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Abstract. A cubic B-spline collocation approach is described and presented for
the numerical solution of an extended system of linear and nonlinear second-order
boundary-value problems. The system, whether regular or singularly perturbed, is
tackled using a spline collocation approach constructed over uniform or non-uniform
meshes. The rate of convergence is discussed theoretically and verified numerically to
be of fourth-order. The efficiency and applicability of the technique are demonstrated
by applying the scheme to a number of linear and nonlinear examples. The numerical
solutions are contrasted with both analytical and other existing numerical solutions
that exist in the literature. The numerical results demonstrate that this method is
superior as it yields more accurate solutions.

Keywords: collocation method, finite element method, boundary value problem, differential

equation.
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1 Introduction

In this paper, we study a generalized nonlinear system of second-order boun-
dary value problems given by

a0(x)u′′ + a1(x)u′ + a2(x)u+ a3(x)v′′ + a4(x)v′ + a5(x)v (1.1)

+ g1(x, u, v, u′, v′) = f1(x),

b0(x)u′′ + b1(x)u′ + b2(x)u+ b3(x)v′′ + b4(x)v′ + b5(x)v

+ g2(x, u, v, u′, v′) = f2(x).
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The system is complimented with the following mixed boundary conditions:

γ0u(a) + γ1v(a) + γ2u
′(a) + γ3v

′(a) = η0,
ξ0u(a) + ξ1v(a) + ξ2u

′(a) + ξ3v
′(a) = η1,

λ0u(b) + λ1v(b) + λ2u
′(b) + λ3v

′(b) = η2,
µ0u(b) + µ1v(b) + µ2u

′(b) + µ3v
′(b) = η3,

(1.2)

where a ≤ x ≤ b. The functions g1(x), g2(x), f1(x), f2(x) are continuous func-
tions, and ai(x), bi(x), i = 0, 1, 2, ...5 are sufficiently smooth real-valued func-
tions of x. Further, γi, ξi, λi, µi, ηi, i = 0, 1, 2, 3 are constants. Normally, ad-
ditional assumptions such as boundedness are imposed on the coefficients in
order to guarantee the existence of a unique solution. For instance, in certain
cases we need to require that g1, g2 are nonlinear functions in u and v, where
u, v ∈W 3

2 [a, b], and fi − gi ∈W 1
2 [a, b], i = 1, 2.

In addition, we will study the following singularly perturbed nonlinear sys-
tem of second-order boundary value problems:

a0(x; ε)u′′ + a1(x)u′ + a2(x)u+ a3(x)v′′ + a4(x)v′ (1.3)

+ a5(x)v + g1(x, u, v, u′, v′) = f1(x),

b0(x)u′′ + b1(x)u′ + b2(x)u+ b3(x; ε)v′′ + b4(x)v′

+ b5(x)v + g2(x, u, v, u′, v′) = f2(x).

where ε � 1. Such systems possess boundary layers and interior layers which
pose some numerical difficulties and challenges.

In recent years, nonlinear equations [6] and systems of differential equa-
tions have been the focus of numerous articles that appear in the literature.
This is due to their wide range of applicability in modeling problems that
arise in engineering and other disciplines. Various special cases or versions of
system (1.1)-(1.2), including ones that are singularly perturbed, have been of
interest to many researchers whether in regard of proving existence or seek-
ing numerical solutions. This extended system is one of the important kinds
of nonlinear systems, and plays an important role in explaining many differ-
ent phenomena. Special classes of this system as well as other classes have
been tackled and solved in various ways. Cheng and Zhong [3] considered the
existence of positive solutions for a second-order ordinary differential system,
where the nonlinear term is superlinear in one equation and sublinear in the
other equation. Geng and Cui [8] presented a method to obtain analytical and
approximate solutions of linear and nonlinear systems of a class of second-order
boundary-value problems. The analytical solution is represented in the form
of series in the reproducing kernel space while the approximate solution un(x)
is obtained by the n-term intercept of the analytical solution and is proved
to converge to the analytical solution. Valanarasu and Ramanujam [20] pre-
sented some numerical methods for singularly perturbed two-point boundary
value problems for second order ordinary differential equations with two small
parameters multiplying the derivatives. These methods are distinguished by
the fact that, initial value problems and/or terminal value problems are con-
structed/deduced from the given boundary value problem and then solved by
a fitted operator method. In [7], Dehghan and Saadatmandi employed the
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sinc-collocation method for solving a nonlinear system of second-order bound-
ary value problems. Saadatmandi and J. Askari [18] presented the Chebyshev
finite difference method, which can be regarded as a non-uniform finite differ-
ence scheme, for solving a nonlinear system of second-order boundary value
problems. Their approach consists of reducing the problem to a set of al-
gebraic equations. Saadatmandi et al. [17] proposed a homotopy perturbation
method for solving a class of non-linear systems of second-order boundary-value
problems. Khuri and Sayfy [9] manipulated a second-order spline collocation
technique for the numerical solution of an extended system of second-order
boundary-value problems. Lu [15] applied a variational iteration method to
solve nonlinear system of second-order boundary value problems that is anal-
ogous to problem (1.1)-(1.2). The method yields solutions in convergent series
forms with easily computable terms and the technique does not require any
discretization, linearization or small perturbations. Bellew and O’Riordan [1],
used a numerical method which is composed of an upwind finite difference
operator on a piecewise-uniform Shishkin mesh to solve a coupled system of
convection-diffusion problem with boundary layer. For further approaches to
tackle nonlinear systems we refer the reader to [14,16,17,18] and the references
therein.

The ultimate goal of this article is to present and apply a cubic B-spline
collocation strategy to obtain a numerical solution of the generalized nonlin-
ear system (1.1)-(1.2). The theory of B-spline functions is an active field of
approximation theory and is widely utilized for obtaining numerical solution
of nonlinear problems. The B-spline curves have remarkable properties and
features that make them fit for analysis and shape. The spline collocation
method, which was first introduced by Christara and Ng [2] and [5], has been
unified with an adaptive technique to solve the nonlinear system under con-
sideration on uniform and non-uniform meshes via mesh redistribution [2] and
manipulating an iterative scheme arising from Newton’s method by mapping
uniform node points to non-uniform ones such that the errors are reduced. This
collocation approach has been employed by Khuri and Sayfy for the numerical
solution of a spectrum of problems, including a boundary layer problem [12], a
generalized nonlinear Klein-Gordon equation [10], a generalized parabolic prob-
lem subject to non-classical conditions [13], and Troesch’s problem [11]. For
further details and applications of the technique see [4, 5, 9, 10, 11, 12, 13] and
the references therein. The convergence analysis is deliberated and the method
is verified to be of fourth-order rate of convergence which is then conformed
numerically using the double-mesh principle. Applicability, performance and
efficiency of the finite element collocation scheme is illustrated and tested on
several test examples which represent special cases of the nonlinear system of
differential equations. The depicted numerical results are compared with the
exact solution and other available numerical methods. The outcomes results
show the approach yields highly accurate results and converged fast using only
a few number of mesh points.

The rest of this paper is organized as follows: in Section 2, the cubic B-spline
collocation approach is described and presented for the numerical solution of
the extended system of the second-order boundary-value problem. In section 3,
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the method is applied on a number of linear and nonlinear examples including
one that is singularly perturbed with a boundary layer. The numerical results
are compared with the exact solutions and other existing numerical solutions.
Finally, a conclusion is given that summarizes the outcomes of the simulations.

2 Cubic Spline Collocation Method

In this section, we describe the finite element spline collocation scheme method
and present the strategies on both a uniform and nonuniform meshes.

2.1 Spline Collocation over a Uniform Mesh (SCU)

Subsequent, we describe the cubic B-spline collocation approach on a uniform
mesh for the numerical solution of the extended class of nonlinear system of the
second-order mixed boundary-value problem given in (1.1)-(1.2). To construct
the sought approximate solution, we consider the nodal points xi on the interval
[a, b] where

a = x0 < x1 < ... < xn−1 < xn = b.

If the nodal points are equidistant from each other, then we have xi = a +

ih, i = 0, 1, 2, ..., n where h =
b− a
n

on the interval [a, b]. Let Ψ(x) and Φ(x)

be approximations that are approaching the exact solutions u(x) and v(x),
respectively. These also satisfy the mixed boundary conditions (1.2) and are
expressed as a linear combination of n+ 3 shape functions as follows:

Ψ(x) =

n−1∑
i=−3

αiψi(x), Φ(x) =

n−1∑
i=−3

βiψi(x). (2.1)

The αi’s and βi’s are unknown real coefficients and the ψi(x)’s are the cubic
B-splines functions given by:

ψi(x) =
1

h3



(x− xi)3, [xi, xi+1] ,

h3+3h2(x−xi+1)+3h(x−xi+1)2−3(x−xi+1)3, [xi+1, xi+2] ,

h3+3h2(xi+3−x)+3h(xi+3−x)2−3(xi+3−x)3, [xi+2, xi+3] ,

(xi+4 − x)3, [xi+3, xi+4] ,
0, otherwise,

(2.2)
where h = xi+1 − xi. Considering the approximation function (2.1) and the
cubic B-splines defined in (2.2), the required values of Ψ(xj) and its first and
second derivatives with respect to the nodal points are identified in terms of
αj as:

Ψ(xj) = αj−3 + 4αj−2 + αj−1, (2.3)

Ψ ′(xj) =
3

h
(αj−3 − αj−1), Ψ ′′(xj) =

6

h2
(αj−3 − 2αj−2 + αj−1) .
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The values of Φ(xj) are determined similarly as in (2.3) with αj replaced by
βj . Substituting the approximate solutions Φ(x) and Ψ(x), given by (2.1), into
equations (1.1) we have

n−1∑
i=−3

αi [a0(xj)ψ
′′
i (xj) + a1(xj)ψ

′
i(xj) + a2(xj)ψi(xj)] (2.4)

+

n−1∑
i=−3

βi [a3(xj)ψ
′′
i (xj) + a4(xj)ψ

′
i(xj) + a5(xj)ψi(xj)]

+ g1

(
xj ,

n−1∑
i=−3

αiψi(xj),

n−1∑
i=−3

βiψi(xj),

n−1∑
i=−3

αiψ
′
i(xj),

n−1∑
i=−3

βiψ
′
i(xj)

)
=f1(xj),

j = 0, 1, 2, ..., n.

For the second differential equation we obtain

n−1∑
i=−3

αi [b0(xj)ψ
′′
i (xj) + b1(xj)ψ

′
i(xj) + b2(xj)ψi(xj)] (2.5)

+

n−1∑
i=−3

βi [b3(xj)ψ
′′
i (xj) + b4(xj)ψ

′
i(xj) + b5(xj)ψi(xj)]

+ g2

(
xj ,

n−1∑
i=−3

αiψi(xj),

n−1∑
i=−3

βiψi(xj),

n−1∑
i=−3

αiψ
′
i(xj),

n−1∑
i=−3

βiψ
′
i(xj)

)
=f2(xj),

j = 0, 1, 2, ..., n.

The above system consists of 2n+ 2 equations in 2n+ 6 unknowns. The mixed
boundary conditions in (1.2) yield the following four conditions:

n−1∑
i=−3

αi (γ0ψi(xj)+γ2ψ
′
i(xj)) +

n−1∑
i=−3

βi (γ1ψi(xj)+γ3ψ
′
i(xj)) =η0, j = 0, (2.6)

n−1∑
i=−3

αi (ξ0ψi(xj)+ξ2ψ
′
i(xj)) +

n−1∑
i=−3

βi (ξ1ψi(xj)+ξ3ψ
′
i(xj)) =η1, j = 0, (2.7)

n−1∑
i=−3

αi (λ0ψi(xj)+λ2ψ
′
i(xj)) +

n−1∑
i=−3

βi (λ1ψi(xj)+λ3ψ
′
i(xj)) =η0, j = n, (2.8)

n−1∑
i=−3

αi (µ0ψi(xj)+µ2ψ
′
i(xj)) +

n−1∑
i=−3

βi (µ1ψi(xj)+µ3ψ
′
i(xj)) =η0, j = n. (2.9)

The values of Ψ, Ψ ′ and Ψ ′′ at the nodal points xj , j = 0, 1, ..., n are determined
from equation (2.3) and similarly for the values of Φ.

The system of equations in (2.4), (2.6), and (2.8) can be written in matrix
form as follows:

C1 d + M1 e + g1 = f1, (2.10)

Math. Model. Anal., 20(5):681–700, 2015.
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where

C1 =



r−1 s−1 p−1 0 0 ... 0
r0 s0 p0 0 0 ... 0
0 r1 s1 p1 0 ... 0
. . . . . . .
. . . . . . .
0 0 0 ... rn sn pn
0 0 0 ... rn+1 sn+1 pn+1


and

M1 =



q−1 w−1 z−1 0 0 ... 0
q0 w0 z0 0 0 ... 0
0 q1 w1 z1 0 ... 0
. . . . . . .
. . . . . . .
0 0 0 ... qn wn zn
0 0 0 ... qn+1 wn+1 zn+1


.

The above matrices have dimension (n+ 3)× (n+ 3). Here

r−1 = γ0 −
3

h
γ2, s−1 = 4γ0, p−1 = γ0 +

3

h
γ2,

rn+1 = λ0 −
3

h
λ2, sn+1 = 4λ0, pn+1 = λ0 +

3

h
λ2,

rj =
6a0j
h2

+
3a1j
h

+ a2j , sj = −12a0j
h2

+4a2j , pj =
6a0j
h2
−3a1j

h
+a2j ,

j = 0, 1, ...n,

given that a0j = a0(xj), a1j = a1(xj), a2j = a2(xj), where xj = a+jh. Further

qj =
6a3j
h2

+
3a4j
h

+ a5j , wj = −12a3j
h2

+ 4a5j , zj =
6a3j
h2
− 3a4j

h
+ a5j ,

j = 0, 1, ...n,

given that a3j = a3(xj), a4j = a4(xj), a5j = a5(xj), where xj = a+ jh.
The vectors gT

1 ,d
T, and eT are given by

gT
1 =

[
0, g12, g13, ..., g1(n+2), 0

]
, dT= [α−3, α−2, α−1, α0, ..., αn−2, αn−1] ,

eT = [β−3, β−2, β−1, β0, ..., βn−3, βn−2, βn−1] ,

fT1 = [η0, f1(x0), f1(x1), f1(x2), ..., f1(xn−1), f1(xn), η2] ,

where

g1j = g1

(
xj , αj−5 + 4αj−4 + αj−3, βj−5 + 4βj−4 + βj−3,

−3

h
αj−5 +

3

h
αj−3,

−3

h
βj−5 +

3

h
βj−3

)
, j = 2, 3, ..., n+ 2.

In a similar fashion, the system (2.5), (2.7), and (2.9) can be written in
matrix form as follows:

C2 d + M2 e + g2 = f2. (2.11)
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The matrices C2,M2,g2 and f2 are similar to C1,M1,g1 and f1 except that
the functions ai, i = 0, 1, ..., 5 and f1 are replaced by the functions bi, i =
0, 1, ..., 5 and f2, respectively. As for the boundary conditions, we replace η0, η2
in f1 by η1, η3 to obtain f2.

Systems (2.10) and (2.11) can be combined as one system as follows:[
C1

C2

]
d +

[
M1

M2

]
e +

[
g1

g2

]
=

[
f1
f2

]
. (2.12)

The system of equations given in (2.12) is solved using the computer algebra
system Maple.

2.2 Spline Collocation over a Non-uniform Mesh (SCN)

Next, we will briefly present and describe the spline collocation method, based
on non-uniform meshes, for obtaining a numerical solution for the system of
differential equations (1.1) subject to the mixed boundary conditions (1.2). For
completeness and more detailed analysis, we refer the reader to the paper by
Christara and Ng [4] that includes a thorough discussion of the scheme.

To construct an approximate solution on [a, b], we first consider a mesh with
uniform node points x0 < x1 < ... < xN , where xi = a+ih, i = 0, 1, 2, .., N ;h =
(b− a)/N . Various transformations and grading functions are available [2] for
the re-distribution of the nodes on [0, 1]. We need to select or construct a
strictly increasing bijective function that maps the uniform nodes {xi} to non-
uniform meshes with nodes {wi} tailored suitably in order to reduce the error.
The intent of these mappings is to create finer meshes near the ends in case
of existence of singularities or boundary layers. To have more nodes near one
endpoint we use the following mappings redistribution functions:

z1(x) = (b− a)

(
1− (1 + k)1−

xi−a

b−a − 1

k

)
+ a, (2.13)

and

z2(x) = (b− a)

(
(1 + k)

xi−a

b−a − 1

k

)
+ a. (2.14)

The transformation functions z1(x) and z2(x) redistribute the nodes on [a, b]
with more nodes near x = a and x = b, respectively, as k increases. These are
convenient if a boundary layer is located at one end only.

For a problem with layers at both ends of [0, 1], we use the following
Chebyshev-Gauss-Lobatto points (Lobatto points in short):

xi =
1

2

(
1− cos

(
i

N
π

))
. (2.15)

For a finer mesh near the boundaries and coarser mesh in the regular region,
we use the transformation

zi = (1− τ)
(
3x2i − 2x3i

)
+ τxi,

Math. Model. Anal., 20(5):681–700, 2015.
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where τ is the adjustment parameter. In case a redistribution is required on
the interval [a, b], a simple linear transformation can be used in order to map
the interval [0, 1] onto [a, b]. The mesh selection strategy for a system with
layers depends on the thickness of the layers, which can be estimated by a
Shishkin-like formula.

Next, we describe the implementation of the (SCN) for the numerical solu-
tion of the subsequent linear boundary value problem:

L [u(x)] ≡ r(x)u′′ + p(x)u′ + q(x)u = g(x), (2.16)

where x ∈ Ω = (a, b). The equation is subject to the the boundary conditions:

u(a) = ν0, u(b) = ν1. (2.17)

We approximate the exact solution u by a linear combination of spline func-
tions, Ψ(x), as follows:

Ψ(x) =

n−1∑
i=−3

ciψi(x), (2.18)

where Ψi(x) is a nonuniform spline function defined by

ψi(x) =



(x−wi)
3

wi,3 wi,2 wi,1
, wi ≤ x ≤ wi+1,

x−wi

wi,3

[
(x−wi)(wi+2−x)
wi,2,;wi+1,1

+ (x−wi+1)(wi+3−x)
wi+1,2 wi+1,1

]
+ (x−wi+1)

2(wi+4−x)
wi+1,3 wi+1,2 wi+1,1

, wi+1 ≤ x ≤ wi+2,

wi+4−x
wi+1,3

[
(x−wi+1)(wi+3−x)
wi+1,2 wi+2,1

+ (x−wi+2)(wi+4−x)
wi+2,2 wi+2,1

]
+ (x−wi)(wi+3−x)2
wi,3 wi+1,2 wi+2,1

, wi+2 ≤ x ≤ wi+3,

(wi+4−x)3
wi+1,3 wi+2,2 wi+3,1

, wi+3 ≤ x ≤ wi+4,

0, otherwise,

(2.19)

where wi,j = wi+j−wi. The constant coefficients {ci} in (2.18) are the solutions
of the following system of linear equations:

Ψ(w0) = γ0, Ψ(wN ) = γ1,

L [Ψ(wj)] = g(wj)− Lp [Ψ(wj)] , j = 0, 1, ..., N, (2.20)

where the operator Lp, which gives optimum order [4], is defined by

Lp [Ψ(w0)] =
r(w0)h0

24
(5h0 − 4h1 + h2)

(h0 + h1)Γ [Ψ ′′(w1)]− h0Γ [Ψ ′′(w2)]

h1
,

Lp [Ψ(wN )] =
r(wN )

24
hN−1 (5hN−1 − 4hN−2 + hN−3)

× (hN−1 + hN−2)Γ [Ψ ′′(wN−1)]− hN−1Γ [Ψ ′′(wN−2)]

hN−2
,

Lp [Ψ(wj)] =
r(wj)

12
hjhj−1Γ [Ψ ′′(wj)] , j = 1, 2, 3, ..., N − 1, (2.21)



Numerical Solution of a Class of Nonlinear System of BVPs 689

where

Γ [Ψ(wj)] =
2hjΨ(wj−1)− 2 (hj−1 + hj)Ψ(wj) + 2hj−1Ψ(wj+1)

hj−1 (hj−1 + hj)hj

and hj = wj+1 −wj . Note that Γ [Ψ ′′(wj)] approximates the fourth derivative
of ψ at wj . For a uniform partition Γ [S(wj)] reduces to the three-point central
difference approximation formula for the second derivative, namely,

Γ [Ψ(wj)] =
Ψ(wj−1)− 2Ψ(wj) + Ψ(wj+1)

h2
.

Finally we determine the values of the spline functions and their first and second
derivatives at the nodes wi+1, wi+2, wi+3. Upon denoting

Ψ
(r)
i =

[
Ψ

(r)
i (wi+1) , Ψ

(r)
i (wi+2) , Ψ

(r)
i (wi+3)

]
for r = 0, 1, 2, the system (2.20) simplifies to the following N +3 linear system:

Ψ−3,3 c−3 + Ψ−2,2 c−2 + Ψ−1,1 c−1 = γ0,

ΨN−3,3 cN−3 + ΨN−2,2 cN−2 + ΨN−1,1 cN−1 = γ1,

r (wj) {Ψ ′′j−3,3 cj−3 + Ψ ′′j−2,2 cj−2 + Ψ ′′j−1,1 cj−1}+ p (wj) {Ψ ′j−3,3 cj−3
+ Ψ ′j−2,2 cj−2 + Ψ ′j−1,1 cj−1}+ (q(wj)I − Lp) [Ψj−3,3 cj−3

+ Ψj−2,2 cj−2 + Ψj−1,1 cj−1] = g(wj), for j = 1, 2, ..., N − 1,

where I is the identity operator. For nonlinear systems (1.1) , the system is
rearranged after replacing g1 and g2 by the following Taylor expansions:

gi (x, um, vm, u
′
m, v

′
m) = gi

(
x, um−1, vm−1, u

′
m−1, v

′
m−1

)
+ (um − um−1)

∂

∂u
gi
(
x, um−1, vm−1, u

′
m−1, v

′
m−1

)
+ (vm − vm−1)

∂

∂v
gi
(
x, um−1, vm−1, u

′
m−1, v

′
m−1

)
+
(
u′m − u′m−1

) ∂

∂u′
gi
(
x, um−1, vm−1, u

′
m−1, v

′
m−1

)
+
(
v′m − v′m−1

) ∂

∂v′
gi
(
x, um−1, vm−1, u

′
m−1, v

′
m−1

)
for i = 1, 2.

2.3 Convergence of the Adaptive Method

In this subsection, we discuss convergence of the cubic spline collocation me-
thod, in particular it will shown that the scheme has order four rate of conver-
gence.

Given a function w(x), let u3∆w
denote the cubic spline space with respect

to a partition ∆w. Basically, we assume that u3∆[1] is a cubic spline satisfying
the following equations:

Lu3∆[1] = g in ∆w,

Bu3∆[1] = γ on TwB,
(2.22)
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and the cubic spline u3∆ satisfies:

Lu3∆ = g − Lpu3∆[1] in ∆w,

Bu3∆ = γ on TwB.
(2.23)

The operator L is given in (2.16), Lp defined in (2.21), B are any specified
mixed boundary conditons, and finally TwB is the set of boundary collocation
points with respect to w. The next two theorems, proven by Christara and
Ng [5], show that the rate of convergence is of order four.

Theorem 1. Assume

(A1) the coefficients p and q, and the right-side g are C[Ω],

(A2) the BV P L[u] = g,Bu = 0 has a unique solution,

(A3) the BV P u′′ = 0, Bu = 0 has a unique solution,

(A4) u ∈ C6[Ω], w(x) : Ω → Ω is a bijective map in C3, with w′(x) > 0,∀x ∈
Ω, w−1 ∈ C1[Ω],

then u3∆ ∈ S3
∆w

defined by (2.22) exists, is unique, and satisfies the global error
estimates∥∥∥(u− u3∆[1]

)(k) ∥∥∥
∞

= O
(
h2
)
, k = 0, 1, 2,

∥∥∥(u− u3∆[1]

)(3) ∥∥∥
∞

= O (h) ,

and the local error estimates∣∣∣ (u− u3∆[1]

)(3)
(wi)

∣∣∣
∞

= O
(
h2
)
, i = 1, 2, ..., N.

Define the Gaussian points δij = xi − λjh; j = 1, 2, i = 1, ..., N , where
λ1 = (3 −

√
3)/6 and λ2 = (3 +

√
3)/6. Let w(x) : Ω → Ω be a bijective

function in C3 with w′(x) > 0 for all x and let wi be the set of collocation
points.

Theorem 2. Under the assumptions of Theorem 1, and the assumption that
u′′ − u3′′∆[1] has a smooth expansion at the collocation points u3∆ ∈ S3

∆w
defined

by (2.23) exists, is unique, and satisfies the global error estimates∥∥∥(u− u3∆)(k)∥∥∥∞ = O
(
h4−k

)
, k = 0, 1, 2, 3,

and the local error estimates∣∣∣(u− u3∆)′ (x)
∣∣∣ = O

(
h4
)

for x = si and wi,∣∣∣ (u− u3∆)′′ (σij)∣∣∣ = O
(
h3
)
,
∣∣∣ (u− u3∆)′′′ (wi)∣∣∣ = O

(
h2
)
.

All the coefficients in system (1.1) are all assumed to be continuous on the
given domain. As for the nonlinear terms g1 and g2, they will be linearized
using Newton’s method and therefore continuity in u follows and consequently
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assumption A1 of Theorem 1 is satisfied. Necessary assumptions on the coeffi-
cients are imposed to guarantee the existence of a unique solution of problem
(1.1)-(1.2) and thus condition A2 holds. The mixed boundary conditions chosen
can easily warantee that the solution of u′′ = 0 subject to these given conditions
is unique, thus assumption A3 of Theorem 2 holds. This assumption is also
valid for the solution v, so basically in our previous and upcoming discussion
for convergence we intend to the check the validity of the assumptions to v as

well, that is, we need to apply the theorem to the vector solution U =

(
u
v

)
.

In the test examples, we have used the mapping redistribution functions given
in (2.13), (2.14) and (2.15). The first two transformations are clearly bijective
maps in C3 that take the interval [a, b] onto [a, b]. Further, it can be easily
shown that w′(x) > 0 for our choice k > 0 and the inverse function w−1 can
be easily computed and shown that w−1 ∈ C1[a, b]. We will assume that the
solution of (1.1)-(1.2) is smooth enough so that u ∈ C6[0, 1], that is, the last
assumption A4 is satisfied and so the conclusion of Theorem 1 follows. As for
the Chebyshev-Gauss-Lobatto function, we have

w′i = 6(1− τ)zi (1− zi) + τ.

Since zi ∈ [0, 1] and τ ∈ [0, 1], thus w′i > 0. The inverse function theorem
implies that w−1i ∈ C1[0, 1]. The assumptions of Theorem 2 are same as

Theorem 1 in additon to the assumption that u′′−u3′′∆[1] has a smooth expansion

at the collocation points u3∆ ∈ S3
∆w

, which is true for this case. Consequently
the conclusion of Theorem 2 follows as well.

3 Numerical Examples

In this section, the cubic spline collocation scheme is applied to a number of
linear and nonlinear systems of equations that are special cases of the problem
under consideration, namely equation (1.1)-(1.2). The five test examples that
are examined appear in the literature and include: a linear system, two non-
linear systems, and two singularly perturbed reaction-diffusion and convection-
diffusion systems of equations. The purpose of the simulations is to corroborate
the applicability, efficiency and high accuracy of the proposed method. It is
verified numerically that the approach has optimum rate of convergence of or-
der 4 as is reported in the tables. This rate has been obtained by the following
log ratio formula:

p ≈ ln(Err(ni))− ln(Err(ni+1))

ln
(
b−σ
ni

)
− ln

(
b−σ
ni+1

) ,

where Err(n) = maxi |yni − y(xi)|. Here yni is the numerical value at xi using
n mesh intervals while y(xi) is the exact value at xi.

Example 1. Consider the following second-order linear system: u′′(x) + u′(x) + xu(x) + v′(x) + 2xv(x) = f1(x),
2u′(x) + x2u(x) + v′′(x) + v(x) = f2(x),
u(0) = u(1) = 0, v(0) = v(1) = 0,

(3.1)
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where 0 ≤ x ≤ 1,

f1(x) = −2(1 + x) cosx+ π cosπx+ 2x sinπx+ (4x− 2x2 − 4) sinx,

f2(x) = −4(x− 1) cosx− 2(2− x2 + x3) sinx− (π2 − 1) sinπx.

The exact solution of (3.1) is u(x) = 2(1− x) sinx and v(x) = sinπx.
The maximum error resulting from the numerical solution obtained by the

cubic spline collocation method, using N = 8, 16, 32, 64 nodal points on a uni-
form mesh, are reported in Table 1 and are compared with the results obtained
by Geng [8]. Obviously, the maximum errors acquired by the spline colloca-
tion approach (SCA) are notably smaller than those given in [8]. It is worth
pointing out that in reference [8] there is a misprint in the plus sign within the
value of f2(x). Further, it is verified numerically in Table 1 that the (SCA) has
fourth order rate of convergence.

Table 1. Numerical solution of Example 1.

N Max Err (SCA) Order (SCA) Max Err in Geng [8]
with N=20

u v u v u v

8 1.38263(-5) 5.29328(-5) 3.92 3.79
16 9.16071(-7) 3.83813(-6) 3.97 3.97 2.2(-3) 8.0(-3)
32 5.84556(-8) 2.44426(-7) 4.00 4.00
64 3.65831(-9) 1.53165(-8)

The approximate solution using (SCA) andN = 8 nodal points on a uniform
mesh is depicted in Figure 1.

Figure 1. Numerical solution of Example 1 using (SCA) and N = 8 on uniform mesh.

Example 2. Consider the following nonlinear system which is complimented
with boundary conditions: u′′(x) + xu(x) + 2xv(x) + xu2(x) = f1(x),

v′′(x) + v(x) + x2u(x) + (sinx)v2(x) = f2(x),
u(0) = u(1) = 0, v(0) = v(1) = 0,

(3.2)



Numerical Solution of a Class of Nonlinear System of BVPs 693

where 0 ≤ x ≤ 1,

f1(x) = 2x sin (πx)− 2 + x2 − 2x4 + x5,

f2(x) = (1− x)x3 + (1− π2) sin(πx) + sinx sin2 (πx).

The boundary problem (3.2) has the exact solutions u(x) = x(1 − x) and
v(x) = sin (πx). This problem has been taken from Geng [8]: we should point
out two small misprints in that paper. The first term in f1 should be 2x sin(πx),
and not −2x sinx and in the second equation we should have v′′ as the first
term and not v′. Otherwise the exact solutions are not correct.

The maximum errors obtained by spline collocation approach (SCA) using
N = 8, 16, 32, 64, 128 nodal points on a uniform mesh, are reported in Table 2
and are compared again with the results obtained by Geng [8]. It is clear that
the maximum errors acquired by the (SCA) are smaller than those given in [8]
and that the method is of order 4.

Table 2. Numerical solution of Example 2.

N Max Err (SCA) Order (SCA) Max Err in Geng [8]
with N=20

u v u v u v

8 7.50014(-6) 7.04046(-5) 3.76 3.82
16 5.53168(-7) 4.98959(-6) 3.97 3.98
32 3.52304(-8) 3.16860(-7) 4.00 4.00 2.2(-3) 8.2(-3)
64 2.20777(-9) 1.98474(-8) 4.00 4.00
128 1.38075(-10) 1.24089(-9)

Example 3. Consider the nonlinear system:

u′′(x)− (sinx)v(x)− u′(x)v(x)− ln v(x) = ex − cosx+ x− 1,

v′′(x)− u′(x) (v′(x))
2 − (sinx)v2(x) = 0,

u(0) + v(0) + u′(0) + v′(0) = 3,

2u(0)− v(0) + u′(0) + 3v′(0) = 1,

u(1) + v(1)− u′(1) + v′(1) = cos 1 + sin 1,

u(1) + e2v′(1) = cos 1,

(3.3)

where 0 ≤ x ≤ 1. Problem (3.3) has the exact solutions u(x) = ex + cosx and
v(x) = e−x.

In Table 3, we give the maximum error obtained by the spline collocation
approach (SCA) using N = 5, 10, 20, 40, 80, 160 nodal points on a uniform mesh
and then compare them with those reported by Lang [14], who uses quintic
splines instead. Our approach, using only cubic splines on a non-uniform mesh,
yielded compatible results. The order of the method is approximately 4 and
even exceeds it for smaller values of N .

Example 4. Consider the singularly perturbed system of reaction-diffusion

Math. Model. Anal., 20(5):681–700, 2015.
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Table 3. Numerical solution of Example 3.

N Max Err (SCA) Order (SCA) Max Err in Lang [14]
u v u v u v

5 5.319(-5) 6.112(-5) 5.63 6.07 9.075(-6) 1.038(-5)
10 1.076(-6) 9.121(-7) 4.52 6.07 5.422(-7) 6.213(-7)
20 4.702(-8) 1.361(-8) 4.12 2.66 3.379(-8) 3.850(-8)
40 2.703(-9) 2.148(-9) 3.86 3.68 2.108(-9) 2.402(-9)
80 1.86(-10) 1.68(-10) 3.92 3.88 1.93(-10) 2.26(-10)
160 1.23(-11) 1.14(-11)

equations:
εu′′(x)− 2(1 + x)2u(x) + (1 + x3)v(x) = −2ex,
v′′(x) + 2 cos

(
πx
4

)
u(x)− 2.2e1−xv(x) = −(10x+ 1),

u(0) = u(1) = v(0) = v(1) = 0,

(3.4)

where 0 ≤ x ≤ 1. This problem has been studied by Matthews [16]. The
thickness of the boundary layer for the perturbed system (3.4) is estimated by
using the formula

σ = min

{
1

4
,

√
ε

α
lnN

}
, α = min

{
2(1 + x)2

}
= 2 on [0, 1].

Note that generally α is the minimum value of the absolute value of the coef-
ficient of the u-term which is −2(1 + x)2 for our case.

Figure 2. Numerical solution of Example 4 for ε = 2−8, using (SCA) and N = 64 on
non-uniform mesh.

The solution interval is divided as [0, σ]∪ [σ, 1−σ]∪ [1−σ, 1]. The number
of nodes N is also divided between each part as follows: N/4 on the first
and the third subintervals and N/2 nodes in the middle one. After defining
the piecewise uniform meshes, we use a mapping/transformation function to
redistribute the nodes in such a way to have coarser meshes at the boundaries
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Table 4. Maximum Error of Example 4 for ε = 2−8.

N Max Err (SCA) Max Err in Matthews [16]
u v u v

8 7.115(-3) 1.114(-4) 3.829(-2) 9.091(-3)
16 2.958(-4) 2.116(-5) 1.713(-2) 2.212(-3)
32 3.886(-5) 2.959(-6) 7.613(-3) 4.628(-4)
64 5.248(-6) 3.572(-7) 2.891(-3) 7.838(-5)
128 6.879(-7) 4.655(-8) 9.955(-4) 1.102(-5)

and tailored appropriately in order to handle the layer with high accuracy. The
approximate solution by the spline collocation approach (SCA) using N = 64,
ε = 2−8 and non-uniform mesh is illustrated in Figure 2. The maximum errors,
using different number of nodes, are reported in Table 4 which shows more
accurate approximate solutions obtained by the (SCA) as compared with those
results given in [16]. For this problem, the order of the (SCA) reduced to
approximately 3 which is a solid indication of the limitation of the method
in case of existence of a layer. More precisely, the choice of the mapping
redistribution function will definitely affect the order of convergence.

Figure 3. Numerical solution of Example 5 using (SCA) and N = 64 on non-uniform
mesh.

Example 5. In this problem we solve the system of two singularly per-
turbed convection-diffusion equations: ε1u

′′(x) + 3u′(x) = 15x4,
ε2v
′′(x) + 2v′(x) + 2.75u′(x) = 0.6ex,

u(0) = u(1) = v(0) = v(1) = 0,
(3.5)

where 0 ≤ x ≤ 1. System (3.5) was given by Bellew [1], in which the following
approximate solutions were manipulated outside the boundary layer that exists
at x = 0:

u(x) = x5 − 1 and v(x) = 0.3(ex − e)− 1.375(x5 − 1).
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The solution interval is divided as: [0, σ1] ∪ [σ1, σ2] ∪ [σ2, 1], where

σ1 = 2
ε1
γ1

lnN, σ2 = 4
ε2
γ2

lnN, γ1 < 3, γ2 < 2.

The number of nodes N is divided within each part as follows: N/2 on the
first subinterval and N/4 on each of the second and third. After defining the
piecewise uniform meshes, we use a mapping function to redistribute the nodes
in such a way so that we have a coarser mesh near the boundary layer. The
solution by the spline collocation approach (SCA) using N = 64, ε1 = ε2 = 2−8

and non-uniform mesh is depicted in Figure 3.

Figure 4. Inner numerical solution and approximate outer solutions given in [1] for
Example 5.

Figure 4 shows the numerical solution on the inner region near the boundary
layer, together with the approximate solutions suggested by [1]. We note these
approximate solutions are not valid within the boundary layer. The maximum
residual errors, using (SCA) and different number of nodes, and the order of
convergence are compared with numerical solutions given in [1] for u(t) and are
presented in Table 5.

Table 5. Numerical results and comparisons of Example 5.

Max Err Max Err Max Err in [1]
N 0 ≤ t ≤ 0.01 0.01 ≤ t ≤ 1 0.01 ≤ t ≤ 1

u p v Order u Order v Order u Order

64 1.58(0) 2.0 2.84(0) 2.0 3.95(-2) 3.6 3.85(-1) 2.8 1.74(-1) 0.628
128 4.76(-1) 2.0 7.36(-1) 2.0 3.28(-3) 3.7 5.72(-2) 2.9 1.12(-1) 0.751
256 1.22(-1) 2.0 1.91(-1) 2.0 7.71(-3) 3.7 2.59(-4) 3.0 6.68(-2) 0.778
512 3.15(-2) 4.94(-2) 1.96(-5) 9.77(-4) 3.89(-2) 0.830

The results indicate superiority of our suggested approach. As in Example
4 and due to the existence of a boundary layer, we note that the order for such
a problem is reduced.
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Example 6. Consider the following system of two singularly perturbed
equations:  −ε1u

′′(x)− u′(x) + 2u3(x)− v(x) = f1(x),
−ε2v′′(x)− 2v′(x) + 4v2(x)− u(x) = f2(x),
u(0) = u(1) = v(0) = v(1) = 0,

(3.6)

where 0 ≤ x ≤ 1. The exact solution to system (3.6) is given by:

u =
1− e−x/ε1
1− e−1/ε1

+
1− e−x/ε2
1− e−1/ε2

− 2 sin
(πx

2

)
, v =

1− e−x/ε2
1− e−1/ε2

− xex−1.

We omit the values of f1 and f2 as they are lengthy expressions and can be
easily determined by inserting the latter exact solutions into the system (3.6).

For this case, we let {xi} to be a uniform mesh and then we use the re-
distribution function wi =

(
(1 + k)xi − 1

)
/k in order to have a coarser mesh

at x = a by moving the points near the left-hand layer. Since the system in
question is nonlinear in u and v, we employ Newton’s method first in order to
linearize the equations. This yields the following iterative scheme:

−ε1u′′n(x)− u′n(x) + 6u2n−1(x)un(x)− vn(x) = f1(x) + 4u3n−1,

−ε2v′′n(x)− 2v′n(x) + 8vn−1(x)vn − un(x) = f2(x) + 4v2n−1.

The maximum errors as well as the order are reported in Table 6 which shows
the high accuracy of the approximate solutions and the fourth order rate of
convergence.

Table 6. Numerical results of Example 6.

N Max Err u Order u Max Err v Order v

16 2.01754(-3) 4.002 1.43152(-3) 3.950
32 1.25870(-4) 3.989 9.26344(-5) 3.997
64 7.92530(-6) 3.999 5.80174(-6) 3.999
128 4.95382(-7) 4.000 3.62784(-7) 4.000
256 3.09622(-8) 2.26766(-8)

The numerical solution is shown in Figure 5.

Example 7. Consider the following system of two singularly perturbed
equations:  −εy

′′
1 (x) + 2(x+ 1)2y1(x)− (1 + x3)y2(x) = f1(x),

−εy′′2 (x)− 2 cos
(
π
4x
)
y1(x) + 2.2e1−xy2(x) = f2(x),

y1(0) = y1(1) = y2(0) = y2(1) = 0,

where x ∈ (0, d) ∪ (d, 1) and at this d ∈ (0, 1) the functions f1 and f2 have a
single discontinuity. Here

f1(x) =

{
2ex, 0 ≤ x ≤ 0.5,
1, 0.5 < x ≤ 1,

f2(x) =

{
10x+ 1, 0 ≤ x ≤ 0.5,
2, 0.5 < x ≤ 1.
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Figure 5. Numerical solution of Example 6.

This example has been taken from [19]. This problem has layers at the end
points and in the middle of the interval. Labatto redistribution mappings were
used on the subintervals (0, 0.5) and (0.5, 1). For ε1 = ε2 = 10−5, the spline
collocation approach yields highly aacurate results. Indeed, using the number
of nodes N = 64, the maximum residual errors are 7.0× 10−24 and 2.4× 10−23

for the first and second equations, respectively. In comparison with [19]: the
maximum errors obtained are 0.0418 for u and 0.302 for v, using the difference
between numerical approximations with N and 2N nodes. Figure 6 displays
the numerical solutions for this system of equations.

Figure 6. Numerical solution of Example 7.
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4 Conclusions

A fourth order cubic spline collocation method have been proposed and dis-
cussed for its proper implementation for the numerical solution of an extended
class of a system of nonlinear differential equations. The scheme has been suc-
cessfully applied for both regular systems as well as ones which are singularly
perturbed that possess boundary layers. An important factor is that the scheme
can handle the boundary layers quite efficiently regardless of its severity. This
has been one of the hallmarks of the success of the suggested method which has
been exemplified in this article with adequate number of test examples. The
numerical results reported in the tables and depicted in the graphs, illustrated
the validity of the method and provided highly accurate solutions that are su-
perior when compared with other available methods or compare favorably with
them to say the least. The convergence of the suggested strategy is analyzed
and it is shown numerically that the rate of convergence is mostly around 4 for
regular systems and slightly deteriorates within the layer.
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