500

100

 15

 16

100 5000

Sp

Number of demand points

Figure 9. The speed-up of ParMOSS/OMP, obtained using different numbers of demand
points, versus the number of processing units (on the left) and the speed-up, obtained using

16 processing units, versus the number of demand points (on the right).

The speed-up of ParMOSS/OMP, obtained using 2, 4, 8, and 16 shared-
memory processing units is given in the left image of Figure 9, where the
horizontal axis corresponds to the number of processing units, and the vertical
one – to the speed-up of the algorithm. One can see from the figure, the speed-
up of the algorithm is almost linear for all experiments except for the case
of using 16 processing units to solve the smallest problem with 100 demand
points.

The dependence of the speed-up of the algorithm, obtained using 16 pro-
cessing units, on the number of demand points is illustrated in the right image
of Figure 9, where the horizontal axis corresponds to the number of demand

Parallel Optimization Algorithm for CFL 635

points, and the vertical axis – to the speed-up from the range from 15 to 16.

The obtained results show that ParMOSS/OMP has almost linear speed-up,
since the further reduction of the demand points is not reasonable in practi-
cal CFLPs, and vice versa – further increment of the scope of the problem
cannot reduce the speed-up, but rather increase, as the time required for func-
tion evaluations will be increased, thus increasing the fully parallel part of the
algorithm.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

Sp

p

ParMOSS/OMP

ParMOSS/MPI

ParMOSS/MPIwM

Figure 10. Comparison of speed-up of ParMOSS/MPI with speed-up of ParMOSS/OMP
using different numbers of processing units.

Similar experiment has been performed using distributed-memory paral-
lel algorithms ParMOSS/MPI and ParMOSS/MPIwM. The Pareto front of
CFLP with 1000 demand points has been approximated by using 2, 4, 8, and
16 processing units. The obtained results are presented in Figure 10 with the
context of results obtained by ParMOSS/OMP. One can see from the figure,
that speed-up of ParMOSS/MPI increases linearly with increment of the num-
ber of processing units. The figure also shows that speed-up of ParMOSS/MPI
is lower than speed-up of ParMOSS/OMP exactly by one independent on the
number of processing units; this can be explained by an idle time of the master
processing unit which has no computational work, but is responsible for the
management of the computational process and communication. The speed-up
of ParMOSS/MPIwM, where the master is employed for function evaluations,
is better than speed-up of ParMOSS/MPIwM. On the other hand speed-up of
both MPI algorithms became similar using 16 processing units.

These results show that the shared-memory algorithm has notable advan-
tage against the distributed-memory algorithms – the speed-up of the shared-
memory algorithm is almost linear on up to 16 processing units whereas the
speed-up of the distributed-memory algorithms is around 15 when 16 process-
ing units are used. On the other hand the shared-memory computing systems
have hardware limitations in the sense of number of shared-memory process-
ing units, whereas the distributed-memory algorithm can be executed on a
significantly larger number of processing units.

Math. Model. Anal., 20(5):619–640, 2015.

636 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

 32

 64

 96

 128

 160

 192

 32 64 96 128 160 192

Sp

p

Linear speed-up

ParMOSS/MPI (5000)

ParMOSS/MPIwM (5000)

ParMOSS/MPI (1000)

ParMOSS/MPIwM (1000)

Figure 11. Speed-up of ParMOSS/MPI using different number of processing units and
different number of demand points.

The performance of the proposed distributed-memory parallel algorithms
has been investigated using a larger number of processing units – from 32 to 192.
The Pareto front of two instances of the CFLP – with 5000 and 1000 demand
points – has been approximated by 25000 function evaluations as in previous
experiments. The average speed-up of the algorithm versus the number of
processing units is presented in Figure 11.

One can see from the figure that the approximation of the Pareto front of
the problem with 5000 demand points has been performed with almost linear
speed-up of the algorithm – the speed-up on 192 processing units is around 186.

The approximation of the Pareto front of the problem with 1000 demand
points has been performed with notably lower speed-up, comparing with pre-
vious instance – the speed-up on 192 processing units is around 155 which
corresponds to 80% of effectiveness of the processing units when performing
the computations. On the other hand the speed-up of the algorithm on 96
processing units is around 89 which corresponds to 93% of effectiveness of the
processing units when performing the computations; further increment of the
number of processing units is not reasonable for approximation of the Pareto
front of a real-world CFLP as the approximation on 128 processing units has
been performed within 2 seconds.

ParMOSS/MPIwM graphs in Figure 11 show that assignment of computa-
tional work for the master processing unit is not reasonable using more than 32
processing units as it causes a bottleneck effect. The master processing units
performs 12686 function evaluations when 2 processing units are used in total
(for the CFLP with 5000 demand points); this number corresponds to 98%
of function evaluations performed by the slave. If the number of processing

Parallel Optimization Algorithm for CFL 637

 32

 64

 96

 128

 160

 192

 32 64 96 128 160 192

Sp

p

Linear speed-up

The model

ParMOSS/MPI

Figure 12. Comparison of the evaluated and the actual speed-up of ParMOSS/MPI on
different number of processing units.

units is increased to 32, the master performs 538 function evaluations and it
corresponds to 67% of function evaluations performed by a single slave. If 192
processing units are used, the master performs 15 function evaluations and it
equals to 11% of function evaluations performed by a slave. These results lead
to a conclusion that the master processing unit is busy enough by management
of computational work for the slaves and assignment of additional computa-
tional work can raise the bottleneck effect in communication between large
number of processing units.

The results obtained by experimental investigation approximately coincides
with those evaluated by the model 3.1 with α = 0.999 (for the CFLP with 1000
demand points). Such a ratio of the time required for the function evaluations
in the sequential algorithm has been experimentally determined by solving the
CFLP by the MOSS algorithm.

The comparison of the evaluated and the actual speed-up of ParMOSS/MPI
when solving CFLP with 1000 demand points is presented in Figure 12. One
can see from the figure, that the graph of the evaluation is slightly above the
graph representing the actual speed-up of the algorithm. The difference is due
to the ratio of time required for communication between processors, which was
considered as unknown parameter in the model.

5 Conclusions

The shared- and distributed-memory parallel algorithms for multi-objective
optimization have been developed and experimentally investigated by solving
the CFLP/FE using up to 16 shared-memory and up to 192 distributed-memory

Math. Model. Anal., 20(5):619–640, 2015.

638 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

processing units.
The obtained results showed that the modifications made to the sequential

multi-objective single agent stochastic search algorithm, improve the precision
of the approximation of the Pareto front, measured by the hyper-volume metric,
and make the algorithm more suitable for parallel computing environment.

The performance results of the parallel algorithm showed that the shared-
memory parallel algorithm has linear speed-up on up to 16 processing units.
The distributed-memory parallel algorithm has almost linear speed on up to
16 processing units when the master processing unit has workload for function
evaluations. Further increment of processing units require to leave the master
processing unit without function evaluations in order to avoid a bottleneck
effect.

In general the developed distributed-memory parallel algorithm has close
to linear speed-up using 192 processing units to solve competitive CFLP/FE
with 5000 demand points – the speed-up is 176.

Acknowledgments

This research was funded by a grant (No. MIP-051/2014) from the Research
Council of Lithuania.

References

[1] A. Abraham and L. Jain. Evolutionary multiobjective optimization. In A. Abra-
ham, L. Jain and R. Goldberg(Eds.), Evolutionary Multiobjective Optimization,
Advanced Information and Knowledge Processing, pp. 1–6. Springer London,
2005. http://dx.doi.org/10.1007/1-84628-137-7 1.

[2] G.E. Blelloch and K. Tangwongsan. Parallel approximation algo-
rithms for facility-location problems. In Proceedings of the Twenty-
second Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA’10, pp. 315–324, New York, NY, USA, 2010. ACM.
http://dx.doi.org/10.1145/1810479.1810535.

[3] E. Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs paralleles,
reseaux et systems repartis, 10(2):141–171, 1998.

[4] A. de Silva and D. Abramson. A parallel interior point method and its application
to facility location problems. Computational Optimization and Applications,
9(3):249–273, 1998. http://dx.doi.org/10.1023/A:1018302308154.

[5] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197, 2002. http://dx.doi.org/10.1109/4235.996017.

[6] Z. Drezner, K. Klamroth, A. Schöbel and G.O. Wesolowsky. The Weber problem.
In Z. Drezner and H.W. Hamacher(Eds.), Facility Location: Applications and
Theory, pp. 1–36. Springer Berlin Heidelberg, 2001.

[7] J.J. Durillo, A.J. Nebro, F. Luna and E. Alba. A study of master-slave
approaches to parallelize NSGA-II. In Parallel and Distributed Process-
ing, 2008. IPDPS 2008. IEEE International Symposium on, pp. 1–8, 2008.
http://dx.doi.org/10.1109/IPDPS.2008.4536375.

http://dx.doi.org/10.1007/1-84628-137-7_1
http://dx.doi.org/10.1145/1810479.1810535
http://dx.doi.org/10.1023/A:1018302308154
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/IPDPS.2008.4536375

Parallel Optimization Algorithm for CFL 639

[8] R.Z. Farahani, S. Rezapour, T. Drezner and S. Fallah. Competi-
tive supply chain network design: An overview of classifications, mod-
els, solution techniques and applications. Omega, 45:92–118, 2014.
http://dx.doi.org/10.1016/j.omega.2013.08.006.

[9] J. Fernández, B. Pelegŕın, F. Plastria and B. Tóth. Planar location and design
of a new facility with inner and outer competition: An interval lexicographical-
like solution procedure. Networks and Spatial Economics, 7(1):19–44, 2007.
http://dx.doi.org/10.1007/s11067-006-9005-4.

[10] T.L. Friesz, T. Miller and R.L. Tobin. Competitive networks facility lo-
cation models: a survey. Papers in Regional Science, 65(1):47–57, 1998.
http://dx.doi.org/10.1111/j.1435-5597.1988.tb01157.x.

[11] L. Huapu and W. Jifeng. Study on the location of distribution centers: A bi-level
multi-objective approach. In Logistics, chapter 447, pp. 3038–3043. American
Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/40996(330)448.

[12] V. Kumar. Introduction to Parallel Computing. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[13] A. Lančinskas, P.M. Ortigosa and J. Žilinskas. Multi-objective single agent
stochastic search in non-dominated sorting genetic algorithm. Nonlinear Analy-
sis: Modelling and Control, 18(3):293–313, 2013.

[14] A. Lančinskas and J. Žilinskas. Approaches to parallelize Pareto ranking in
NSGA-II algorithm. In R. Wyrzykowski, J. Dongarra, K. Karczewski and
J. Waśniewski(Eds.), Parallel Processing and Applied Mathematics, volume 7204
of Lecture Notes in Computer Science, pp. 371–380. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-31499-5. http://dx.doi.org/10.1007/978-3-642-31500-
8 38.

[15] A. Lančinskas and J. Žilinskas. Solution of multi-objective competitive facility
location problems using parallel NSGA-II on large scale computing systems.
In P. Manninen and P. Öster(Eds.), Applied Parallel and Scientific Computing,
volume 7782 of Lecture Notes in Computer Science, pp. 422–433. Springer Berlin
Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36803-5 31.

[16] A. Lančinskas and J. Žilinskas. Parallel multi-objective memetic algorithm for
competitive facility location. In R. Wyrzykowski, J. Dongarra, K. Karczewski
and J. Waśniewski(Eds.), Parallel Processing and Applied Mathematics, volume
8385 of Lecture Notes in Computer Science, pp. 354–363. Springer Berlin Hei-
delberg, 2014. http://dx.doi.org/10.1007/978-3-642-55195-6 33.

[17] A.L. Medaglia, J.G. Villegas and D.M. Rodŕıguez-Coca. Hybrid bi-objective
evolutionary algorithms for the design of a hospital waste management network.
Journal of Heuristics, 15(2):153–176, 2009. http://dx.doi.org/10.1007/s10732-
008-9070-6.

[18] F. Plastria. Static competitive facility location: An overview of optimisation
approaches. European Journal of Operational Research, 129(3):461–470, 2001.
http://dx.doi.org/10.1016/S0377-2217(00)00169-7.

[19] J.L. Redondo, J. Fernández, J.D. Álvarez, A.G. Arrondo and P.M. Ortigosa. Ap-
proximating the Pareto-front of continuous bi-objective problems: Application
to a competitive facility location problem. In J. Casillas, F.J. Mart́ınez-López
and J.M. Corchado Rodŕıguez(Eds.), Management Intelligent Systems, volume
171 of Advances in Intelligent Systems and Computing, pp. 207–216. Springer
Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30864-2 20.

Math. Model. Anal., 20(5):619–640, 2015.

http://dx.doi.org/10.1016/j.omega.2013.08.006
http://dx.doi.org/10.1007/s11067-006-9005-4
http://dx.doi.org/10.1111/j.1435-5597.1988.tb01157.x
http://dx.doi.org/10.1061/40996(330)448
http://dx.doi.org/10.1007/978-3-642-31500-8_38
http://dx.doi.org/10.1007/978-3-642-31500-8_38
http://dx.doi.org/10.1007/978-3-642-36803-5_31
http://dx.doi.org/10.1007/978-3-642-55195-6_33
http://dx.doi.org/10.1007/s10732-008-9070-6
http://dx.doi.org/10.1007/s10732-008-9070-6
http://dx.doi.org/10.1016/S0377-2217(00)00169-7
http://dx.doi.org/10.1007/978-3-642-30864-2_20

640 A. Lančinskas, P.M. Ortigosa and J.Žilinskas

[20] C.S. ReVelle, H.A. Eiselt and M.S. Daskin. A bibliography for some fundamental
problem categories in discrete location science. European Journal of Operational
Research, 184(3):817–848, 2008. http://dx.doi.org/10.1016/j.ejor.2006.12.044.

[21] V. Starikovičius, R. Čiegis and O. Iliev. A parallel solver for the design
of oil filters. Mathematical Modelling and Analysis, 16(2):326–341, 2011.
http://dx.doi.org/10.3846/13926292.2011.582591.

[22] J.G. Villegas, F. Palacios and A.L. Medaglia. Solution methods for the
bi-objective (cost-coverage) unconstrained facility location problem with an
illustrative example. Annals of Operations Research, 147:109–141, 2006.
http://dx.doi.org/10.1007/s10479-006-0061-4.

[23] A. Weber. Theory of the Location of Industries. Materials for the study of
business. University of Chicago Press, 1929.

[24] E. Zitzler, M. Laumanns and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In K. C. Giannakoglou,
D. T. Tsahalis, J. Périaux, K. D. Papailiou and T. Fogarty(Eds.), Evolution-
ary Methods for Design Optimization and Control with Applications to Indus-
trial Problems: Proceedings of the EUROGEN2001 Conference, Athens, Greece,
September 19-21, 2001, pp. 95–100, 2001.

[25] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algo-
rithms – A comparative case study. In A.E. Eiben, T. Bäck, M. Schoenauer
and H.-P. Schwefel(Eds.), Proceedings of the 5th International Conference on
Parallel Problem Solving from Nature, volume 1498 of PPSN V, pp. 292–304.
Springer-Verlag, London, UK, 1998.

http://dx.doi.org/10.1016/j.ejor.2006.12.044
http://dx.doi.org/10.3846/13926292.2011.582591
http://dx.doi.org/10.1007/s10479-006-0061-4

	Introduction
	Competitive FL for firm expansion
	Multi-objective optimization
	Related works

	Multi-objective stochastic search algorithm
	Parallel multi-objective stochastic search
	Shared memory ParMOSS
	Distributed memory ParMOSS

	Numerical experiments
	Metrics of precision and performance
	Impact on the precision
	Speed-up of the parallel algorithms

	Conclusions
	References

