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Abstract. The aim of the present paper is to introduce a block by block method for
solving system of nonlinear Volterra integral equations with continuous kernels and
system of Abel integral equations. We prove convergence of the method and show
that its convergence order is at least six. To illustrate performance of the method,
numerical experiments are presented and they are compared with HPM (Homotopy
Perturbation Method) and RBFN (Radial Basis Function Network) method. The
given results demonstrate remarkable ability of the proposed method.
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1 Introduction

Consider a system of Volterra integral equations (VIEs) of the form

f(x) = g(x) +

∫ x

0

(K(x, s, f(s))H(x, s))ds, 0 ≤ s ≤ x ≤ X, (1.1)

where f ,g : [0, X] −→ Rn and K(x, s, f) : [0, X] × [0, X] × Rn −→ Rn×n
are given continuous functions and H : [0, X] × [0, X] −→ Rn is defined by
H = [H1(x, s), ...,Hn(x, s)]T , with Hj(x, s) = 1, j = 1, 2, ..., n for the equations
with continuous kernels and

Hj(x, s) ≡
1

|x− s|αj
, 0 < αj < 1, j = 1, 2, ..., n

for the Abel equations.
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There are many physical and biological problems which are modeled as
VIEs with weakly singular kernels such as reaction-diffusion problems [9], the
behavior of viscoelastic materials in mechanics, superfluidity problems, propa-
gation of a flame, soft tissues like mitral valves of the aorta in the human heart
(see [6]). A system of Abel-VIEs may arise either from semi-discretization
along space of partial differential equations of fractional order, which models
for example some anomalous diffusion and sub-diffusion processes [15] or arises
from semi-discretization of Volterra-Fredholm integral equations with singu-
lar kernels, some of which occurs in the modeling of coding mechanism in the
transmission of nervous signals among neurons [7].

There are also many numerical methods for solving system of VIEs, which
some of them are briefly described as follows:

The Chebyshev collocation method has been presented in [2] to solve a
system of linear integral equations in terms of Chebyshev polynomials. This
method transforms the integral system to the corresponding matrix equation
by use of Chebyshev collocation points which is solved for the Chebyshev co-
efficients. Golbabai et al. [8] proposed a novel learning strategy for radial
basis function networks (RBFN). By adjusting the parameters of the hidden
layer, including the RBF centers and widths, the weights of the output layer
are adapted by local optimization methods. In [18] continuous approximations
to the solution of the system of Volterra integral equations of the first and
second kinds are sought by methods using spline functions of degree m and
deficiency−(k − 1), i.e. in Cm−k. The resulting method is called an (m, k)-
method. An expansion method in [16] reduces a system of integral equations
to the corresponding linear system of ordinary differential equations. After
constructing boundary conditions, this system reduces to a system of algebraic
equations that can be solved by a direct or iterative method. Maleknejad et
al. [13] used operational matrices of piecewise constant orthogonal functions on
the interval [0, 1) to solve system of singular VIEs of convolution type. They
use the Laplace transform and then found numerical inversion of Laplace trans-
form by operational matrices. In this field some new versions of the Adomian
Decomposition Method (ADM), Homotopy Perturbation Method (HPM) and
Runge Kutta methods were also introduced (see for example [3, 12,20]).

A block by block method is essentially an extrapolation procedure described
by Young [19] for the first time. It has the advantages of being self starting and
producing a block of values simultaneously. It is also effective for the problems
defined in a large interval. In what follows, we propose a new extension of
the block by block method for solving system of Volterra integral equations
with continuous and Abel kernels. Of course for Abel equations, to note that
the results of this paper are valid if f(x) has sufficient continuity, otherwise it
would be necessary to develop special starting formula, for this case see [1,4,5].

Our method has the following extra advantages:

1. The order of convergence is at least O(h6) (it is O(h4) by using Simpson
rule [11]) for a given step size h.

2. By increasing number of blocks, the order of convergence increases such
that it would be at least O(h8) and O(h10) respectively for 8 and 16 blocks.



A Block by Block Method for Solving Volterra Integral Equations 739

3. In the first step of Romberg quadrature rule, the Simpson rule can be
used instead of trapezoidal rule, then the order of convergence will be at least
O(h8) for a 4 blocks method.

The rest of the paper is organized as follows. In sections 2 and 3, the
method will be described for the system of VIEs with continuous and Abel
kernels respectively and then a convergence result will be proven. Finally, the
method will be illustrated by numerical results in section 4.

2 System of VIEs with continuous kernels

Consider a system of Volterra integral equations of the form

f(x) = g(x) +

∫ x

0

K(x, s, f(s))H(x, s)ds, 0 ≤ s ≤ x ≤ X, (2.1)

where

f(x) = [f1(x), f2(x), ..., fn(x)]T , g(x) = [g1(x), g2(x), ..., gn(x)]T ,

H(x, s) = [1, 1, ..., 1]T

and

K(x, s, f(s)) =


k1,1(x, s, f(s)) ... k1,n(x, s, f(s))
k2,1(x, s, f(s)) ... k2,n(x, s, f(s))

...
kn,1(x, s, f(s)) ... kn,n(x, s, f(s))

 .
2.1 Existence and uniqueness of solution

Sufficient conditions for the existence and uniqueness of solution for equation
(2.1) are described by the Theorem 1.

Definition 1. For d > 0, we define Snd = {f ∈ Rn : ‖f‖1 ≤ d}, where Rn is

the n-dimensional Euclidean space and ‖f‖1 =
n∑
i=1

|fi|.

Theorem 1. Consider the system

f(x) = g(x) +

∫ x

0

K(x, s, f(s))ds, x > 0 (2.2)

with

f(x) = [f1(x), f2(x), ..., fn(x)]T , g(x) = [g1(x), g2(x), ..., gn(x)]T ,

K(x, s, f(s)) = [k1(x, s, f(s)), k2(x, s, f(s)), ..., kn(x, s, f(s))]T ,

where g and K are continuous respectively on [0,+∞) and

D := {(x, s, f)|0 < s < x <∞, f ∈ Rn}.

Suppose that

Math. Model. Anal., 20(6):737–753, 2015.
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(i) for all X > 0 and the continuous function Ψ : [0, X]→ Rn , K(x, s, Ψ(s))
is continuous for s ∈ (0, x), and ‖

∫ x
0
K(x, s, Ψ(s))ds‖1 <∞ for x ∈ [0, X];

(ii) there exists a continuous function Q(x, s) on 0 < s < x <∞ satisfying∫ x

0

Q(x, s)ds <∞, x ∈ (0,∞),

and ∀X > 0, as δ+ → 0,∫ x+δ

x

Q(x+ δ, s)ds→ 0, x ∈ [0, X]

uniformly in x, such that

‖K(x, s, z)−K(x, s,y)‖1 ≤ Q(x, s)‖z− y‖1

for z,y ∈ Snd (∀d > 0).

Then, there exists an α > 0, such that the system of Volterra integral equations
(2.2) has a unique continuous solution on [0, α]. Furthermore, if there exists
B > 0, such that ‖f(x)‖1 is bounded by B on all intervals [0, β](β > 0) on
which eq. (2.2) has a unique continuous solution, then equation (2.2) has a
unique continuous solution on [0,∞).

Proof. See [10]. ut

2.2 The quadrature rule

In this section, we state basic formulation of the Romberg quadrature rule. To
recall this, we use the trapezoidal rule for

∫ u
v
ki,j(x, s, f(s))ds (i, j = 1, 2, ..., n)

and define

T
(0)
i,j (u, v) :=

u− v
2

[ki,j (x, v,Fv) + ki,j (x, u,Fu)] ,

T
(1)
i,j (u, v) :=

1

2
T

(0)
i,j (u, v) +

u− v
2

ki,j

(
x,
u+ v

2
,Fu+v

2

)
,

T
(2)
i,j (u, v) :=

1

2
T

(1)
i,j (u, v)+

u−v
4

[
ki,j(x,

u+3v

4
,Fu+3v

4
)+ki,j(x,

3u+v

4
,F 3u+v

4
)
]
,

T
(3)
i,j (u, v) :=

1

2
T

(2)
i,j (u, v)+

u−v
8

[
ki,j(x,

u+7v

8
,Fu+7v

8
)+ki,j(x,

3u+5v

8
,F 3u+5v

8
)

+ ki,j(x,
5u+ 3v

8
,F 5u+3v

8
) + ki,j(x,

7u+ v

8
,F 7u+v

8
)
]
,

where T
(l)
i,j (u, v) (l = 0, 1, 2, 3), denotes the trapezoidal rule with 2l subin-

tervals and Fµ = (F1,µ, F2,µ, ..., Fn,µ) ≈ (f1(xµ), f2(xµ), ..., fn(xµ)) for µ =
v, u+7v

8 , ..., u. Therefore two and three stages Romberg quadrature rules can
be respectively written as∫ u

v

ki,j(x, s, f(s))ds ≈
64

45
T

(2)
i,j (u, v)− 20

45
T

(1)
i,j (u, v) +

1

45
T

(0)
i,j (u, v) =: Ai,j(u, v)

(2.3)
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and∫ u

v

ki,j(x, s, f(s))ds ≈
4096

2835
T

(3)
i,j (u, v)− 1344

2835
T

(2)
i,j (u, v) +

84

2835
T

(1)
i,j (u, v)

− 1

2835
T

(0)
i,j (u, v) =: Bi,j(u, v). (2.4)

2.3 Description of the method

Let xm,l = mh + ulh, l = 0, 1, ..., p, m = 0, 1, ..., N − 1 with N, p ∈ N, h >
0, Nh = X and 0 ≤ u0 < u1 < ... < up ≤ 1. Then put x = xm,l in eq. (2.1)
and write it in the form

f(xm,l) = g(xm,l) +

∫ xm,0

0

K(xm,l, s, f(s))H(xm,l, s) ds

+

∫ xm,l

xm,0

K(xm,l, s, f(s))H(xm,l, s) ds. (2.5)

Let Fi,m,l ' fi(xm,l) for i = 0, 1, ..., n. If F0,l, ..., Fm−1,l ∈ Rn (l = 0, 1, ..., p)
with Fj,l = [F1,j,l, F2,j,l, ..., Fn,j,l]

T (j = 0, 1, ...,m−1) are known, then the first
integral in equation (2.5) can be approximated by standard quadrature rules
and the second one is estimated by Romberg quadrature rule. Thus a system
of equations will be obtained. In what follows, we describe a method with four
blocks which has at least six order of convergence. This can be generalized
by increasing the number of blocks to obtain a method with higher order of
convergence. Thus let p = 4 and ul = l/4 for l = 0, 1, ..., 4.
At first, we describe the method for a single VIE, then we generalize it to the
system of VIEs. Thus, we put n = 1 in eq. (2.5) and obtain

f1(x0,0) = g(x0,0), f1(xm,l) = g1(xm,l) +

∫ xm,0

0

k1,1(xm,l, s, f1(s)) ds

+

∫ xm,l

xm,0

k1,1(xm,l, s, f1(s)) ds, m = 0, 1, ..., N − 1, l = 1, 2, 3, 4. (2.6)

Then we use eq. (2.3) for the second integral and obtain∫ xm,l

xm,0

k1,1(xm,l, s, f1(s))ds≈A1,1((m+
l

4
)h,mh)=

lh/4

90

[
7
[
k1,1(xm,l, xm,0, F1,m,0)

+ k1,1(xm,l, xm,l, F1,m,l)
]

+ 12k1,1(xm,l, xm, l2
, F1,m, l2

)

+ 32[k1,1(xm,l, xm, l4
, F1,m, l4

)+k1,1(xm,l, xm, 3l4
, F1,m, 3l4

]
]
, l=1, 2, 3, 4. (2.7)

If jl
4 /∈ {0, 14 ,

1
2 ,

3
4 , 1} for some j ∈ {1, 2, 3}, then F1,m, jl4

make a difficulty in

computing f1(xm,l). For such a case, we use the Lagrange interpolation at the
points xm,0, xm,1, xm,2, xm,3, xm,4 and obtain

Fi,m,jl/4≈Pi
(
xm,

jl

4

)
=

4∑
q=0

Lq(jl/4)Fi,m,q, Lq(x)=

4∏
t=0
t6=q

x−t
q−t

, j = 1, 2, 3,

Math. Model. Anal., 20(6):737–753, 2015.
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where Ll(x) is the fundamental Lagrange polynomial. When x changes in a
large interval or the step size is very small, we need more accurate approxima-
tion for the first integral in eq. (2.5) to reduce the effect of accumulated errors
in evaluating the unknown function at the points near to the end of interval.
Therefore, it is better the three-stage Romberg rule, Bi,j(u, v), be used to ap-
proximate this integral. To do this, we consider the following cases.

Case(I): If m is even, then∫ xm,0

0

k1,1(xm,l, s, f1(s))ds ≈ B1,1(mh, 0) (2.8)

=
xm,0
2835

[
108.5

[
k1,1(xm,l, 0, F1,0,0) + k1,1(xm,l, xm,0, F1,m,0)

]
+ 218k1,1(xm,l, xm/2,0, F1,m/2,0)

+ 176
[
k1,1(xm,l, xm/4,0, F1,m/4,0) + k1,1(xm,l, x3m/4,0, F1,3m/4,0)

]
+ 512

[
k1,1(xm,l, xm/8,0, F1,m/8,0) + k1,1(xm,l, x3m/8,0, F1,3m/8,0)

+ k1,1(xm,l, x5m/8,0, F1,5m/8,0) + k1,1(xm,l, x7m/8,0, F1,7m/8,0)
] ]

and substituting it in eq. (2.6) yields

F1,m,l = g1(xm,l) +B1,1(mh, 0) +A1,1((m+ l/4)h,mh), l = 1, 2, 3, 4.

Case(II): If m is odd, then∫ xm,0

0

k1,1(xm,l, s, f1(s))ds

=

∫ x1,0

0

k1,1(xm,l, s, f1(s))ds+

∫ xm,0

x1,0

k1,1(xm,l, s, f1(s))ds

≈ A1,1(h, 0) +B1,1(mh, h) =
x1
90

[
12k1,1(xm,l, x 1

2 ,0
, F1, 12 ,0

)

+ 7
[
k1,1(xm,l, x1,0, F1,1,0) + k1,1(xm,l, 0, F1,0,0)

]
(2.9)

+ 32[k1,1(xm,l, x 1
4 ,0
, F1, 14 ,0

) +k1,1(xm,l, x 3
4 ,0
, F1, 34 ,0

)]
]

+
(m− 1)h

2835

[
108.5

[
k1,1(xm,l, x1,0, F1,1,0) + k1,1(xm,l, xm,0, F1,m,0)

]
+ 218k1,1(xm,l, x(1+m)/2,0, F1,(1+m)/2,0)

+ 176
[
k1,1(xm,l, x 3+m

4 ,0, F1, 3+m4 ,0) + k1,1(xm,l, x 1+3m
4 ,0, F1, 1+3m

4 ,0)
]

+ 512
[
k1,1(xm,l, x 7+m

8 ,0, F1, 7+m8 ,0) + k1,1(xm,l, x 5+3m
8 ,0, F1, 5+3m

8 ,0)

+ k1,1(xm,l, x 3+5m
8 ,0, F1, 3+5m

8 ,0) + k1,1(xm,l, x 1+7m
8 ,0, F1, 1+7m

8 ,0)
] ]

and substituting this again in (2.6) yields

F1,m,l = g1(xm,l) +A1,1(h, 0) +B1,1(mh, h) +A1,1((m+ l/4)h,mh),

l = 1, 2, 3, 4.

Therefore, in each case a system of 4 equations is obtained which is solved for
the unknowns F1,m,1, F1,m,2, F1,m,3 and F1,m,4.
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2.4 The general process

Now, let us assume that f , g and H are vectors with n component (where
Hj(t, s) = 1, j = 1, 2, ..., n) and K is an n × n matrix and the grid points are
defined similar to the case n = 1. Then eq.(2.5) can be written as

f1(xm,l) = g1(xm,l) +

∫ xm,0

0

n∑
j=1

k1,j(xm,l, s, f(s))ds

+

∫ xm,l

xm,0

n∑
j=1

k1,j(xm,l, s, f(s))ds,

f2(xm,l) = g2(xm,l) +

∫ xm,0

0

n∑
j=1

k2,j(xm,l, s, f(s))ds

+

∫ xm,l

xm,0

n∑
j=1

k2,j(xm,l, s, f(s))ds,

· · ·

fn(xm,l) = gn(xm,l) +

∫ xm,0

0

n∑
j=1

kn,j(xm,l, s, f(s))ds (2.10)

+

∫ xm,l

xm,0

n∑
j=1

kn,j(xm,l, s, f(s))ds.

To approximate the integrals in eq. (2.10), we use (2.3) and (2.4) from previous
subsection. Therefore for the even values of m, we obtain

F0,0 = g(x0,0),

F1,m,l = g1(xm,l) +

n∑
j=0

[
B1,j(mh, 0) +A1,j((m+ l/4)h,mh)

]
,

F2,m,l = g2(xm,l) +

n∑
j=0

[
B2,j(mh, 0) +A2,j((m+ l/4)h,mh)

]
,

· · ·

Fn,m,l = gn(xm,l) +

n∑
j=0

[
Bn,j(mh, 0) +An,j((m+ l/4)h,mh)

]
,

m = 0, 1, ..., N − 1, l = 1, 2, 3, 4,

otherwise (when m is odd), we obtain

F1,m,l = g1(xm,l) +

n∑
j=1

[
A1,j(h, 0) +A1,j((m+ l/4)h,mh) +B1,j(mh, h)

]
,

F2,m,l = g2(xm,l) +

n∑
j=1

[
A2,j(h, 0) +A2,j((m+ l/4)h,mh) +B2,j(mh, h)

]
,

Math. Model. Anal., 20(6):737–753, 2015.
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· · ·

Fn,m,l = gn(xm,l) +

n∑
j=1

[
An,j(h, 0) +An,j((m+ l/4)h,mh) +Bn,j(mh, h)

]
,

or equivalently
F1,m,l −

∑n
j=1A1,j((m+ l/4)h,mh)

F2,m,l −
∑n
j=1A2,j((m+ l/4)h,mh)

· · ·
Fn,m,l −

∑n
j=1An,j((m+ l/4)h,mh)

 =


g1(xm,l) +

∑n
j=1 [A1,j(h, 0) +B1,j(mh, h)]

g2(xm,l) +
∑n
j=1 [A2,j(h, 0) +B2,j(mh, h)]

· · ·
gn(xm,l) +

∑n
j=1 [An,j(h, 0) +Bn,j(mh, h)]

 (2.11)

for m = 0, 1, 2, ..., N − 1 and l = 1, ..., 4. Consequently, at each step, we get
a system of 4n equations with the unknowns F1,m,1, F1,m,2, ..., F1,m,4, F2,m,1,
..., F2,m,4, ..., Fn,m,1, ..., Fn,m,4, which will be linear and nonlinear respectively
for linear and nonlinear integral equations. For the linear case it is solved via
a direct method but for the nonlinear case, the system may be solved by using
an iterative method or by using a suitable software package such as Maple.

2.5 Convergence analysis

Theorem 1. The approximation method given by the system (2.11) is conver-
gent and its order of convergence is at least 6 for the functions ki,j and fi
(i, j = 1, 2, ..., n) with at least six-order continuous derivations.

Proof. Define em,l := Fm,l − f(xm,l), where f(xm,l) ∈ Rn and Fm,l ∈ Rn
denote respectively the exact and approximate solutions of (1.1) at the point
x = xm,l. From (2.8) and (2.9) we have∫ xm,0

0

K(xm,l, s, f(s))ds ≈ h
m−1∑
i=0

4∑
j=0

wijK (xm,l, xi,j ,Fi,j) . (2.12)

Then subtracting (2.5) from (2.7) and (2.12) (for l = 1) gives

‖em,1‖1 = ‖Fm,1 − f(xm,1)‖1 =
∥∥∥hm−1∑

i=0

4∑
j=0

wijK(xm,1, xi,j ,Fi,j)

+
7

90
x0,1

[
K(xm,1, xm,0,Fm,0) + K(xm,1, xm,l,Fm,1)

]
+

6

45
x0,1K(xm,1, xm,1/2,P(xm, 1/2))

+
16

45
x0,1

[
K(xm,1, xm,1/4,P(xm, 1/4)) + K(xm,1, xm, 34 ,P(xm,

3

4
))
]

−
∫ xm,0

0

K(xm,1, s, f(s))ds−
∫ xm,1

xm,0

K(xm,1, s, f(s))ds
∥∥∥
1
, m=0, 1, ..., N−1,



A Block by Block Method for Solving Volterra Integral Equations 745

where P(x, s) = [P1(x, s), ...,Pn(x, s)]. By adding and diminishing the terms

m−1∑
i=0

4∑
j=0

wijK(xm,1, xi,j , f(xi,j)), ...,
16

45
x0,1K(xm,1, xm, 34 ,

4∑
q=0

Lq(
3

4
)f(xm,q))

and using the conditions of Theorem 1, one can write

‖em,1‖1 ≤ h
m−1∑
i=0

4∑
j=0

wi,jQ(xm,1, xi,j)‖f(xi,j)− Fi,j‖1 +
7

90
x0,1Q(xm,1, xm,0)

× ‖f(xm,0)− Fm,0‖1 +
7

90
x0,1Q(xm,1, xm,1)‖f(xm,1)− Fm,1‖1

+
6

45
x0,1Q(xm,1, xm, 12 )‖

4∑
q=0

Lq(
1

2
)(f(xm,q)− Fm,q)‖1

+
16

45
x0,1Q(xm,1, xm, 14 )‖

4∑
q=0

Lq(
1

4
)(f(xm,q)− Fm,q)‖1

+
16

45
x0,1Q(xm,1, xm, 34 )‖

4∑
q=0

Lq(
3

4
)(f(xm,q)− Fm,q)‖1 + ‖R1‖1 + ‖R2‖1,

where R1 and R2 are the errors of numerical integrations. Since Q(t, s) is
continuous, one can write |Q(xm,1, xi,j)| ≤ Cij , thus

‖em,1‖1 ≤ h
m−1∑
i=0

4∑
j=0

wi,jCij‖ei,j‖1 + hc0‖em,0‖1 + hc1‖em,1‖1 + hc2‖em,2‖1

+ hc3‖em,3‖1 + hc4‖em,4‖1 + ‖R1‖1 + ‖R2‖1,

where ci (i = 0, 1, ..., 4) are constants. For other values of l, similarly we have

‖em,l‖1 ≤ h
m−1∑
i=0

4∑
j=0

wi,jCij‖ei,j‖1 + hc0‖em,0‖1 + hc1‖em,1‖1 + hc2‖em,2‖1

+ hc3‖em,3‖1 + hc4‖em,4‖1 + ‖R1‖1 + ‖R2‖1, l = 2, 3, 4.

Let ‖em,1‖1 = maxl=1,2,3,4 ‖em,l‖1. Therefore

‖em,1‖1 ≤ ch
m−1∑
i=0

‖ei,1‖1 + hc′‖em,1‖1 + ‖R1‖1 + ‖R2‖1,

where c′ = c1 + c2 + c3 + c4 and c are constants. Then for sufficiently small h

‖em,1‖1 ≤ hc

1− hc′
m−1∑
i=0

‖ei,1‖1 +
‖R1‖1 + ‖R2‖1

1− hc′

and using the Gronwall inequality (see [14], for example), yields

‖em,1‖1 ≤
‖R1‖1 + ‖R2‖1

1− hc′
e

c
1−hc′ xm , (2.13)
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hence ‖em,1‖1 → 0 as h → 0 since Ri (i = 1, 2) tends to zero as h → 0.
For the functions ki,j and fi(i, j = 1, 2, ..., n) with at least 6 order continuous
derivatives, we have ‖R1‖1, ‖R2‖1 = O(h6) and so ‖em,1‖1 = O(h6) which
completes the proof. ut

3 System of Abel VIEs

Consider a system of nonlinear Volterra integral equations of the Abel types,
i.e.

f(x) = g(x) +

∫ x

0

K(x, s, f(s))H(x, s)ds, 0 ≤ s ≤ x ≤ X

with Hj(x, s) = 1
|x−s|αj , 0 ≤ αj < 1, j = 1, 2, ..., n (αj = 0 described in the

previous section).

3.1 Existence and uniqueness of solution

Theorem 2. Let:

(i) g(x) is continuous (i.e. every component is continuous),

(ii) K(x,s,f(s)) satisfies Lipshitz condition, i.e. for fixed x, s with 0 ≤ s ≤
x ≤ X there is a positive constant l independent of s and x, such that

‖K(x, s,y)−K(x, s, z)‖ ≤ l‖y − z‖ ∀y, z ∈ Rn,

then (3.1) has a unique solution.

Proof. See [17]. ut

3.2 Description of the method

Similar to the previous section, define xm,l = mh + ulh, l = 0, 1, ..., p; m =
0, 1, ..., N − 1, (N, p ∈ N, h > 0, ) so that Nh = X and 0 ≤ u0 < u1 < ... < up.
Substituting x = xm,l in (3.1), we have

f(xm,l) = g(xm,l) +

∫ xm,l

0

K(xm,l, s, f(s))H(xm,l, s)ds (3.1)

= g(xm,l) +

∫ xm,0

0

K(xm,l, s, f(s))H(xm,l, s)ds

+

∫ xm,l

xm,0

K(xm,l, s, f(s))H(xm,l, s)ds.

The method of the previous section can’t be used for this system, because of the
singularity of Ki,j(xm,l, s, f(s))Hj(xm,l, s) at s = xm,l. So we use the following
product integration method instead of a usual integration method. We write

fi(xm,l) = gi(xm,l) +

∫ xm,0

0

n∑
j=1

Ki,j(xm,l, s, f(s))Hj(xm,l, s)ds
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+

∫ xm,l

xm,0

n∑
j=1

Ki,j(xm,l, s, f(s))Hj(xm,l, s)ds, i = 1, 2, ..., n (3.2)

and use the Lagrange interpolation, to write

Ki,j(xm,l, s, f(s)) ≈
p∑
t=0

Lt(s)Ki,j(xm,l, xm,t, f(xm,t)),

Lt(s) =

p∏
q=0,q 6=t

s− xm,q
xm,t − xm,q

, t = 0, 1, · · · , p, (3.3)

then∫ xm,l

xm,0

(Ki,j(xm,l, s, f(s))Hj(xm,l, s))ds (3.4)

≈
p∑
t=0

Ki,j(xm,l, xm,t, f(xm,t))

∫ xm,l
xm,0

( p∏
q=0,q 6=t

(s− xm,q)Hj(xm,l, s)
)
ds

p∏
q=0,q 6=t

(xm,t − xm,q)
.

By using the variable transformation s = xm + lSh/p, one can write∫ xm,l

xm,0

p∏
q=0,q 6=t

(s− xm,q)Hj(xm,l, s) ds

= l
(h
p

)p+1
∫ 1

0

p∏
q=0,q 6=t

(lS − q)Hj(xm,l, xm +
lhS

p
) dS, l = 1, 2, ..., p.

For simplicity, we set p = 4 and ul = l/4, (l = 1, 2, ..., 4), and obtain from (3.3)

L0(s) =
32

3h4
(s− xm,1)(s− xm,2)(s− xm,3)(s− xm,4),

L1(s) =
−128

3h4
(s− xm,0)(s− xm,2)(s− xm,3)(s− xm,4),

· · ·

L4(s) =
32

3h4
(s− xm,0)(s− xm,1)(s− xm,2)(s− xm,3),

then by using the variable transformation s = (m+ lS
4 )h, we write (3.4) as∫ xm,l

xm,0

Ki,j(xm,l, s, f(s))Hj(xm,l, s)ds≈Ki,j(xm,l, xm,0,Fm,0)ζj(xm,l, xm, lh/4)

+Ki,j(xm,l, xm,1,Fm,1)βj(xm,l, xm, lh/4) +Ki,j(xm,l, xm,2,Fm,2)

× γj(xm,l, xm, lh/4) +Ki,j(xm,l, xm,3,Fm,3)θj(xm,l, xm, lh/4)

+Ki,j(xm,l, xm,4,Fm,4)ηj(xm,l, xm, lh/4),
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where

ζj(x, y, z) :=
z

24

∫ 1

0

[
(lS − 1)(lS − 2)(lS − 3)(lS − 4)Hj(x, y + Sz)

]
dS,

βj(x, y, z) :=
−z
6

∫ 1

0

[
lS(lS − 2)(lS − 3)(lS − 4)Hj(x, y + Sz)

]
dS,

γj(x, y, z) :=
z

4

∫ 1

0

[
lS(lS − 1)(lS − 3)(lS − 4)Hj(x, y + Sz)

]
dS,

θj(x, y, z) :=
−z
6

∫ 1

0

[
lS(lS − 1)(lS − 2)(lS − 4)Hj(x, y + Sz)

]
dS,

ηj(x, y, z) :=
z

24

∫ 1

0

[
lS(lS−1)(lS−2)(lS−3)Hj(x, y+Sz)

]
dS, l = 1, ..., 4. (3.5)

Thus similar to the previous section, we distinguish the following cases in (3.2).

Case(I): When m is even, we use (2.4) to get∫ xm,0

0

ki,j(xm,l, s, f(s))Hj(xm,l, s)ds ≈
xm,0
2835

[
108.5

[ki,j(xm,l, 0,F0,0)

|xm,l − 0|αj

+
ki,j(xm,l, xm,0,Fm,0)

|xm,l − xm,0|αj
]

+ 218
ki,j(xm,l, xm/2,0,Fm/2,0)

|xm,l − xm/2,0|αj

+ 176
[ki,j(xm,l, xm/4,0,Fm/4,0)

|xm,l − xm/4,0|αj
+
ki,j(xm,l, x3m/4,0,F3m/4,0)

|xm,l − x3m/4,0|αj
]

+ 512
[ki,j(xm,l, xm/8,0,Fm/8,0)

|xm,l − xm/8,0|αj
+
ki,j(xm,l, x3m/8,0,F3m/8,0)

|xm,l − x3m/8,0|αj

+
ki,j(xm,l, x5m/8,0,F5m/8,0)

|xm,l − x5m/8,0|αj
+
ki,j(xm,l, x7m/8,0,F7m/8,0)

|xm,l − x7m/8,0|αj
]]
.

Case(II): When m is odd, we use (2.3) and (2.4) to get∫ xm,0

0

ki,j(xm,l, s, f(s))

|xm,l − s|αj
ds =

∫ x1,0

0

ki,j(xm,l, s, f(s))

|xm,l − s|αj
ds+

∫ xm,0

x1,0

ki,j(xm,l, s, f(s))

|xm,l − s|αj
ds

≈ x1,0
90

[
7[
ki,j(xm,l, h,F1,0)

|xm,l − h|αj
+
ki,j(xm,l, 0,F0,0)

|xm,l − 0|αj ] + 12
ki,j(xm,l,

h
2
,F 1

2
,0)

|xm,l − h
2
|αj

+ 32[
ki,j(xm,l,

h
4
,F 1

4
,0)

|xm,l − h
4
|αj

+
ki,j(xm,l,

3h
4
,F 3

4
,0)

|xm,l − 3h
4
|αj

]
]
+

(m−1)h

2835

[
108.5[

ki,j(xm,l, h,F1,0)

|xm,l − h|αj

+
ki,j(xm,l,mh,Fm,0)

|xm,l −mh|αj
] + 218

ki,j(xm,l, x 1+m
2

,0
,F 1+m

2
,0

)

|xm,l − x 1+m
2

,0
|αj

+ 176[
ki,j(xm,l, x 3+m

4
,0
,F 3+m

4
,0

)

|xm,l − x 3+m
4

,0
|αj +

ki,j(xm,l, x 1+3m
4

,0
,F 1+3m

4
,0

)

|xm,l − x 1+3m
4

,0
|αj ]

+ 512[
ki,j(xm,l, x 7+m

8
,0
,F 7+m

8
,0

)

|xm,l − x 7+m
8

,0
|αj +

ki,j(xm,l, x 5+3m
8

,0
,F 5+3m

8
,0

)

|xm,l − x 5+3m
8

,0
|αj

+
ki,j(xm,l, x 3+5m

8
,0
,F 3+5m

8
,0

)

|xm,l − x 3+5m
8

,0
|αj +

ki,j(xm,l, x 1+7m
8

,0
,F 1+7m

8
,0

)

|xm,l − x 1+7m
8

,0
|αj ]

]
.
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Substituting the approximate values in (3.2), a system of 4n equations with the
unknowns Fm,1,Fm,2,Fm,3 and Fm,4 is obtained in each step. Starting with
F0 = g(0), we solve this system successively for the blocks (F0,1,F0,2, ...,F0,4),
(F1,1,F1,2, ...,F1,4), ... .

3.3 Convergence analysis

Theorem 3. The block by block method for Abel type integral equations (in-
troduced in previous subsection) is convergent and its order of convergence is
at least 5 for the functions ki,j and fi, (i, j = 1, 2, ..., n) with at least 6 order
continuous derivatives.

Proof. Let ζ = [ζ1, ζ2, ...., ζn]T , β = [β1, β2, ..., βn]T , ..., η = [η1, η2, ..., ηn]T ,
where ζj , βj , · · · , ηj are defined by (3.5). Let em,l := Fm,l − f(xm,l), where
f(xm,l) ∈ Rn and Fm,l ∈ Rn denote respectively the exact and approximate
solutions of (1.1) at the point x = xm,l. From cases I and II we can write∫ xm,0

0

K(xm,l, s, f(s))H(xm,l, s)ds≈h
m−1∑
i=0

4∑
j=0

wijK (xm,l, xi,j ,Fi,j)H (xm,l, xi,j) .

Then for m = 0, 1, ..., N − 1 we have

‖em,1‖ =
∥∥∥hm−1∑

i=0

4∑
j=0

wijK(xm,1, xi,j ,Fi,j)H(xm,1, xi,j)

+ K(xm,1, xm,0,Fm,0)ζ(xm,1, xm, h/4)

+ K(xm,1, xm,1,Fm,1)β(xm,1, xm, h/4) + K(xm,1, xm,2,Fm,2)γ(xm,1, xm, h/4)

+ K(xm,1, xm,3,Fm,3)θ(xm,1, xm, h/4) + K(xm,1, xm,4,Fm,4)η(xm,1, xm, h/4)

−
∫ xm,0

0

K(xm,1, s, f(s))H(xm,1, s)ds−
∫ xm,1

xm,0

K(xm,1, s, f(s))H(xm,1, s)ds
∥∥∥.

Similar to the proof of Theorem 1, by adding and diminishing the necessary
terms and using Lipshitz conditions of the Theorem 2, we obtain

‖em,1‖ ≤ h
m−1∑
i=0

4∑
j=0

Mwi,jci,j‖ei,j‖+M‖ζ(xm,1, xm, h/4)‖‖em,0‖

+M‖β(xm,1, xm, h/4)‖‖em,1‖+M‖γ(xm,1, xm, h/4)‖‖em,2‖
+M‖θ(xm,1, xm, h/4)‖‖em,3‖+M‖η(xm,1, xm, h/4)‖‖em,4‖
+ ‖R1‖+ ‖R2‖,

where R1 and R2 are the errors of usual and product quadratures respectively.
We obtain the same inequalities for ‖em,2‖, ‖em,3‖ and ‖em,4‖.

Let again ‖em,1‖ = maxl=1,2,3,4 ‖em,l‖, then

‖em,1‖ ≤ ch
m−1∑
i=0

‖ei,1‖+ hc′‖em,1‖+ ‖R1‖+ ‖R2‖.
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Therefore using the Gronwall inequality for sufficiently small h , yields

‖em,1‖ ≤
‖R1‖+ ‖R2‖

1− hc′
ecxm/(1−hc

′)

and so ‖em,1‖ → 0, as h → 0. For the functions ki,j and fi, (i, j = 1, 2, ..., n)
with at least 6 order continuous derivatives, we have ‖R1‖ = O(h6) but the
order of accuracy for the product integration is at least O(h5), since it is based
on interpolation of degree 4. Thus at the small neighborhood of s = t the
quadrature rule take the order O(h5), while out of this small neighborhood the
order is O(h6) and so we expect the error generaly to be between five and six
as the numerical results illustrate just that. ut

4 Numerical results

We consider the following examples to illustrate theoretical results of Theo-
rems 1 and 3 and to compare numerical results of the method with the results
of HPM and RBFN method.

Example 1. [8] Consider the nonlinear system

sin(x)− x+

∫ x

0

(
f21 (s) + f22 (s)

)
ds = f1(x),

cos(x)− 1/2 sin2(x) +

∫ x

0

f1(s)f2(s)ds = f2(x)

for x ∈ [0, 1], where the exact solutions are the functions f1(x) = sin(x) and
f2(x) = cos(x).

Example 2. Let

K(x, s, f(s)) =

[
sin(x)− sf1(s)f2(s) 0

0 s
√
x
4 f1(s) + x

2 f2(s)2

]
,

H(x, s) =
[
1, (x− s)−0.5

]T
for x ∈ [0, 1] and choose g(x) in such way that the exact solutions of (3.1) to
be f1(x) = (1 + x)−0.5 and f2(x) = x2.

Example 3. As a final example, we consider the following non-linear sys-
tem of the first kind VIEs with the exact solutions f1(x) = x2 and f2(x) = x
and X = 4:

g(x) =

∫ x

0

K(x, s, f(s))H(x, s)ds, 0 ≤ s ≤ x ≤ X,

where

K(x, s, f(s)) =

[
f1(s)f2(s) (1− x2 + s2)f2(s)3

(5 + x− s)f1(s) −(5 + x− s)exp(f2(s))

]
,

H(x, s) =
[
(x− s)−1/3, 1

]T
,
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g(x) =
[243

440
x11/3 − x6

12
+
x4

4
,

27

220
x11/3 +

27

8
x8/3 + 6 + x− 6ex

]T
.

The results in Tables 1–3, show the absolute errors (eFi , i = 1, ..., n) for the
examples 1-3. All results computed by programming in Maple 13.

Table 1. Numerical results of example 1.

x RBFN-MSHA HPM Block by Block

eF1
eF2

eF1
eF2

eF1
eF2

0.1 8.33e-7 9.47e-7 3.365e-04 4.864e-03 1.334e-11 1.741e-10
0.2 2.85e-7 4.37e-7 2.736e-03 1.962e-02 9.542e-11 5.105e-11
0.3 4.35e-7 7.52e-7 8.950e-03 4.394e-02 1.179e-10 2.223e-10
0.4 1.58e-7 1.41e-7 2.053e-02 7.684e-02 2.191e-10 2.116e-10
0.5 5.03e-7 8.75e-7 4.057e-02 1.174e-01 2.487e-10 1.912e-10
0.6 2.67e-7 5.93e-7 6.768e-02 1.636e-01 3.593e-10 2.953e-10
0.7 6.69e-8 6.27e-8 1.052e-01 2.150e-01 4.132e-10 2.559e-10
0.8 2.15e-7 6.08e-7 1.507e-01 2.683e-01 5.598e-10 4.687e-10
0.9 1.16e-6 3.25e-6 2.047e-01 3.224e-01 2.505e-10 2.355e-09
1.0 1.23e-6 3.70e-6 2.630e-01 3.739e-01 2.233e-11 2.323e-09

time - 29.593” 1.217”

Table 1 show the superiority of the block by block method in comparing
its results (for h = 1/5) with the results of RBFN-MshA (a modified version
of Shi’s algorithm) [8] and HPM [20], where the results of RBFN-MshA ob-
tained with 6 hidden nodes and the results of HPM obtained with 4 iterations.
Moreover,

• The time of computation in the block by block method is less than that in
the HPM, whenever programming of both methods is done using Maple
package. Also, according to the structure of HPM, increasing the number
of iterations do not affect on the precision of errors.

• The values of the RBF widths affect significantly on the accuracy of
results and determination of them is still a challenging problem, whereas
the block by block method dose not need any starting values.

• At each step of the RBFN method, the weights are updated by using an
optimization method, but the block by block method is independent of
using any other method.Hence the RBFN method is more complicated
than the block by block method.

Tables 2 and 3 show the numerical results for the Abel systems. Most of
the available methods for solving VIEs are based on expansion of solution, for
example the Taylor and Chebyshev expansion methods, Tau method, Adomian
and homotopy methods and so on. These methods are efficient only for the
intervals with small length (say [0, 1] or [-1, 1]) and they are useless for the
large intervals, whereas the block by block method is one of the most suitable
methods for the large intervals (see table 3 for X = 4).
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Table 2. Numerical results of example 2.

x N=2 N=4 N=6

eF1 eF2 eF1 eF2 eF1 eF2

0.125 4.121e-09 1.687e-08 4.419e-11 3.830 e-11 3.738e-11 2.812 e-10
0.25 5.267e-09 9.049e-09 3.437e-09 9.796e-09 2.443e-11 2.131 e-10
0.375 3.666e-08 1.455e-07 3.243e-09 1.881e-09 2.126e-11 4.649 e-10
0.5 2.338e-07 3.501e-07 4.095e-09 6.061e-09 3.202e-11 5.847 e-10

0.625 1.954e-07 1.871e-07 1.714e-10 1.951e-09 1.576e-10 3.887 e-10
0.75 1.917e-07 1.288e-07 1.593e-10 4.378e-09 5.484e-09 8.121 e-10
0.875 1.468e-07 2.546e-07 2.058e-09 3.527e-09 1.709e-09 1.661 e-09
1 1.600e-07 4.611e-07 1.837e-09 7.773e-09 1.442e-09 2.705 e-09

Table 3. Numerical results of example 3.

x N=5 N=10

eF1
eF2

eF1
eF2

0.2 1.029e-10 7.869e-11 3.695e-12 1.523 e-12
0.4 3.943e-10 6.647e-10 4.970e-11 7.022e-11
1 1.328e-08 7.855e-09 1.567e-11 2.064e-11
1.4 4.470e-10 1.208e-09 2.495e-11 2.275e-10
2 7.214e-09 7.545e-09 2.458e-09 6.868e-10
2.4 2.190e-09 6.225e-08 5.472e-10 1.675e-10
2.8 1.047e-08 1.342e-08 1.716e-10 3.168e-09
3 5.491e-08 7.842e-09 1.674e-09 1.444e-09
3.4 1.941e-07 1.162e-07 4.776e-09 1.000e-09
4 3.036e-07 1.208e-07 7.769e-09 1.485e-09
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