Weighted Discrete Universality of the Riemann Zeta-Function

Antanas Laurinčikasa, Darius Šiaučiūnasb and Gediminas Vadeikisa

aInstitute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania

bInstitute of Regional Development, Šiauliai University
P. Višinskio str. 25, LT-76351 Šiauliai, Lithuania

E-mail (corresp.): darius.siauciunas@su.lt
E-mail: antanas.laurincikas@mif.vu.lt
E-mail: gediminas.vadeikis@mif.vu.lt

Received June 5, 2019; revised October 18, 2019; accepted October 18, 2019

Abstract. It is well known that the Riemann zeta-function is universal in the Voronin sense, i.e., its shifts $\zeta(s + i\tau)$, $\tau \in \mathbb{R}$, approximate a wide class of analytic functions. The universality of $\zeta(s)$ is called discrete if τ take values from a certain discrete set. In the paper, we obtain a weighted discrete universality theorem for $\zeta(s)$ when τ takes values from the arithmetic progression $\{kh : k \in \mathbb{N}\}$ with arbitrary fixed $h > 0$. For this, two types of h are considered.

Keywords: approximation of analytic functions, Mergelyan theorem, Riemann zeta-function, universality, weak convergence.

AMS Subject Classification: 11M06; 41A30.

1 Introduction

The Riemann zeta-function $\zeta(s)$, $s = \sigma + it$,

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}, \quad \sigma > 1,$$

since Riemann’s and even Euler’s times surprises mathematicians by the extensive field of applications and denseness of the set of its values. It is well
known the role of $\zeta(s)$ in the theory of distribution of prime numbers and in other problems of arithmetic, however, we, in this paper, prefer the denseness properties of $\zeta(s)$.

In the second decade of the last century, H. Bohr discovered [4] that the function $\zeta(s)$ takes every non-zero value infinitely many times in the strip $\{s \in \mathbb{C} : 1 < \sigma < 1 + \delta\}$ with any $\delta > 0$. H. Bohr and R. Courant proved [5] that, for fixed σ, $\frac{1}{2} < \sigma \leq 1$, the set

$$\{\zeta(\sigma + it) : t \in \mathbb{R}\}$$ \hspace{1cm} (1.1)

is dense in \mathbb{C}. S.M. Voronin significantly generalized the above results. He obtained [25] that the set

$$\{(\zeta(s_1 + i\tau), \ldots, \zeta(s_n + i\tau)) : \tau \in \mathbb{R}\}$$

with any fixed numbers s_1, \ldots, s_n, $\frac{1}{2} < \text{Re} s_k < 1$, $1 \leq k \leq n$, and $s_k \neq s_m$ for $k \neq m$, and the set

$$\left\{ \left(\zeta(s + i\tau), \zeta'(s + i\tau), \ldots, \zeta^{(n-1)}(s + i\tau) \right) : \tau \in \mathbb{R} \right\}$$

with every fixed s, $\frac{1}{2} < \sigma < 1$, are dense in \mathbb{C}^n. However, a much more important merit of Voronin is his so-called universality theorem for the function $\zeta(s)$ [26]. This theorem asserts that a wide class of analytic functions can be approximated by shifts $\zeta(s + i\tau)$, $\tau \in \mathbb{R}$. For a modern version of the Voronin universality theorem, it is convenient to use the following notation. Let $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$. Denote by \mathcal{K} the class of compact subsets of the strip D with connected complements, and by $H_0(K)$, $K \in \mathcal{K}$, the class of continuous non-vanishing functions on K that are analytic in the interior of K.

Then the following theorem is true.

Theorem 1. Let $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \text{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau) - f(s)| < \varepsilon \right\} > 0.$$

Here $\text{meas} A$ denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. By Theorem 1, the set of shifts $\zeta(s + i\tau)$ approximating a given function from $H_0(K)$ has a positive lower density, thus, it is infinite. Also, Theorem 1 can be considered as an infinite-dimensional version of the Bohr-Courant theorem on denseness of the set (1.1). The proof of Theorem 1 is given in [1] (in slightly different form), and in [9], [11], [24].

Theorem 1 is of continuous type: τ in $\zeta(s + i\tau)$ can take arbitrary real values. Also, a discrete version of Theorem 1 is known when τ takes values from a certain discrete set. Let $h > 0$ be a fixed number.

Theorem 2. Let $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leq k \leq N : \sup_{s \in K} |\zeta(s + ikh) - f(s)| < \varepsilon \right\} > 0.$$
Here \#A denotes the cardinality of the set A. The proof of Theorem 2 can be found in [22] and [1]. For shifts \(\zeta(s + ik\alpha h) \) with fixed \(\alpha, 0 < \alpha < 1 \), Theorem 2 is given in [6]. In [15, 21] and [7, 8, 13, 16], more general shifts of Dirichlet L-functions and Riemann zeta-function, respectively, were considered. We note that discrete universality theorems for zeta-functions sometimes are more convenient for practical applications, an example of this is the paper [3].

In [10], a weighted version of Theorem 1 was proposed. Let \(w(t) \) be a function of bounded variation on \([T_0, \infty)\) with some \(T_0 > 0 \) such that the variation \(V_N^b w \) on \([a, b]\) satisfies the inequality \(V_N^b w \leq cw(a) \) with a certain constant \(c > 0 \) for any subinterval \([a, b] \subset [T_0, \infty)\). Let

\[
U_T = U(T, w) = \int_{T_0}^{T} w(t)dt,
\]

and let \(\lim_{T \to \infty} U(T, w) = +\infty \). Moreover, let \(I_A \) denote the indicator function of the set \(A \). Then we have the following generalization of Theorem 1.

Theorem 3. Suppose that the function \(w(t) \) satisfies the above hypotheses. Let \(K \in \mathcal{K} \) and \(f(s) \in H_0(K) \). Then, for every \(\varepsilon > 0 \),

\[
\lim \inf_{T \to \infty} \frac{1}{U_T} \int_{T_0}^{T} w(\tau) I_{\left\{ \tau : \sup_{s \in K} |\zeta(s + i\tau) - f(s)| < \varepsilon \right\}}(\tau)d\tau > 0.
\]

To be precise, in [10], Theorem 3 was proved under a certain additional hypothesis on the function \(w(t) \) which is a weighted version of the classical Birkhoff-Khintchine ergodic theorem. In [18], this technical hypothesis was removed. A generalization of Theorem 3 for Matsumoto zeta-functions was given in [12]. In [17], a weighted discrete universality theorem with the sequence \(\{k^\alpha h\}, \quad 0 < \alpha < 1 \), for the periodic zeta-function was obtained.

The aim of this paper is a weighted discrete universality theorem for the Riemann zeta-function. Let \(w(t) \) be a real non-negative function having a continuous derivative on \([\frac{1}{2}, \infty)\) such that

\[
\lim_{N \to \infty} V_N = +\infty, \quad V_N = \sum_{k=1}^{N} w(k), \quad \int_{1}^{N} u|w'(u)|du \ll V_N, \quad N \to \infty.
\]

Denote by \(W \) the class of functions \(w(t) \) satisfying the above hypotheses. Suppose that \(h \) is a fixed positive number.

Theorem 4. Suppose that \(w(t) \in W \). Let \(K \in \mathcal{K} \) and \(f(s) \in H_0(K) \). Then, for every \(\varepsilon > 0 \),

\[
\lim \inf_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) I_{\left\{ k : \sup_{s \in K} |\zeta(s + ikh) - f(s)| < \varepsilon \right\}}(k) > 0.
\]

For example, the function \(w(t) = \frac{\sin(\log t) + 1}{t} \) is not monotonically decreasing and \(w(t) \in W \).

Theorem 4 has the following modification.

Theorem 5. Suppose that \(w(t) \in W \). Let \(K \in \mathcal{K} \) and \(f(s) \in H_0(K) \). Then the limit
\[
\lim_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) I \{ k : \sup_{s \in K} |\zeta(s + ikh) - f(s)| < \varepsilon \} (k) > 0
\]
exists for all but at most countably many \(\varepsilon > 0 \).

For proving of the above universality theorems, we will apply the probabilistic approach.

2 Limit theorems

We remind that \(D = \{ s \in \mathbb{C} : \frac{1}{2} < \sigma < 1 \} \), and by \(H(D) \) denote the space of analytic functions on \(D \) endowed with the topology of uniform convergence on compacta. The space \(H(D) \) is metrisable. There exists a sequence of compact subsets \(\{ K_l : l \in \mathbb{N} \} \subset D \) such that \(D = \bigcup_{l=1}^{\infty} K_l \), \(K_l \subset K_{l+1} \) for all \(l \in \mathbb{N} \), and if \(K \subset D \) is a compact set, then \(K \subset K_l \) for some \(l \in \mathbb{N} \). For \(g_1, g_2 \in H(D) \), define
\[
\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K} |g_1(s) - g_2(s)|}.
\]
Then \(\rho \) is a metric on \(H(D) \) which induces its topology of uniform convergence on compacta.

Denote by \(B(X) \) the Borel \(\sigma \)-field of the space \(X \), and, for \(A \in B(H(D)) \), define
\[
P_N(A) = P_{N,w,h}(A) = \frac{1}{V_N} \sum_{k=1}^{N} w(k) I \{ k : (p-ikh : p \in \mathbb{P}) \in A \} (k).
\]
In this section, we will consider the weak convergence of \(P_{N,w,h} \) as \(N \to \infty \).

We say that \(h > 0 \) is of type 1 if \(\exp \{ \frac{2\pi m}{h} \} \) is an irrational number for all \(m \in \mathbb{Z} \setminus \{0\} \), and \(h > 0 \) is of type 2 if \(h \) is not of type 1. We will examine separately the cases of types 1 and 2.

As usual, we start with one topological structure. Let \(\gamma = \{ s \in \mathbb{C} : |s| = 1 \} \) and \(\Omega = \prod_p \gamma_p \), where \(\gamma_p = \gamma \) for all primes \(p \). By the Tikhonov theorem, the torus \(\Omega \) with the product topology and pointwise multiplication is a compact topological Abelian group. Therefore, on \((\Omega, B(\Omega)) \), the probability Haar measure \(m_H \) can be defined, and this gives the probability space \((\Omega, B(\Omega), m_H) \). Let \(\mathbb{P} \) be the set of all prime numbers, and let \(\omega(p) \) denote the projection of \(\omega \in \Omega \) to the circle \(\gamma_p \), \(p \in \mathbb{P} \). For \(A \in B(\Omega) \), define
\[
Q_N(A) = \frac{1}{V_N} \sum_{k=1}^{N} w(k) I \{ k : (p^{-ikh} : p \in \mathbb{P}) \in A \} (k).
\]

Lemma 1. Suppose that \(w(t) \in W \) and \(h \) is of type 1. Then \(Q_N \) converges weakly to the Haar measure \(m_H \) as \(N \to \infty \).
Proof. We apply the Fourier transform method. Let $g_N(k), k = (k_p : k_p \in \mathbb{Z}, p \in \mathbb{P})$, be the Fourier transform of Q_N. Then we have that
\[
g_N(k) = \int_{\Omega} \prod_p^* \omega^{k_p}(p)dQ_N,
\]
where the sign "*" means that only a finite number of integers k_p are distinct from zero. Thus, by the definition of Q_N,
\[
g_N(k) = \frac{1}{V_N} \sum_{k=1}^{N} w(k) \prod_p^* p^{-ik_p h} = \frac{1}{V_N} \sum_{k=1}^{N} w(k) \exp \left\{ -ikh \sum_p^* k_p \log p \right\},
\]
(2.1)
Obviously,
\[
g_N(0) = 1. \tag{2.2}
\]
If $k \neq 0$, then
\[
\sum_p^* k_p \log p \neq 0,
\]
since the logarithms of prime numbers are linearly independent over the field of rational numbers. Thus,
\[
\exp \left\{ -ih \sum_p^* k_p \log p \right\} \neq 1. \tag{2.3}
\]
Indeed, if inequality (2.3) is not true, then
\[
\sum_p^* k_p \log p = \frac{2\pi r}{h}, \quad \prod_p^* p^{-k_p} = \exp \left\{ \frac{2\pi r}{h} \right\}
\]
with some $r \in \mathbb{Z} \setminus \{0\}$. However, the left-hand side of this equality is a rational number, and we arrive to the contradiction that h is of type 1. Thus, (2.3) is true, and we find that, for $u \geq 1$,
\[
\sum_{k \leq u} \exp \left\{ -ikh \sum_p^* k_p \log p \right\} = \frac{\exp \left\{ -ih \sum_p^* k_p \log p \right\} - \exp \left\{ i(\lfloor u \rfloor + 1)h \sum_p^* k_p \log p \right\}}{1 - \exp \left\{ -ih \sum_p^* k_p \log p \right\}} \overset{\text{def}}{=} \Sigma(u).
\]
Hence, in view of (2.1), for $k \neq 0$,
\[
g_N(k) = \frac{w(N) \Sigma(N)}{V_N} - \frac{1}{V_N} \int_1^N \Sigma(u)w'(u)du.
\]
Since the function $\Sigma(u)$ is bounded by a constant not depending of u, we find that, for $k \neq 0$,
\[
\lim_{N \to \infty} g_N(k) = 0.
\]
Lemma 1 implies a weighted discrete universality theorem for absolutely convergent Dirichlet series. Let \(\theta > \frac{1}{2} \) be a fixed number, and

\[
v_n(m) = \exp \left\{ -\left(\frac{m}{n} \right)^{\theta} \right\}, \quad m, n \in \mathbb{N},
\]

\[
\zeta_n(s) = \sum_{m=1}^{\infty} \frac{v_n(m)}{m^s}, \quad \zeta_n(s, \omega) = \sum_{m=1}^{\infty} \frac{\omega(m)v_n(m)}{m^s},
\]

where

\[
\omega(m) = \prod_{p^\alpha \mid m \atop p^{\alpha + 1} \nmid m} \omega_\alpha(p), \quad m \in \mathbb{N}.
\]

Then the series for \(\zeta_n(s) \) and \(\zeta_n(s, \omega) \) are absolutely convergent for \(\sigma > \frac{1}{2} \) \[11\]. From this, it follows that the function \(u_n : \Omega \rightarrow H(D), u_n(\omega) = \zeta_n(s, \omega) \), is continuous. Let \(R_n = m_Hu_n^{-1} \), where

\[
R_n(A) = m_Hu_n^{-1}(A) = m_H(u_n^{-1}A), \quad A \in \mathcal{B}(H(D)).
\]

Moreover, let

\[
P_{N,n}(A) = \frac{1}{V_N} \sum_{k=1}^{N} w(k)I_{\{k: \zeta_n(s+ikh) \in A\}}(k), \quad A \in \mathcal{B}(H(D)).
\]

It is not difficult to see that \(P_{N,n} = Q_Nu_n^{-1} \). This, the continuity of \(u_n \) and Lemma 1 lead to

Lemma 2. Suppose that \(w(t) \in W \) and \(h \) is of type 1. Then \(P_{N,n} \) converges weakly to \(R_n \) as \(N \rightarrow \infty \).

The weak convergence of \(P_{N,n} \) is a starting point for proving the weak convergence for \(P_N \) as \(N \rightarrow \infty \). The investigation of \(P_N \) also requires an approximation of \(\zeta(s) \) by \(\zeta_n(s) \). Let \(l_n(s) = \frac{s}{\theta} \Gamma \left(\frac{s}{\theta} \right) n^s \), where \(\Gamma(s) \) is the Euler gamma-function. Then \[11\], for \(\sigma > \frac{1}{2} \), the integral representation

\[
\zeta_n(s) = \frac{1}{2\pi i} \int_{\theta - i\infty}^{\theta + i\infty} \zeta(s + z)l_n(z)\frac{dz}{z} \quad (2.4)
\]

is true. Using the well-known estimates

\[
\int_{1/2}^{T} |\zeta(\sigma + it)|^2 dt \ll T, \quad \int_{1/2}^{T} |\zeta'(\sigma + it)|^2 dt \ll T,
\]

we find that, for \(\frac{1}{2} < \sigma < 1 \) and \(\tau \in \mathbb{R} \),

\[
\int_{1/2}^{T} |\zeta(\sigma + it + i\tau)|^2 dt \ll T(1 + |\tau|)
\]
and
\[\int_{1/2}^{T} |\zeta'(\sigma + it + i\tau)|^2 \, dt \ll T(1 + |\tau|). \]

These estimates together with Gallagher lemma, see, for example, [20, Lemma 1.4], give, for \(\frac{1}{2} < \sigma < 1 \) and \(\tau \in \mathbb{R} \), the bound
\[\sum_{k=1}^{N} |\zeta(\sigma +ikh + i\tau)|^2 \ll \int_{1/2}^{(N+1/2)h} |\zeta(\sigma + it)|^2 \, dt \]
\[+ \left(\int_{1/2}^{(N+1/2)h} |\zeta'(\sigma +it + i\tau)|^2 \, dt \int_{1/2}^{(N+1/2)h} |\zeta'(\sigma +it + i\tau)|^2 \, dt \right)^{1/2} \ll N(1 + |\tau|). \]

Hence, for the same \(\sigma \) and \(\tau \),
\[\sum_{k=1}^{N} w(k) |\zeta(\sigma +ikh + i\tau)|^2 \ll w(N) \sum_{k=1}^{N} |\zeta(\sigma +ikh + i\tau)|^2 + (1 + |\tau|) \]
\[\times \int_{1}^{N} u|w'(u)| \, du \ll Nw(N)(1 + |\tau|) + V_N(1 + |\tau|) \ll V_N(1 + |\tau|), \quad (2.5) \]

because
\[Nw(N) = \sum_{k=1}^{N} w(k) + \int_{1}^{N} \left(\sum_{k \leq u} 1 \right) w'(u) \, du \ll V_N. \]

Let \(K \subset D \) be a compact set. Then (2.4), (2.5), the residue theorem and Cauchy integral formula imply the equality
\[\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) \sup_{s \in K} |\zeta(s +ikh) - \zeta_n(s +ikh)| = 0. \quad (2.6) \]

Now, (2.6) together with the definition of the metric \(\rho \) yields the following lemma.

Lemma 3. Suppose that \(w(t) \in W \). Then the equality
\[\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) \rho(\zeta(s +ikh), \zeta_n(s +ikh)) = 0 \]
is true for every fixed \(h > 0 \).

Now, we are in position to prove a weighted discrete limit theorem for the function \(\zeta(s) \). On the probability space \((\Omega, \mathcal{B}(\Omega), m_H) \), define the \(H(D) \)-valued random element \(\zeta(s, \omega) \) by the Euler product
\[\zeta(s, \omega) = \prod_p \left(1 - \frac{\omega(p)}{p^s} \right)^{-1}. \]

The latter product, for almost all \(\omega \in \Omega \), is uniformly convergent on compact subsets of the strip \(D \) [11]. Denote by \(P_\zeta \) the distribution of the random element \(\zeta(s, \omega) \), i.e.,

\[
P_\zeta(A) = m_H(\omega \in \Omega : \zeta(s, \omega) \in A), \quad A \in \mathcal{B}(H(D)).
\]

Theorem 6. Suppose that \(w(t) \in W \) and \(h > 0 \) is of the type 1. Then \(P_N \) converges weakly to \(P_\zeta \) as \(N \to \infty \). Moreover, the support of \(P_\zeta \) is the set

\[
S = \{ g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0 \}.
\]

Proof. We will prove that \(R_n \), as \(n \to \infty \), converges weakly to a certain probability measure \(P \), and that \(P_N \), as \(N \to \infty \), also converges weakly to \(P \).

Let \(\theta_N \) be a random variable defined on a certain probability space with probability measure \(\mu \) and having the distribution

\[
\mu(\theta_N = kh) = \frac{w(k)}{V_N}, \quad k = 1, \ldots, N.
\]

Moreover, let \(Y_{N,n} = Y_{N,n}(s) \) be an \(H(D) \)-valued random element defined by

\[
Y_{N,n}(s) = \zeta_n(s + i\theta_N),
\]

and let \(Y_n = Y_n(s) \) be an \(H(D) \)-valued random element with the distribution \(R_n \). Then, by Lemma 2,

\[
Y_{N,n} \overset{\mathcal{D}}{\to} Y_n. \tag{2.7}
\]

Using the absolute convergence of the series for \(\zeta_n(s) \), it can be proved by a method of [11] that the family of probability measures \(\{ R_n : n \in \mathbb{N} \} \) is tight, i.e., for every \(\varepsilon > 0 \), there exists a compact set \(K = K(\varepsilon) \subset H(D) \) such that

\[
R_n(K) > 1 - \varepsilon
\]

for all \(n \in \mathbb{N} \). Hence, by the Prokhorov theorem [2], this family is relatively compact. Therefore, each sequence of \(\{ R_n \} \) contains a subsequence \(\{ R_{n_r} \} \) weakly convergent, as \(r \to \infty \), to a certain probability measure \(P \) on \((H(D), \mathcal{B}(H(D)))\).

In other words,

\[
Y_{n_r} \overset{\mathcal{D}}{\to} P. \tag{2.8}
\]

Define one more \(H(D) \)-valued random element

\[
X_N = X_N(s) = \zeta(s + i\theta_N).
\]

Then the application of Lemma 3 gives, for \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \limsup_{N \to \infty} \mu(\rho(X_N(s), Y_{N,n}(s)) \geq \varepsilon)
\]

\[
= \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) I\{k : \rho(\zeta(s + ikh), \zeta_n(s + ikh)) \geq \varepsilon\}(k)
\]

\[
\leq \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{\varepsilon V_N} \sum_{k=1}^{N} w(k) \rho(\zeta(s + ikh), \zeta_n(s + ikh)) = 0.
\]
This equality, (2.7) and (2.8) show that all hypotheses of Theorem 4.2 of [2] are satisfied, therefore,
\[X_N \xrightarrow{P_{N \to \infty}} P, \quad (2.9) \]
or \(P_N \) converges weakly to \(P \) as \(N \to \infty \). Moreover, in virtue of (2.9), the measure \(P \) is independent of the sequence \(Y_{n_r} \). Since the family \(\{ R_n \} \) is relatively compact, from this, we obtain that \(R_n \) converges weakly to \(P \) as \(n \to \infty \). Thus, \(P_N \), as \(N \to \infty \), converges weakly to the limit measure \(P \) of \(R_n \) as \(n \to \infty \).

However, by the proof of a limit theorem for
\[\text{meas} \{ \tau \in [0, T] : \zeta(s + i\tau) \in A \}, \quad A \in B(H(D)), \]
it is known [11] that \(R_n \), as \(n \to \infty \), converges weakly to \(P_\zeta \), and the support of \(P_\zeta \) is the set \(S \). Therefore, the same statement is also true for \(P_N \), and the theorem is proved. \(\Box \)

The case of \(h \) of type 2 is a more complicated. We must construct a new probability space different from \((\Omega, B(\Omega), m_H) \). We will index by \(h \) the notation related to \(h \) of type 2.

Now suppose that \(h > 0 \) is of type 2. Then there exists the smallest \(m_0 \in \mathbb{N} \) such the number \(\exp \left\{ \frac{2\pi m_0}{h} \right\} \) is rational. We put \(\exp \left\{ \frac{2\pi m_0}{h} \right\} = \frac{a}{b}, \quad a, b \in \mathbb{N}, \quad (a, b) = 1 \).

Define the set
\[\mathbb{P}_0 = \left\{ p \in \mathbb{P} : \frac{a}{b} = \prod_{p \in \mathbb{P}} p^{\alpha_p} \text{ with } \alpha_p \neq 0 \right\}. \]

Denote by \(\Omega_h \) the closed subgroup of \(\Omega \) generated by the element \(\{ p^{-ih} : p \in \mathbb{P} \} \). By Lemma 1 of [14], if \(h \) is of type 2, then
\[\Omega_h = \{ \omega \in \Omega : \omega(a) = \omega(b) \}. \]

On \((\Omega_h, B(\Omega_h)) \), the probability Haar measure \(m_H \) exists, and we obtain the probability space \((\Omega_h, B(\Omega_h), m_H) \). By (3.1) of [14], we have that the characters \(\chi \) of the group \(\Omega_h \) are of the form
\[\chi(\omega) = \prod_{p \in \mathbb{P} \setminus \mathbb{P}_0}^* \omega^{k_p}(p) \prod_{p \in \mathbb{P}_0} \omega^{k_p + l\alpha_p}(p), \quad l \in \mathbb{Z}. \quad (2.10) \]

Now, we are ready to prove an analogue of Lemma 1 for \(h \) of type 2. For \(A \in B(\Omega_h) \), define
\[Q_{N,h}(A) = \frac{1}{V_N} \sum_{k=1}^{N} w(k) I_{\{ k: (p^{-ih} : p \in \mathbb{P}) \in A \}}(k). \]

Lemma 4. Suppose that \(h \) is of type 2. Then \(Q_{N,h} \) converges weakly the Haar measure \(m_H \) as \(N \to \infty \).
Proof. In view of (2.10), we have that the Fourier transform $g_{N,h}(k)$, $k = (k_p : k_p \in \mathbb{Z}, p \in P)$, of $Q_{N,h}$ is of the form

$$g_{N,h}(k) = \int_{\Omega_h} \chi(\omega)dQ_{N,h} = \frac{1}{V_N} \sum_{k=1}^{N} w(k) \prod_{p \in P \setminus P_0}^* p^{-ikk_p h} \prod_{p \in P_0} p^{-ikh(k_p + l\alpha_p)}, \quad l \in \mathbb{Z}. \quad (2.11)$$

If $k_p = 0$ for all $p \in P \setminus P_0$ and $k_p = r\alpha_p$ for all $p \in P_0$ with some $r \in \mathbb{Z}$ (case 1), then

$$g_{N,h}(k) = \frac{1}{V_N} \sum_{k=1}^{N} w(k)\omega_d\prod_{p \in P_0} \omega^{d\alpha_p} = 1 \quad (2.12)$$

because $\prod_{p \in P_0} \omega^{d\alpha_p} = 1$ with $d \in \mathbb{Z}$.

Now, suppose that $k_p \neq 0$ for some $p \in P \setminus P_0$, or there does not exist $r \in \mathbb{Z}$ such that $k_p = r\alpha_p$ for all $p \in P_0$ (case 2). In [14], it was obtained that

$$\exp\{-ihA_p(k_p, l\alpha_p)\} \neq 1,$$

where

$$A_p(k_p, l\alpha_p) = \sum_{p \in P \setminus P_0}^* k_p \log p + \sum_{p \in P_0} (k_p + l\alpha_p) \log p, \quad l \in \mathbb{Z}.$$

Hence, we find that, for $u \geq 1$,

$$\sum_{k \leq u} \exp\{-ikhA_p(k_p, l\alpha_p)\} = \exp\{-ihA_p(k_p, l\alpha_p)\} - \exp\{-ih([u] + 1)A_p(k_p, l\alpha_p)\} \equiv \Sigma_h(u).$$

Therefore, in view of (2.11),

$$g_{N,h}(k) = \frac{w(N)\Sigma_h(N)}{V_N} - \frac{1}{V_N} \int_1^N \Sigma_h(u)w'(u)du.$$

Using the properties of the function w, hence we find that

$$g_{N,h}(k) = 0.$$

This together with (2.12) shows that

$$\lim_{N \to \infty} g_{N,h}(k) = \begin{cases} 1, & \text{in the case 1}, \\ 0, & \text{in the case 2}. \end{cases}$$

Since the right-hand side of the equality is the Fourier transform of the Haar measure m_h^H, the lemma follows by a continuity theorem for probability measures on compact groups. \(\Box\)

Now, together with $P_{N,n,h}$, consider

$$\hat{P}_{N,n,h}(A) = \frac{1}{V_N} \sum_{k=1}^{N} w(k)I_{k : \zeta_{n,h}(s + ikh, \omega) \in A}(k), \quad A \in \mathcal{B}(H(D)),$$

with $\omega \in \Omega_h$.
Lemma 5. Suppose that \(w(t) \in W \) and \(h \) is of type 2. Then \(P_{N,n,h} \) and \(\hat{P}_{N,n,h} \) both converge weakly to the measure \(m_H^h u_{n,h}^{-1} \) as \(N \to \infty \), where \(u_{n,h} : \Omega_h \to H(D) \) is given by \(u_{n,h}(\omega) = \zeta_n(s,\omega), \) \(\omega \in \Omega_h \).

Proof. By proving Lemma 2, in view of Lemma 4, we have that \(P_{N,n,h} \) converges weakly to \(m_H^h u_{n,h}^{-1} \) as \(N \to \infty \). Similarly, we obtain that if \(\hat{u}_{n,h}(\omega) : \Omega_h \to H(D) \) is given by

\[
\hat{u}_{n,h}(\omega) = \zeta_n(s,\omega\omega), \quad \omega \in \Omega_h,
\]
then \(\hat{P}_{N,n,h} \) converges weakly to \(m_H^h \hat{u}_{n,h}^{-1} \). However, \(\hat{u}_{n,h} = u_{n,h}(u) \), where \(u : \Omega_h \to \Omega_h \) is given by \(u(\omega) = \omega\omega \). This and the invariance of the Haar measure \(m_H^h \) show that \(m_H^h \hat{u}_{n,h}^{-1} = m_H^h u_{n,h}^{-1}. \)

For further considerations, we need some elements of the ergodic theory. Let \(a_h = (p^{-ih} : p \in \mathbb{P}) \). Then \(a_h \) is an element of \(\Omega_h \). Define the transformation \(\varphi_h(\omega) \) of \(\Omega_h \) by

\[
\varphi_h(\omega) = a_h \omega, \quad \omega \in \Omega_h.
\]
Then we have that \(\varphi_h \) is a measurable measure preserving transformation on the probability space \((\Omega_h, \mathcal{B}(\Omega_h), m_H^h) \). We recall that a set \(A \in \mathcal{B}(\Omega_h) \) is called invariant with respect to \(\varphi_h \) if the sets \(A \) and \(\varphi_h(A) \) can differ from each other at most by a set of \(m_H^h \)-measure zero. The transformation \(\varphi_h \) is called ergodic if the \(\sigma \)-field of invariant sets of \(\Omega_h \) consists only of the sets having \(m_H^h \)-measure 1 or 0.

Lemma 6. Suppose that \(h \) is of type 2. Then the transformation \(\varphi_h \) is ergodic.

Proof of the lemma is given in [14, Lemma 3]. Let, for \(\omega \in \Omega_h \),

\[
\zeta_h(s,\omega) = \prod_p \left(1 - \frac{\omega(p)}{p^s} \right)^{-1}.
\]
The first application of Lemma 6 is devoted to the discrete mean square of \(\zeta_h(s,\omega) \).

Lemma 7. Suppose that \(w(t) \in W, h > 0 \) is of type 2, \(\sigma, \frac{1}{2} < \sigma < 1 \), is fixed and \(t \in \mathbb{R} \). Then, for almost all \(\omega \in \Omega_h \),

\[
\sum_{k=1}^N w(k) |\zeta_h(\sigma + it + ikh,\omega)|^2 \ll V_N(1 + |t|).
\]

Proof. We have that \(\zeta_h(s,\omega) \) coincides with the restriction of the random element \(\zeta(s,\omega) \) to the space \((\Omega_h, \mathcal{B}(\Omega_h), m_H^h) \). First we consider the expectation \(\mathbb{E}[\zeta_h(\sigma + it,\omega)]^2 \). We write \(\zeta_h(s,\omega) \) in the form

\[
\zeta_h(\sigma + it,\omega) = \prod_{p \in \mathbb{P}_0} \left(1 - \frac{\omega(p)}{p^s + it} \right)^{-1} \prod_{p \in \mathbb{P} \setminus \mathbb{P}_0} \left(1 - \frac{\omega(p)}{p^s + it} \right)^{-1} \text{def} X_1 X_2.
\]
The random elements X_1 and X_2 are independent, moreover, for almost all $\omega \in \Omega_h$,

$$X_2 = \sum' \frac{\omega(m)}{m^{\sigma+it}},$$

where the sign $'$ means that the summing runs over $m = 1$ and $m \in \mathbb{N}$ with the canonical representation consisting only of primes $p \in \mathbb{P} \setminus \mathbb{P}_0$. In the series for X_2, the random variables are orthogonal, therefore,

$$\mathbb{E}|X_2|^2 = \sum' \frac{1}{m^{2\sigma}} < \infty.$$

Clearly, $\mathbb{E}|X_1|^2$ is bounded by a constant. Therefore, there exists a finite constant $c > 0$ such that, for $\frac{1}{2} < \sigma < 1$ and $t \in \mathbb{R}$,

$$\mathbb{E} |\zeta_h(\sigma + it, \omega)|^2 = \mathbb{E}|X_1|^2 \mathbb{E}|X_2|^2 \leq c.$$

Then (2.13), Lemma 6, the Birkhoff-Khintchine ergodic theorem, see, for example, [23], and the definition of the transformation φ_h show that, for $\frac{1}{2} < \sigma < 1$ and $|t_0| < h$,

$$\sum_{k=1}^{N} |\zeta_h(\sigma + it + ikh, \omega)|^2 = \sum_{k=1}^{N} |\zeta_h(\sigma + it_0, \varphi^k_h(\omega))|^2$$

$$= N \mathbb{E} |\zeta_h(\sigma + it_0, \omega)|^2 (1 + o(1)) \ll N$$

for almost all $\omega \in \Omega_h$ as $N \to \infty$. Hence, denoting by $[u]$ the integer part of $u \in \mathbb{R}$, for $\frac{1}{2} < \sigma < 1$ and $|t| \leq h$, we find that

$$\sum_{k=1}^{N} |\zeta_h(\sigma + it + ikh, \omega)|^2 = \sum_{k=1+[t/h]}^{N+[t/h]} |\zeta_h(\sigma + it + ikh, \omega)|^2 \ll N (1 + |t|)$$

for almost all $\omega \in \Omega_h$. From this, summing by parts, we obtain the estimate of the lemma.

Similarly to the proof of Lemma 3, we arrive, by using Lemma 7, to

Lemma 8. Suppose that $w(t) \in W$ and $h > 0$ is of type 2. Then, for almost all $\omega \in \Omega_h$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) \rho(\zeta_h(s + ikh, \omega), \zeta_{n,h}(s + ikh, \omega)) = 0.$$

For $\omega \in \Omega_h$, additionally to the measure $P_{N,h}$, define

$$\hat{P}_{N,h}(A) = \frac{1}{V_N} \sum_{k=1}^{N} w(k) I_{\{k : \zeta_h(s + ikh, \omega) \in A\}}(k), \quad A \in \mathcal{B}(H(D)).$$

Then, using Lemmas 3, 5 and 8, and repeating the first part of the proof of Theorem 6, we obtain
Lemma 9. Suppose that \(w(t) \in W \) and \(h > 0 \) is of type 2. Then, on \((H(D), \mathcal{B}(H(D))) \), there exists a probability measure \(P_h \) such that \(P_{N,h} \) and \(\hat{P}_{N,h} \) both converge weakly to \(P_h \) as \(N \to \infty \).

Denote by \(P_{\zeta,h} \) the distribution of the random element \(\zeta_h(s,\omega), \omega \in \Omega_h \). Then we have the following analogue of Theorem 6.

Theorem 7. Suppose that \(w(t) \in W \) and \(h > 0 \) is of type 2. Then \(P_{N,h} \) converges weakly \(P_{\zeta,h} \) as \(N \to \infty \). Moreover, the support of the measure \(P_{\zeta,h} \) is the set \(S \).

Proof. In virtue of Lemma 9, it suffices to identify the measure \(P \) in that lemma, and to find the support of the limit measure. For the first problem, we will apply Lemma 6, and the Birkhoff-Khintchine theorem. Let \(A \) be a continuity set of \(P \). On the probability space \((\Omega_h, \mathcal{B}(\Omega_h), m_H)\), define the random variable \(\xi \) by the formula

\[
\xi(\omega) = \begin{cases}
1, & \text{if } \zeta_h(s,\omega) \in A, \\
0, & \text{otherwise}.
\end{cases}
\]

Then we have that

\[
E\xi = \int_{\Omega_h} \xi(\omega) dm_H = P_{\zeta,h}(A). \tag{2.14}
\]

Moreover, by Lemma 9,

\[
\lim_{N \to \infty} \hat{P}_N(A) = P_h(A). \tag{2.15}
\]

In view of Lemma 6 and the Birkhoff-Khintchine theorem, for almost all \(\omega \in \Omega_h \),

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \xi(\varphi^k_h(\omega)) = E\xi.
\]

Since \(w \in W \), from this it follows that, for almost all \(\omega \in \Omega_h \),

\[
\lim_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) \xi(\varphi^k_h(\omega)) = E\xi. \tag{2.16}
\]

However, by the definition of \(\varphi_h \),

\[
\frac{1}{V_N} \sum_{k=1}^{N} w(k) \xi(\varphi^k_h(\omega)) = \frac{1}{V_N} \sum_{k=1}^{N} w(k) I_{\{k; \zeta_h(s+ikh,\omega) \in A\}}(k) = \hat{P}_{N,h}(A).
\]

Therefore, by (2.14) and (2.16),

\[
\lim_{N \to \infty} \hat{P}_{N,h}(A) = P_{\zeta,h}(A).
\]

This and (2.15) show that \(P_h = P_{\zeta,h} \).

For finding the support of \(P_{\zeta,h} \), we use the representation (2.13). For \(p \in \mathbb{P} \setminus \mathbb{P}_0 \), the random variables \(\omega(p) \) are independent. Thus, by the proof of Lemma 6.5.5 from [11], we find that the support of the random element \(X_2 \) is the set \(S \). Since the random elements \(X_1 \) and \(X_2 \) are independent and \(X_1 \) is not degenerate at zero, we obtain that the support of \(X_1X_2 \) is the set \(S \), i.e., the support of the measure \(P_{\zeta,h} \) is the set \(S \). The theorem is proved. □
3 Proof of universality theorems

Theorems 4 and 5 follow from the limit theorems (Theorems 6 and 7), for \(\zeta(s) \) as well as from the Mergelyan theorem [19] on the approximation of analytic functions by polynomials.

Proof. (Of Theorem 4). By the Mergelyan theorem, there exists a polynomial \(p(s) \) such that
\[
\sup_{s \in K} \left| f(s) - e^{p(s)} \right| < \frac{\varepsilon}{2}. \tag{3.1}
\]

For brevity, denote the limit measure in Theorems 6 and 7 by \(\hat{P}_\zeta \), i.e.,
\[
\hat{P}_\zeta = \begin{cases}
P_\zeta, & \text{if } h \text{ is of type 1,} \\
P_{\zeta,h}, & \text{if } h \text{ is of type 2,}
\end{cases}
\]
\[
\hat{P}_N = \begin{cases}
P_N, & \text{if } h \text{ is of type 1,} \\
P_{N,h}, & \text{if } h \text{ is of type 2.}
\end{cases}
\]

Then we have that \(\hat{P}_N \) converges weakly to \(\hat{P}_\zeta \) as \(N \to \infty \). Define the set
\[
G_\varepsilon = \left\{ g \in H(D) : \sup_{s \in K} \left| g(s) - e^{p(s)} \right| < \frac{\varepsilon}{2} \right\}.
\]

Since \(e^{p(s)} \neq 0 \), and, in view of Theorems 6 and 7, the support of the measure \(\hat{P}_\zeta \) is the set \(S \), the set \(G_\varepsilon \) is an open neighbourhood of an element of the support, therefore,
\[
\hat{P}_\zeta(G_\varepsilon) > 0. \tag{3.2}
\]

Moreover, by the first parts of Theorems 6 and 7, and the equivalent of weak convergence of probability measures in terms of open sets [2, Theorem 2.1], we have that
\[
\liminf_{N \to \infty} \hat{P}_N(G_\varepsilon) \geq \hat{P}_\zeta(G_\varepsilon).
\]

This, (3.2) and the definitions of \(\hat{P}_N \) and \(G_\varepsilon \) show that
\[
\liminf_{N \to \infty} \frac{1}{V_N} \sum_{k=1}^{N} w(k) I \left\{ k : \sup_{s \in K} |\zeta(s + ikh) - e^{p(s)}| < \frac{\varepsilon}{2} \right\} (k) > 0. \tag{3.3}
\]

It remains to replace \(e^{p(s)} \) by \(f(s) \) in the latter inequality. Suppose that \(k \) satisfies the inequality
\[
\sup_{s \in K} \left| \zeta(s + ikh) - e^{p(s)} \right| < \frac{\varepsilon}{2}.
\]

Then, in virtue of (3.1), the same \(k \) satisfies the inequality
\[
\sup_{s \in K} |\zeta(s + ikh) - f(s)| < \varepsilon.
\]

Therefore,
\[
\left\{ k : \sup_{s \in K} |\zeta(s + ikh) - e^{p(s)}| < \frac{\varepsilon}{2} \right\} \subset \left\{ k : \sup_{s \in K} |\zeta(s + ikh) - f(s)| < \varepsilon \right\}.
\]
This inclusion together with (3.3) proves the theorem. □

Proof. (Of Theorem 5). Define the set

\[\hat{G}_\varepsilon = \{ g \in H(D) : \sup_{s \in K} |g(s) - f(s)| < \varepsilon \}. \]

Then \(\partial \hat{G}_\varepsilon = \{ g \in H(D) : \sup_{s \in K} |g(s) - f(s)| = \varepsilon \} \) is the boundary of \(\hat{G}_\varepsilon \).

Hence, \(\partial \hat{G}_{\varepsilon_1} \cap \partial \hat{G}_{\varepsilon_2} = \emptyset \) if \(\varepsilon_1 \neq \varepsilon_2, \varepsilon_1 > 0, \varepsilon_2 > 0 \). Therefore, the set \(\partial \hat{G}_\varepsilon \) can have a positive \(\hat{P}_\zeta \)-measure for at most countably many \(\varepsilon > 0 \). This means that the set \(\hat{G}_\varepsilon \) is a continuity set of the measure \(\hat{P}_\zeta \) for all but at most countably many \(\varepsilon > 0 \). Using Theorems 6 and 7, and the equivalent of weak convergence of probability measures in terms of continuity sets [2, Theorem 2.1], we have that

\[\lim_{N \to \infty} \hat{P}_N(\hat{G}_\varepsilon) = \hat{P}_\zeta(\hat{G}_\varepsilon) \] (3.4)

for all but at most countably many \(\varepsilon > 0 \). Moreover, (3.1) shows that \(G_\varepsilon \subset \hat{G}_\varepsilon \).

Therefore, by (3.2), \(\hat{P}_\zeta(\hat{G}_\varepsilon) > 0 \). This, (3.4) and the definition of the set \(\hat{G}_\varepsilon \) prove the theorem. □

Acknowledgements

The research of the first author is funded by the European Social Fund according to the activity “Improvement of researchers’ qualification by implementing world-class R&D projects” of Measure No. 09.3.3-LMT-K-712-01-0037.

References

A. Laurinčikas, D. Šiaučiūnas and G. Vadeikis

