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Abstract. In this paper, we consider the generalized BBM-Burgers equation with
periodic external force in Rn. Existence and uniqueness of time periodic solutions that
have the same period as the external force are established in some suitable function
space for the space dimension n ≥ 3. Moreover, we also discuss the time asymptotic
stability of the time periodic solution. The proof is mainly based on the contraction
mapping theorem and continuous argument.
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1 Introduction

In this paper, we investigate existence and asymptotic stability of time peri-
odic solutions to the generalized BBM-Burgers equation with time-dependent
periodic external force

vt − α∆vt − β∆v + γ∆2v +

n∑
j=1

fj(v)xj = ∆g(v) +

n∑
j=1

hj(x, t)xj . (1.1)

Here v = v(x, t) is the unknown function of x ∈ Rn and t > 0, α > 0, β and
γ > 0 are constants. For any j = 1, . . . , n, the nonlinear term fj(v) and g(v)
are given smooth function of v ∈ R satisfying g′(0) + β > 0 and the function
hj(x, t) is a periodic function with period T , i.e. hj(x, t+ T ) = hj(x, t).

�
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When hj = 0, Geng and Chen [3] proved existence and the uniqueness of
the global generalized solution and the global classical solution for the Cauchy
problem of equation (1.1) for n ≤ 3. The proof is based by existence of local
solutions and energy method. Moreover, the decay property of the solution was
discussed. When g = hj = 0, Zhao [18] proved the existence and convergence
of the global smooth solutions to (1.1). For the multidimensional case, we
refer to Zhao [16] and [17]. When γ = 0 and hj = 0, Chen and Xue [2]
proved that global existence and asymptotic behavior of solutions in one space
dimension. Later, global existence and optimal decay estimate of solution have
been established in [13]. Moreover, they also showed that as time tends to
infinity, the global solution approaches the nonlinear diffusion wave described
by the self-similar solution of the viscous Burgers equation for n = 1. For more
study of other type Benjamin-Bona-Mahony-Burgers equations, we may refer
to [1], [4], [6], [7], [8] and [15].

Is there time periodic solution to (1.1), which has the same period as
hj(j = 1, . . . , n)? Is the time periodic solution unique and stable? To the best
of our knowledge, these are interesting and challenging open problems and few
results are available. We shall try to solve these problems in this paper. So our
main purpose of this paper is to establish existence, uniqueness and asymp-
totic stability of time periodic solutions to (1.1). More precisely, existence and
uniqueness of time periodic solutions vper are established by decay properties
of solutions operator and the contracting mapping principle, provided that the
norm of hj is suitably small. For the details, we refer to Theorem 1. Moreover,
the stability of the time periodic solution vper can be studied by investigating
the following initial value problem for (1.1) with the initial value

t = t0 : v = v0(x), (1.2)

when the initial data is small perturbation of the time periodic solution for
some fixed initial time t0 ∈ R. For the details, we refer to Theorem 2.

The study of the global existence and asymptotic behavior of solutions to
nonlinear evolution equations has a long history and lots of interesting results
have been established. We may refer to [2,3,9,10,11,12,14] and the references
therein.

The paper is organized as follows. In Section 2, the decay properties of
solution operator to (1.1) are obtained. In Section 3, we prove existence and
uniqueness of time periodic solutions to (1.1). Finally, we establish stability of
time periodic solutions under suitable conditions in Section 4.

Notations. We give some notations which are used in this paper. Let F[u]

denote the Fourier transform of u defined by

û(ξ) = F[u] =

∫
Rn
e−iξ·xu(x)dx,

and we denote its inverse transform by F−1.
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2 Decay property of solution operator

The aim of this section is to establish decay properties of solution operator to
the problem (1.1). We first investigate the linear equation of (1.1):

vt − α∆vt − β∆v + γ∆2v +

n∑
j=1

f ′j(0)vxj − g′(0)∆v = 0.

Taking the Fourier transform, we have

(1 + α|ξ|2)v̂t +
[
γ|ξ|4 + (β + g′(0))|ξ|2 + i

n∑
j=1

f ′j(0)ξj)
]
v̂ = 0. (2.1)

The characteristic equation of (2.1) is

(1 + α|ξ|2)λ+ γ|ξ|4 + (β + g′(0))|ξ|2 + i

n∑
j=1

f ′j(0)ξj = 0. (2.2)

Let λ(ξ) be the corresponding eigenvalues of (2.2), we obtain

λ(ξ) =
(
− γ|ξ|4 − (β + g′(0))|ξ|2 − i

n∑
j=1

f ′j(0)ξj)
)
/(1 + α|ξ|2).

Let

Ŝ(ξ, t) = eλ(ξ)t. (2.3)

We define S(x, t) by

S(x, t) = F−1[Ŝ(ξ, t)](x), (2.4)

where F−1 denotes the inverse Fourier transform.

The decay estimates of the solution operators S(t) appearing in the solution
formula (2.4) is stated as follows.

Lemma 1. Let 1 ≤ p ≤ 2, and let k, κ and l be nonnegative integers. Then we
have

‖∂kxS(t) ∗ φ‖L2 ≤ C(1 + t)−
n
2 ( 1

p−
1
2 )−

k−κ
2 ‖∂κxφ‖Lp + Ce−ct‖∂k+lx φ‖L2 (2.5)

for 0 ≤ κ ≤ k and φ ∈Wκ,p
⋂
Hk+l.

Proof. It follows from the Plancherel theorem and (2.3) that

‖∂kxS(t) ∗ φ‖2L2 =

∫
Rn
|ξ|2k|Ŝ(ξ, t)|2|φ̂(ξ)|2dξ

≤ C
∫
|ξ|≤r0
|ξ|2ke−c|ξ|

2t|φ̂(ξ)|2dξ + Ce−ct
∫
|ξ|≥r0

|ξ|2k|φ̂(ξ)|2dξ =: I1 + I2,

(2.6)
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where r0 is a small positive constant. In what follows, we estimate I1, letting
1/p′ + 1/p = 1, we obtain

I1 = C

∫
|ξ|≤r0

|ξ|2ke−c|ξ|
2t|φ̂(ξ)|2dξ ≤ C‖ |ξ|κφ̂‖2

Lp′

(∫
|ξ|≤r0
|ξ|2(k−κ)qe−cq|ξ|

2tdξ
) 1
q

≤ C(1 + t)−n(
1
p−

1
2 )−(k−κ)‖∂κxφ‖2Lp ,

where we have used the Hölder inequality with 2
p′ + 1

q = 1 and the Hausdorff-

Young inequality ‖v̂‖Lp′ ≤ C‖v‖Lp for v = ∂κxφ. Finally, we can estimate I2
simply as

I2 = Ce−ct
∫
|ξ|≥r0

|ξ|2k|φ̂(ξ)|2dξ

≤ Ce−ct
∫
|ξ|≥r0

|ξ|2(k+l)|φ̂(ξ)|2dξ ≤ Ce−ct‖∂k+lx φ‖2L2 .

(2.7)

Combining (2.6) and the above two estimates yields (2.5). Then Lemma 1 is
proved. ut

As a corollary of Lemma 1, we have the following decay estimate for the
term S(t) ∗ (1− α∆)−1∂xjFj and S(t) ∗ (1− α∆)−1∆G.

Corollary 1. Let 1 ≤ p ≤ 2, and let k, κ and l be nonnegative integers. Then
we have

‖∂kxS(t) ∗ (I − α∆)−1∂xjFj‖L2 ≤ C(1 + t)−
n
2 ( 1

p−
1
2 )−

k+1−κ
2 ‖∂κxFj‖Lp

+ Ce−ct‖∂k+l−1x Fj‖L2 , ∀Fj ∈Wκ,p
⋂
Hk+l−1

(2.8)

and

‖∂kxS(t) ∗ (I − α∆)−1∆G‖L2 ≤ C(1 + t)−
n
2 ( 1

p−
1
2 )−

k+2−κ
2 ‖∂κxG‖Lp

+ Ce−ct‖∂k+lx G‖L2 , ∀G ∈Wκ,p
⋂
Hk+l,

(2.9)

where 0 ≤ κ ≤ k + 1 and k + l − 1 ≥ 0 in (2.8) and 0 ≤ κ ≤ k + 2 in (2.9).

3 Existence and uniqueness of time periodic solutions

The purpose of this section is to establish existence and uniqueness of time
periodic solutions to the problem (1.1), which has the same period as hj(j =
1, . . . , n). To prove existence and uniqueness of time periodic solutions, we
need the following Lemma that has been established in [5] and [19].

Lemma 2. Assume that Φ = Φ(v) is a smooth function satisfying Φ(v) =
O(|v|1+σ) for v → 0, where σ ≥ 1 is an integer. Let v ∈ L∞ and ‖v‖L∞ ≤M0

for a positive constant M0. Let 1 ≤ p, q, r ≤ +∞ and 1
p = 1

q + 1
r , and let k ≥ 0

be an integer. Then we have

‖∂kxΦ(v)‖Lp ≤ C‖v‖σ−1L∞ ‖v‖Lq‖∂
k
xv‖Lr .
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Furthermore, we have

‖∂αx (Φ(v1)− Φ(v2))‖Lp ≤ C{(‖∂αx v1‖Lq + ‖∂αx v2‖Lq )‖v1 − v2‖Lr
+ (‖v1‖Lr + ‖v2‖Lr )‖∂αx (v1 − v2)‖Lq}(‖v1‖L∞ + ‖v2‖L∞)σ−1,

where C = C(M0) is a constant depending on M0.

Our existence and uniqueness of time periodic solutions results are stated as
follows:

Theorem 1. Let n ≥ 3 and m > n/2 be integers. For any j = 1, . . . , n, assume
that hj ∈ C([0, T ];L1(Rn))

⋂
C([0, T ];Hm−1(Rn)) is a periodic function with

period T . Put E0 =
∑n
j=1 sup0≤t≤T

(
‖hj(t)‖L1 + ‖hj(t)‖Hm−1

)
.Then there

exists a positive constant δ0 such that if E0 ≤ δ0, the problem (1.1) has a
unique time periodic solution vper ∈ C([0, T ];Hm(Rn)). Moreover, it holds
that

sup
0≤t≤T

‖vper(t)‖Hm ≤ CE0.

Proof. The proof of Theorem 1 is divided into two steps. The first step is
to prove that the solution to the problem (1.1) is periodic solution, provided
that there exists a unique solution to the problem (1.1) . The second step is to
prove the problem (1.1) admits a unique solution.

Step 1: If there exists a unique solution to the problem (1.1), this unique
solution must be time periodic solution. To this end, we define the following
integral equation

vper(t) = S(t− s) ∗ vper(s) +

∫ t

s

S(t− τ) ∗ (1− α∆)−1

×
[ n∑
j=1

(−Fj(φ)xj + hj(x, t)xj ) +∆G(φ)
]
(τ)dτ.

(3.1)

Here Fj(v) = fj(v) − fj(0) − f ′j(0)v = O(v2) (j = 1, . . . , n), and G(v) =

g(v) − g(0) − g′(0)v = O(v2). Then (3.1) is the solution to the following
problem

vt − α∆vt − (β + g′(0))∆v + γ∆2v

+

n∑
j=1

f ′j(0)vxj +

n∑
j=1

Fj(φ)xj = ∆G(φ) +

n∑
j=1

hj(x, t)xj

with initial value t = s : v0 = vper(s). Choosing s = −kT for k ∈ N, then (3.1)
becomes

vper(t) = S(t+ kT ) ∗ vper(s) +

∫ t

−kT
S(t− τ) ∗ (1− α∆)−1

×
[ n∑
j=1

(−Fj(φ)xj + hj(x, t)xj ) +∆G(φ)

]
(τ)dτ

(3.2)
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Noting that n ≥ 3, (2.5) entails that

‖S(t−s)∗σ‖Hm ≤ C(1+t−s)−n4 (‖σ‖L1 +‖σ‖Hm)→ 0, ∀σ ∈ Hm
⋂
L1 (3.3)

as s→ −∞. Since L1
⋂
L2 is dense in L2, (3.3) implies that

‖S(t− s) ∗ σ‖Hm → 0, ∀σ ∈ Hm as s→ −∞.

(2.8) and (2.9) imply that
‖S(t−τ) ∗ (1−α∆)−1∂xjFj‖Hm ≤ C(1 + t− τ)−

n
4−

1
2 (‖Fj‖L1+‖Fj‖Hm),

‖S(t−τ) ∗ (1−α∆)−1∂xjhj‖Hm ≤ C(1+t−τ)−
n
4−

1
2 (‖hj‖L1+‖hj‖Hm−1),

‖S(t− τ) ∗ (1− α∆)−1∆G‖Hm ≤ C(1 + t− τ)−
n
4−1(‖G‖L1 + ‖G‖Hm),

which together with n
4 + 1

2 > 1(n ≥ 3) entails the converge of the integral in
(3.2). Thus, we have

vper(t) =

∫ t

−∞
S(t−τ)∗(1−α∆)−1

[ n∑
j=1

(−Fj(v)xj +hj(x, t)xj )+∆G(vper)
]
(τ)dτ.

(3.4)
Define the mapping

M(vper)(t) =

∫ t

−∞
S(t− τ) ∗ (1− α∆)−1

×
[ n∑
j=1

(−Fj(v)xj + hj(x, t)xj ) +∆G(vper)

]
(τ)dτ.

(3.5)

Assume that M has a unique fixed point, denoted by vper1 , i.e., M(vper1 ) =
vper1 . Let vper2 (t) = vper1 (t + T ), then it follows from (3.5) and hj(x, τ + T ) =
hj(x, τ)(j = 1, . . . , n) that

vper2 (t) = vper1 (t+ T ) = M(vper1 (t+ T )) =

∫ t+T

−∞
S(t+ T − τ)

∗ (1− α∆)−1
[ n∑
j=1

(−Fj(vper1 )xj + hj(x, t)xj ) +∆G(vper1 )
]
(τ)dτ

=

∫ t

−∞
S(t+ T − (τ + T )) ∗ (1− α∆)−1

[ n∑
j=1

(−Fj(vper1 )xj

+ hj(x, t)xj ) +∆G(vper1 )
]
(τ + T )dτ =

∫ t

−∞
S(t− τ) ∗ (1− α∆)−1

×
[ n∑
j=1

(−Fj(vper2 )xj + hj(x, t)xj ) +∆G(vper2 )
]
(τ)dτ = M(vper2 (t)).

Then vper2 (t) is also fixed point. Due to uniqueness of the fixed point, we have

vper1 (t) = vper2 (t) = vper1 (t+ T ),

Math. Model. Anal., 25(2):184–197, 2020.
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which implies vper1 (t) is a periodic function with period T . Therefore, the fixed
point of the mapping M is a periodic function with period T , provided that
the mapping M has a unique fixed point.

Step 2: The problem (1.1) admits a unique solution.

In this step, we shall prove that existence of solutions to the problem (1.1)
in the function space C([0, T ];Hm(Rn)) by the contraction mapping theorem.
To this end, define the function space

X = {vper ∈ C([0, T ];Hm(Rn)) : ‖vper‖X <∞},

where ‖vper‖X = sup0≤t≤T ‖vper(t)‖Hm . For R > 0, we define

Y = {vper ∈ X : ‖vper‖X ≤ R}.

To prove that there exists a unique solution to the problem (1.1), it is suffice to
prove that M has a unique fixed point in the function space Y . For ∀vper ∈ Y
and 0 ≤ k ≤ m, it follows from (3.5) and Minkowski inequality that,

‖∂kxM(vper)(t)‖L2 ≤
∫ t

−∞
‖∂kxS(t− ατ) ∗ (1−∆)−1

n∑
j=1

−Fj(vper)xj (τ)‖L2dτ

+

∫ t

−∞
‖∂kxS(t− ατ) ∗ (1−∆)−1

n∑
j=1

hj(x, t)xj (τ)‖L2dτ

+

∫ t

−∞
‖∂kxS(t− ατ) ∗ (1−∆)−1∆G(vper)(τ)(τ)‖L2dτ =: K1 +K2 +K3.

(2.8), (2.9), Lemma 2 and Sobolev embedding theorem entails that

K1 ≤ C
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2

n∑
j=1

‖Fj(vper)(τ)‖L1dτ

+ C

∫ t

−∞
e−c(t−τ)

n∑
j=1

‖∂kxFj(vper)(τ)‖L2dτ

≤ C
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2

(
‖vper(τ)‖2L2 + ‖vper(τ)‖L∞‖∂kxvper(τ)‖L2

)
dτ

≤ C‖vper‖2X
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2 dτ ≤ C‖vper‖2X ,

K2 ≤ C
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2

n∑
j=1

‖hj(τ)‖L1dτ

+ C

∫ t

−∞
e−c(t−τ)

n∑
j=1

‖∂(k−1)+x hj(τ)‖L2dτ

≤ C
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2

n∑
j=1

(
‖hj(τ)‖L1 + ‖∂(k−1)+x hj(τ)‖L2

)
dτ
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≤ C sup
0≤t≤T

n∑
j=1

(
‖hj(t)‖L1 + ‖hj(t)‖Hm−1

)∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2 dτ

≤ C sup
0≤t≤T

n∑
j=1

(
‖hj(t)‖L1 + ‖hj(t)‖Hm−1

)
,

K3 ≤ C
∫ t

−∞
(1 + t− τ)−

n
4−

k+2
2 ‖G(vper)(τ)‖L1dτ

+ C

∫ t

−∞
e−c(t−τ)‖∂kxG(vper)(τ)‖L2dτ

≤ C
∫ t

−∞
(1 + t−τ)−

n
4−

k+2
2

(
‖vper(τ)‖2L2+‖vper(τ)‖L∞‖∂kxvper(τ)‖L2

)
dτ

≤ C‖vper‖2X
∫ t

−∞
(1 + t− τ)−

n
4−

k+2
2 dτ ≤ C‖vper‖2X ,

where (k − 1)+ = max{0, k − 1}.
Combining above three estimates gives

‖∂kxM(vper)(t)‖L2 ≤ C‖vper‖2X + C sup
0≤t≤T

n∑
j=1

(
‖hj(t)‖L1 + ‖hj(t)‖Hm−1

)
,

which implies
‖M(vper)‖X ≤ C‖vper‖2X + CE0.

Taking R = 4CE0 and letting E0 be suitably small, we have

‖M(vper)‖X ≤ 2CE0 ≤ R. (3.6)

Finally, we prove M is a strictly contracting mapping. ∀ṽper, v̄per ∈ Y , owing
to (3.5), it holds that

M(ṽper)−M(v̄per)(t) =

∫ t

−∞
S(t− τ) ∗ (1− α∆)−1

×
{ n∑
j=1

∂xj [Fj(v̄
per)− Fj(ṽper)] +∆[G(ṽper)−G(v̄per)]

}
(τ)dτ. (3.7)

By (3.7), Minkowski inequality, (2.8), (2.9), Lemma 2 and Sobolev embedding
theorem, we obtain

‖∂kx(M(ṽper)−M(v̄per))(t)‖L2 ≤ C
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2

×
{ n∑
j=1

‖
(
Fj(ṽ

per)− Fj(v̄per)
)
(τ)‖L1 + ‖

(
G(ṽper)−G(v̄per)

)
(τ)‖L1

}
dτ

+ C

∫ t

−∞
e−c(t−τ)

{ n∑
j=1

‖∂kx(Fj(ṽ
per)− Fj(v̄per))(τ)‖L2

Math. Model. Anal., 25(2):184–197, 2020.
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+‖∂kx(G(ṽper)−G(v̄per))(τ)‖L2

}
dτ

≤ C

∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2

{ n∑
j=1

‖
(
Fj(ṽ

per)− Fj(v̄per)
)
(τ)‖L1

+‖
(
G(ṽper)−G(v̄per)

)
(τ)‖L1 +

n∑
j=1

‖∂kx(Fj(ṽ
per)− Fj(v̄per))(τ)‖L2

+‖∂kx(G(ṽper)−G(v̄per))(τ)‖L2

}
dτ

≤ C

∫ t

−∞
(1+t−τ)−

n
4−

k+1
2

{
(‖(ṽper(τ)‖L2+‖v̄per(τ)‖L2)‖(ṽper − v̄per)(τ)‖L2

+‖(ṽper − v̄per)(τ)‖L∞(‖∂kx ṽper(τ)‖L2 + ‖∂kx v̄per(τ)‖L2)

+(‖ṽper(τ)‖L∞ + ‖v̄per(τ)‖L∞)‖∂kx(ṽper − v̄per)(τ)‖L2

}
dτ

≤ C(‖ṽper‖X + ‖v̄per‖X)‖ṽper − v̄per‖X
∫ t

−∞
(1 + t− τ)−

n
4−

k+1
2 dτ

≤ C(‖ṽper‖X + ‖v̄per‖X)‖ṽper − v̄per‖X , ∀0 ≤ k ≤ m,

which implies

‖(M(ṽper)−M(v̄per))(t)‖X ≤ CR‖ṽper − v̄per‖X . (3.8)

Recalling that R = 4CE0 and letting E0 suitably small and combining (3.8)
yields

‖(M(ṽper)−M(v̄per))(t)‖X ≤
1

2
‖ṽper − v̄per‖X . (3.9)

(3.6) and (3.9) imply that M is a strictly contracting mapping. Consequently,
we conclude that there exists a unique fixed point vper ∈ Y of the mapping M,
which is a unique solution to (1.1).

Step 1 and Step 2 entails that the problem (1.1) exists a unique time periodic
solution. We have complete the proof of Theorem 1. ut

Remark 1. Due to the integral with respect to time, in this paper, we only
prove that existence and uniqueness of time periodic solutions when the space
dimension n ≥ 3. We shall discuss existence and uniqueness of time periodic
solutions for n = 1, 2.

4 Stability of time periodic solutions

In this section, we shall prove the stability of time periodic solutions established
in Theorem 1. The asymptotic stability of time periodic solutions is stated as
follows.

Theorem 2. Assume the conditions of Theorem 1 hold and v0 ∈ Hm
⋂
L1.

Put
E1 = ‖v0 − vper(t0)‖L1 + ‖v0 − vper(t0)‖Hm .

Then there exists a positive constant δ1 such that if E1 ≤ δ1, the problem (1.1),
(1.2) has a unique global solution v ∈ C([t0,∞);Hm(Rn)). Moreover,

‖(v − vper)(t)‖L2 ≤ CE1(1 + t)−
n
4 . (4.1)
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Remark 2. Notice that for time periodic force ∂xjhj(x, t)(j = 1, . . . , n), there
is no time decay in the forcing term so that the large time behavior is more
complicated. The method used in this paper relies on the convergence of the
integral defined in (3.4). So this convergence can be proved when the space
dimension n ≥ 3. Therefore, it is still an open problem for n ≤ 2.

Proof. Firstly, we shall prove the global existence of the solution to the prob-
lem (1.1)–(1.2). Without loss of generality, we can assume t0 = 0. Let vper

be the periodic solution constructed in Theorem 1 and let v be a solution to
the initial value problem (1.1)–(1.2). Then V = v − vper satisfies the following
initial value problem

Vt − α∆Vt − (β + g′(0))∆V + γ∆2V +

n∑
j=1

f ′j(0)Vxj

+

n∑
j=1

(Fj(v)− Fj(vper))xj = ∆(G(v)−G(vper)), (4.2)

t = 0 : V = v0(x)− vper(x, 0). (4.3)

The existence and uniqueness of local solutions may be established by the
contraction mapping principle (cf. [3, 12, 14]). In what follow, global existence
of solutions to the problem (1.1)–(1.2) will be proved by continuous argument.
To this end, we assume that

M = sup
0≤t<T0

‖V (t)‖Hm ≤ 2C0E1.

where T0 is the maximal time of existence of local solutions.
We may transform the problem (4.2)–(4.3) into the following integral equation

V (t) = S(t) ∗ (v0(x)− vper(0)) +

∫ t

0

S(t− τ) ∗ (1− α∆)−1 (4.4)

×
{ n∑
j=1

(Fj(v
per)− Fj(V + vper))xj +∆[G(V + vper)−G(vper)]

}
(τ)dτ.

Equation (4.4) and the Minkowski inequality entails that

‖∂kxV (t)‖L2 ≤ ‖∂kxS(t)∗(v0(x)−vper(0))‖L2+

n∑
j=1

∫ t

0

‖∂kxS(t−τ)∗(1−α∆)−1

× ∂xj [Fj(vper)− Fj(V + vper)](τ)‖L2dτ +

∫ t

0

‖∂kxS(t− τ) ∗ (1− α∆)−1

×∆[G(V + vper)−G(vper)](τ)‖L2dτ =: I1 + I2 + I3. (4.5)

Making use of (2.5), we have

I1 ≤C(1 + t)−
n
4−

k
2 ‖v0(x)− vper(0)‖L1 + Ce−ct‖∂kx(v0(x)− vper(0))‖L2

≤C(1 + t)−
n
4−

k
2 E1. (4.6)
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It follows from (2.8), Lemma 2 and Sobolev embedding theorem, Theorem 1
that

I2 ≤C
n∑
j=1

∫ t

0

(1 + t− τ)−
n
4−

k+1
2 ‖(Fj(V + vper)− Fj(vper))(τ)‖L1dτ

+ C

n∑
j=1

∫ t

0

e−c(t−τ)‖∂kx(Fj(V + vper)− Fj(vper))(τ)‖L2dτ

≤C
∫ t

0

(1 + t− τ)−
n
4−

k+1
2 ‖V (τ)‖L2(‖V (τ)‖L2 + ‖vper(τ)‖L2)dτ

+ C

∫ t

0

e−c(t−τ)
{

(‖V ‖L∞ + ‖vper‖L∞)‖∂kxV (τ)‖L2

+ ‖V (τ)‖L∞(‖∂kxV ‖L2 + ‖∂kxvper‖L2)
}
dτ

≤C(M2 + δ0M)

∫ t

0

(1 + t− τ)−
n
4−

k+1
2 dτ + C(M2 + δ0M)

∫ t

0

e−c(t−τ)dτ

≤C
(
M2 + δ0M

)
. (4.7)

Using (2.9) and the same procedure leading to (4.7), it holds that

I3 ≤C
∫ t

0

(1 + t− τ)−
n
4−

k+2
2 ‖(G(V + vper)−G(vper))(τ)‖L1dτ

+ C

∫ t

0

e−c(t−τ)‖∂kx(G(V + vper)−G(vper))(τ)‖L2dτ

≤C
∫ t

0

(1 + t− τ)−
n
4−

k+2
2 ‖V (τ)‖L2(‖V (τ)‖L2 + ‖vper(τ)‖L2)dτ

+ C

∫ t

0

e−c(t−τ)
{

(‖V ‖L∞ + ‖vper‖L∞)‖∂kxV (τ)‖L2

+ ‖V (τ)‖L∞(‖∂kxV ‖L2 + ‖∂kxvper‖L2)
}
dτ

≤C(M2 + δ0M)

∫ t

0

(1 + t− τ)−
n
4−

k+2
2 dτ + C(M2 + δ0M)

∫ t

0

e−c(t−τ)dτ

≤C
(
M2 + δ0M

)
. (4.8)

We insert (4.6)–(4.8) into (4.5) and obtain

M≤ C1E1 + CM2 + δ0M. (4.9)

Letting C0 = 4C1, (4.9) implies that M ≤ C0E1, provided that δ0 and E1
are suitably small. By standard continuous argument, we conclude that the
problem (4.2)–(4.3) admits a unique global solution V . Therefore, the problem
(1.1)–(1.2) admits a unique global solution v.

Next we shall prove (4.1). We introduce the quantity

E(t) = sup
0≤τ≤t

(1 + τ)
n
4 ‖V (τ)‖L2 .
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To prove (4.1), it is suffice to prove that E(t) ≤ CE1. Equation (4.5) with k = 0
gives

‖V (t)‖L2 ≤: J1 + J2 + J3. (4.10)

Equation (4.6) implies

J1 ≤ C(1 + t)−
n
4 E1. (4.11)

(2.8), Lemma 2 and Sobolev embedding theorem, Theorem 1 entails that

J2 ≤ C

∫ t

0

(1 + t− τ)−
n
4−

1
2 ‖(Fj(V + vper)− Fj(vper))(τ)‖L1dτ

+C

∫ t

0

e−c(t−τ)‖(Fj(V + vper)− Fj(vper))(τ)‖L2dτ

≤ C

∫ t

0

(1 + t− τ)−
n
4−

1
2 ‖V (τ)‖L2(‖V (τ)‖L2 + ‖vper(τ)‖L2)dτ

+C

∫ t

0

e−c(t−τ)(‖V ‖L∞‖V (τ)‖L2 + ‖vper(τ)‖L∞‖V (τ)‖L2)dτ

≤ CE2(t)

∫ t

0

(1 + t− τ)−
n
4−

1
2 (1 + τ)−

n
2 dτ

+Cδ0E(t)

∫ t

0

(1 + t− τ)−
n
4−

1
2 (1 + τ)−

n
4 dτ

+C(δ0 + E1)E(t)

∫ t

0

e−c(t−τ)(1 + τ)−
n
4 dτ

≤ C
(
E2(t) + δ0E(t) + E1E(t)

)
(1 + t)−

n
4 .

Similarly, we have from (2.9)

J3 ≤ C
∫ t

0

(1 + t− τ)−
n
4−1‖(G(V + vper)−G(vper))(τ)‖L1dτ

+ C

∫ t

0

e−c(t−τ)‖(G(V + vper)−G(vper))(τ)‖L2dτ

≤ C
∫ t

0

(1 + t− τ)−
n
4−

1
2 ‖V (τ)‖L2(‖V (τ)‖L2 + ‖vper(τ)‖L2)dτ

+ C

∫ t

0

e−c(t−τ)(‖V ‖L∞‖V (τ)‖L2 + ‖vper(τ)‖L∞‖V (τ)‖L2)dτ

≤ CE2(t)

∫ t

0

(1 + t− τ)−
n
4−1(1 + τ)−

n
2 dτ

+ Cδ0E(t)

∫ t

0

(1 + t− τ)−
n
4−1(1 + τ)−

n
4 dτ + C(δ0 + E1)E(t)

×
∫ t

0

e−c(t−τ)(1 + τ)−
n
4 dτ ≤ C

(
E2(t) + δ0E(t) + E1E(t)

)
(1 + t)−

n
4 . (4.12)

Inserting (4.11)–(4.12) into (4.10) yields

E(t) ≤ CE1 + CE2(t) + δ0E(t) + E1E(t).
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Therefore, we arrive at
E(t) ≤ CE1,

provided that δ0 and E1 are suitably small. Theorem 2 is proved. ut
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