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Abstract. In the present paper we consider discrete versions of the modified pro-
jection methods for solving a Urysohn integral equation with a kernel of the type of
Green’s function. For r ≥ 0, a space of piecewise polynomials of degree ≤ r with
respect to an uniform partition is chosen to be the approximating space. We define
a discrete orthogonal projection onto this space and replace the Urysohn integral
operator by a Nyström approximation. The order of convergence which we obtain
for the discrete version indicates the choice of numerical quadrature which preserves
the orders of convergence in the continuous modified projection methods. Numerical
results are given for a specific example.
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1 Introduction

Let X = L∞[0, 1] and consider the following nonlinear Urysohn integral equa-
tion

x(s)−
∫ 1

0

κ(s, t, x(t))dt = f(s), s ∈ [0, 1], x ∈ X , (1.1)

where f ∈ X and the kernel κ(s, t, u) is a continuous Green’s function type
kernel. We write the above equation as

x−K(x) = f (1.2)

�
Copyright c© 2020 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2020.11093
mailto:rpk@math.iitb.ac.in
mailto:gobindarakshit@math.iitb.ac.in
http://creativecommons.org/licenses/by/4.0/


422 R.P. Kulkarni and G. Rakshit

and assume that it has a unique solution ϕ. We are interested in approximate
solutions of the above equation.

For r ≥ 0, let Xn be a space of piecewise polynomials of degree ≤ r with
respect to a uniform partition of [0, 1] with n subintervals each of length h = 1

n .
Let πn be the restriction to L∞[0, 1] of the orthogonal projection from L2[0, 1]
to Xn. Then in the classical Galerkin method, (1.2) is approximated by

ϕGn − πnK(ϕGn ) = πnf.

In Krasnoselskii [8], Krasnoselskii et al. [9] and Krasnoselskii-Zabreiko [10], the
above projection method has been studied. The iterated Galerkin solution is
defined by

ϕSn = K(ϕGn ) + f.

The following orders of convergence are proved in Atkinson-Potra [3]:
If r = 0, then

‖ϕGn − ϕ‖∞ = O(h), ‖ϕSn − ϕ‖∞ = O(h2),

whereas if r ≥ 1, then

‖ϕGn − ϕ‖∞ = O(hr+1), ‖ϕSn − ϕ‖∞ = O(hr+3).

In Grammont-Kulkarni [6], the following modified projection method is pro-
posed:

ϕMn −KMn (ϕMn ) = f,

where

KMn (x) = πnK(x) +K(πnx)− πnK(πnx).

The iterated modified projection solution is defined as

ϕ̃Mn = K(ϕMn ) + f.

The following orders of convergence are proved in Grammont et al [7]:
If r = 0, then

‖ϕMn − ϕ‖∞ = O(h3), ‖ϕ̃Mn − ϕ‖∞ = O(h4), (1.3)

whereas if r ≥ 1, then

‖ϕMn − ϕ‖∞ = O(hr+3), ‖ϕ̃Mn − ϕ‖∞ = O(hr+5). (1.4)

In practice, it is necessary to replace the integral in the definition of K by a
numerical quadrature formula. Also, the orthogonal projection πn needs to
be replaced by a discrete orthogonal projection Qn. This gives rise to discrete
versions of the above methods. It is of interest to choose the quadrature formula
appropriately so as to preserve the above orders of convergence. Our aim is to
investigate the discrete versions of the modified projection and of the iterated
modified projection methods.
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The discrete versions of the Galerkin and the iterated Galerkin methods
are considered in Atkinson-Potra [4]. They propose a numerical quadrature
formula which takes into consideration the fact that the kernel κ(s, t, u) lacks
smoothness when s = t and obtain the order of convergence of the discrete
iterated Galerkin solution.

We follow a different approach. We choose a uniform partition with m =
np, p ∈ N, subintervals. A composite quadrature formula associated with this
fine partition is then used to replace the integrals in the definition of K and
in the definition of the inner product. Let h̃ = 1

m . Let zMn and z̃Mn denote
respectively the discrete modified projection solution and the discrete iterated
modified projection solution. We prove the following orders of convergence:

If r = 0, then

‖zMn − ϕ‖∞ = O(max{h̃2, h3}), ‖z̃Mn − ϕ‖∞ = O(max{h̃2, h4}), (1.5)

whereas if r ≥ 1, then

‖zMn −ϕ‖∞ = O
(

max
{
h̃2, hr+3

})
, ‖z̃Mn −ϕ‖∞ = O

(
max

{
h̃2, hr+5

})
. (1.6)

Thus, if r = 0 and h̃2 ≤ h4, that is, m ≥ n2, then the orders of convergence in
(1.3) are preserved. If r ≥ 1 and h̃2 ≤ hr+5, then the orders of convergence in
(1.4) are preserved.

Note that the term h̃2 in the above estimates appear because of the dis-
cretization. If the kernel is smooth, then it is possible to choose a composite
quadrature formula associated with the coarse partition with n subintervals
and with a precision d. Then the term h̃2 is replaced by hd and an appropriate
choice of d will preserve the orders of convergence in (1.3) and (1.4). However,
in the case of the kernel of the type of Green’s function, the error in the higher
order quadrature rules also is only of the order of h2. Hence we need to choose
a different partition for the quadrature rule which makes the proofs more in-
volved. It is to be noted that even if m > n, the size of the system of equations
that need to be solved in order to compute zMn remains n(r + 1).

Note that in Grammont et al [7], the orders of convergence (1.3) and (1.4)
for the (continuous) modified projection and the iterated modified projection
are proved. However, the numerical results are given for the discrete versions
of the modified projection and of the iterated modified projection methods. In
the present paper we fill this gap and justify the numerical results of Grammont
et al [7].

The paper has been arranged in the following way. In Section 2, we define
a discrete orthogonal projection operator and discrete versions of the modified
projection methods. In Section 3,, we consider the case of a piecewise poly-
nomial space of degree r ≥ 1 and prove (1.6). Section 4, is devoted to the
proof of (1.5) in the case of piecewise constant functions. Numerical results for
illustrative purpose are given in Section 5.

2 Discrete modified projection method

In this section we describe the Nyström approximation of K and the discrete
orthogonal projection. We then define discrete analogues of the modified pro-
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jection method and its iterated version.

2.1 Kernel of the type of Green’s function

Let r ≥ 0 be an integer and assume that the kernel κ of the integral operator
K appearing in (1.1) has the following properties.

1. Let Ψ = [0, 1] × [0, 1] × R. The partial derivative `(s, t, u) = ∂κ(s,t,u)
∂u is

continuous for all (s, t, u) ∈ Ψ.

2. Let Ψ1 = {(s, t, u) : 0 ≤ t ≤ s ≤ 1, u ∈ R}, Ψ2 = {(s, t, u) : 0 ≤ s ≤ t ≤
1, u ∈ R}. There are functions `i ∈ Cr+1(Ψi), i = 1, 2, with

`(s, t, u) =

{
`1(s, t, u), (s, t, u) ∈ Ψ1,

`2(s, t, u), (s, t, u) ∈ Ψ2.

3. There are functions κi ∈ Cr+1(Ψi), i = 1, 2, such that

κ(s, t, u) =

{
κ1(s, t, u), (s, t, u) ∈ Ψ1,

κ2(s, t, u), (s, t, u) ∈ Ψ2.

4. ∂2κ/∂u2 ∈ C(Ψ).

Following Atkinson-Potra [3], if the kernel κ satisfies the above conditions, then
we say that κ is of class G2(r + 1, 0).

Let f ∈ Cr+1[0, 1]. Then by the Corollary 3.2 of Atkinson-Potra [3], it
follows that ϕ ∈ Cr+1[0, 1]. If r = 0, then it is assumed that f ∈ C2[0, 1] so
that ϕ ∈ C2[0, 1]. We assume that K is twice Fréchet differentiable and that 1
is not an eigenvalue of K′(ϕ).

2.2 Nyström approximation

Let m ∈ N and consider the following uniform partition of [0, 1] :

0 < 1/m < · · · < (m− 1)/m < 1. (2.1)

Let h̃ = 1
m and si = i

m , i = 0, . . . ,m. Consider a basic quadrature rule of the
form ∫ 1

0

f(t)dt ≈
ρ∑
q=1

wqf(µq),

where the weights wq > 0 and the nodes µq ∈ [0, 1]. It is assumed that the
quadrature rule is exact at least for polynomials of degree ≤ 2r.

A composite integration rule with respect to the partition (2.1) is then
defined as∫ 1

0

f(t) dt =

m∑
i=1

∫ si

si−1

f(t)dt ≈ h̃
m∑
i=1

ρ∑
q=1

wq f(ζiq), ζiq = si−1 + µqh̃. (2.2)
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We replace the integral in (1.1) by the numerical quadrature formula (2.2) and
define the Nyström operator as

Km(x)(s) = h̃

m∑
i=1

ρ∑
q=1

wq κ
(
s, ζiq, x

(
ζiq
))
, s ∈ [0, 1].

Note that Km is twice Fréchet differentiable and

K′m(x)v(s) = h̃

m∑
i=1

ρ∑
q=1

wq
∂κ

∂u
(s, ζiq, x(ζiq))v(ζiq), s ∈ [0, 1], v ∈ X ,

and for v1, v2 ∈ X ,

K′′m(x)(v1, v2)(s) = h̃

m∑
i=1

ρ∑
q=1

wq
∂2κ

∂u2
(s, ζiq, x(ζiq))v1(ζiq)v2(ζiq), s ∈ [0, 1].

For δ0 > 0, let B(ϕ, δ0) = {ψ ∈ X : ‖ϕ− ψ‖∞ < δ0}. Define

C1 = max
s,t∈[0,1]

|u|≤‖ϕ‖∞+δ0

∣∣∣∣∂κ∂u (s, t, u)

∣∣∣∣ and C2 = max
s,t∈[0,1]

|u|≤‖ϕ‖∞+δ0

∣∣∣∣∂2κ∂u2
(s, t, u)

∣∣∣∣ .
Then for x, y ∈ B(ϕ, δ0),

‖K′m(x)v‖∞ ≤ C1‖v‖∞, (2.3)

‖K′m(x)−K′m(y)‖ ≤ C2‖x− y‖∞. (2.4)

If T : X→X is a bounded linear operator, then ‖T‖= sup{‖Tv‖∞ : ‖v‖∞ ≤ 1}
denotes the operator norm.

Since the kernel lacks smoothness along s = t, we only have the following
order of convergence from Atkinson-Potra [4]: If x ∈ C2[0, 1], then

‖K(x)−Km(x)‖∞ = O
(
h̃2
)
. (2.5)

In the Nyström method, (1.2) is approximated by

xm −Km(xm) = f.

For all m big enough, the above equation has a unique solution ϕm in B(ϕ, δ0)
and

‖ϕ− ϕm‖∞ ≤ C3‖K(ϕ)−Km(ϕ)‖∞ = O
(
h̃2
)
. (2.6)

See Atkinson [1]. We quote the following result from Krasnoselskii et al [9] for
future reference:

If v1, v2 ∈ B(ϕ, δ0), s ∈ [0, 1], then by the generalized Taylor’s theorem,

Km(v2)(s)−Km(v1)(s)−K′m(v1)(v2 − v1)(s) = R(v2 − v1)(s), (2.7)

where

R(v2 − v1)(s) =

∫ 1

0

(1− θ)K
′′

m (v1 + θ(v2 − v1)) (v2 − v1)2(s) dθ.

It then follows that

‖R(v2 − v1)‖∞ ≤ C2‖v2 − v1‖2∞. (2.8)

Math. Model. Anal., 25(3):421–440, 2020.
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2.3 Discrete orthogonal projection

Let n ∈ N and consider the following uniform partition of [0, 1] :

∆ : 0 < 1/n < · · · < (n− 1)/n < 1. (2.9)

Define

tj = j/n, ∆j = [tj−1, tj ] and h = tj − tj−1 = 1/n, j = 1, . . . , n.

For r ≥ 0, let Xn denote the space of piecewise polynomials of degree ≤ r with
respect to the partition of (2.9) of [0, 1]. Assume that the values at tj−, j =
1, . . . , n, are defined by continuity. Then the dimension of Xn is n(r + 1).

For η = 0, 1, . . . , r, let Lη denote the Legendre polynomial of degree η on
[−1, 1]. For j = 1, . . . , n, and for η = 0, 1, . . . , r, define

ϕj,η(t) =


√

2
hLη

(
2t−tj−tj−1

h

)
, t ∈ (tj−1, tj ],

0, otherwise,
ϕ1,η(t0) =

√
2

h
Lη(−1).

Note that ‖ϕj,η‖∞ = maxt∈[tj−1,tj ] |ϕj,η(t)| =
√

2
h‖Lη‖∞.

Assume that m = pn for some p ∈ N. For f, g ∈ C(∆j), define

〈f, g〉∆j = h̃

p∑
ν=1

ρ∑
q=1

wq f
(
ζ(j−1)p+νq

)
g
(
ζ(j−1)p+νq

)
, (2.10)

where ζ
(j−1)p+ν
q are defined in (2.2). Note that 〈f, g〉∆j = 〈g, f〉∆j . Define

‖f‖∆j ,∞ = max
t∈[tj−1,tj ]

|f(t)|. Then

∣∣〈f, g〉∆j ∣∣ ≤ ‖f‖∆j ,∞‖g‖∆j ,∞h. (2.11)

Since the quadrature rule is exact for polynomials of degree ≤ 2r, we have

δη,η′ = 〈ϕj,η, ϕj,η′〉 =

∫ 1

0

ϕj,η(t)ϕj,η′(t)dt = 〈ϕj,η, ϕj,η′〉∆j .

Thus, {ϕj,η, j = 1, . . . , n, η = 0, . . . , r} forms an orthonormal basis for Xn. Let
Pr,∆j denote the space of polynomials of degree ≤ r on ∆j . Define the discrete
orthogonal projection Qn,j : C(∆j)→ Pr,∆j as follows:

Qn,jx =

r∑
η=0

〈x, ϕj,η〉∆jϕj,η.

Then 〈Qn,jx, y〉∆j = 〈x, Qn,jy〉∆j , Q2
n,j = Qn,j and Qn,jQn,i = 0 for i 6= j.

Also,

‖Qn,jx‖∆j ,∞ ≤
r∑
η=0

∣∣〈x, ϕj,η〉∆j ∣∣ ‖ϕj,η‖∆j ,∞ ≤
(

2

r∑
η=0

‖Lη‖2∞

)
‖x‖∞.
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A discrete orthogonal projection Qn : C[0, 1]→ Xn is defined as follows:

Qnx =

n∑
j=1

Qn,jx. (2.12)

Using the Hahn-Banach extension theorem, as in Atkinson et al [2], Qn can be
extended to L∞[0, 1]. Then

Q2
n = Qn and ‖Qn‖ ≤ 2

r∑
η=0

‖Lη‖2∞ = C4. (2.13)

The following estimate is standard: if x ∈ Cr+1(∆j), then we have,

‖(I −Qn,j)x‖∆j ,∞ ≤ C5‖x(r+1)‖∆j ,∞hr+1. (2.14)

Thus, if x ∈ Cr+1[0, 1], then

‖(I −Qn)x‖∞ = O
(
hr+1

)
. (2.15)

2.4 Discrete projection methods

We define below the discrete versions of various projection methods given in
Section 1 by replacing the integral operator K by the Nyström operator Km
and the orthogonal projection πn by the discrete orthogonal projection Qn.

Discrete Galerkin Method: zGn −QnKm(zGn ) = Qnf.

Discrete Iterated Galerkin Method: zSn −Km(Qnz
S
n ) = f.

The discrete modified projection operator is defined as

K̃Mn (x) = QnKm(x) +Km(Qnx)−QnKm(Qnx).

Discrete Modified Projection method:

zMn − K̃Mn (zMn ) = f. (2.16)

Discrete Iterated Modified Projection method:

z̃Mn = Km(zMn ) + f. (2.17)

3 Piecewise polynomial approximation: r ≥ 1

In this section we consider the case r ≥ 1 and obtain orders of convergence in
the discrete modified projection method and its iterated version.

3.1 Preliminary results

Let `∗(s, t) = `(s, t, ϕ(t)), 0 ≤ s, t ≤ 1. Then

`∗(s, t) =

{
`1,∗(s, t) = `1(s, t, ϕ(t)), 0 ≤ t ≤ s ≤ 1,

`2,∗(s, t) = `2(s, t, ϕ(t)), 0 ≤ s ≤ t ≤ 1.

Math. Model. Anal., 25(3):421–440, 2020.
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Since ϕ ∈ Cr+1[0, 1], it follows that

`1,∗ ∈ Cr+1({0 ≤ t ≤ s ≤ 1}) and `2,∗ ∈ Cr+1({0 ≤ s ≤ t ≤ 1}).

We introduce the following notation.
For a fixed s ∈ [0, 1], define `∗,s(t) = `∗(s, t), t ∈ [0, 1]. Note that

K′m(ϕ)v(s) = h̃

n∑
j=1

p∑
ν=1

ρ∑
q=1

wq `∗(s, ζ
(j−1)p+ν
q )v(ζ(j−1)p+νq ) =

n∑
j=1

〈`∗,s, v〉∆j .

Let

C6 = max
1≤j≤r+1

{
max

0≤t≤s≤1

|u|≤‖ϕ‖∞

∣∣∣D(0,j,0)`1(s, t, u)
∣∣∣ , max

0≤s≤t≤1

|u|≤‖ϕ‖∞

∣∣∣D(0,j,0)`2(s, t, u)
∣∣∣ }.

The following proposition is crucial. It will be used several times in what
follows.

Proposition 1. If v ∈ Cr+1[0, 1], then

‖K′m(ϕ)(I −Qn)v‖∞ ≤ (C5)2C6‖v(r+1)‖∞hr+3. (3.1)

Proof. For s ∈ [0, 1],

K′m(ϕ)(I −Qn)v(s) =

n∑
j=1

〈`∗,s, (I −Qn,j)v〉∆j

=

n∑
j=1

〈(I −Qn,j)`∗,s, (I −Qn,j)v〉∆j .

Case 1: s = ti for some i ∈ {0, 1, . . . , n} . Then `∗,s ∈ Cr+1(∆j) for j = 1, . . . , n.
Since v ∈ Cr+1[0, 1], it follows from (2.14),

max
0≤i≤n

|K′m(ϕ)(I −Qn)v(ti)| ≤ (C5)2C6‖v(r+1)‖∞h2r+2. (3.2)

Case 2: s ∈ (ti−1, ti) for some i ∈ {1, 2, . . . , n} . We write

K′m(ϕ)(I −Qn)v(s) =

n∑
j=1

j 6=i

〈(I −Qn,j)`∗,s, (I −Qn,j)v〉∆j

+ 〈(I −Qn,i)`∗,s, (I −Qn,i)v〉∆i . (3.3)

For j 6= i, `∗,s ∈ Cr+1(∆j) and v ∈ Cr+1(∆j). Hence∣∣∣∣ n∑
j=1

j 6=i

〈(I −Qn,j)`∗,s, (I −Qn,j)v〉∆j
∣∣∣∣ ≤ (C5)2C6‖v(r+1)‖∞(n− 1)h2r+3. (3.4)
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We now consider the case j = i. Note that `∗,s is only continuous on [ti−1, ti].
Define a constant function: gi(t) = `∗,s(s), t ∈ [ti−1, ti]. Note that

〈(I −Qn,i)`∗,s, (I −Qn,i)v〉∆i = 〈`∗,s − gi, (I −Qn,i)v〉∆i .

For t ∈ [ti−1, ti],

`∗,s(t)− gi(t) =

{
D(0,1)`1,∗(s, θt)(t− s), θt ∈ (t, s),

D(0,1)`2,∗(s, ηt)(t− s), ηt ∈ (s, t).

Thus,

|〈(I −Qn,i)`∗,s, (I −Qn,i)v〉∆i | ≤ C5C6‖v(r+1)‖∞hr+3. (3.5)

Without loss of generality, let C5 ≥ 1. From (3.3), (3.4) and (3.5) we obtain,

|K′m(ϕ)(I −Qn)v(s)| ≤ (C5)2C6‖v(r+1)‖∞hr+3.

Combining the above estimate with (3.2) we obtain the required result. ut

Proposition 2. If v ∈ Cr+1[0, 1], then

‖K′m(ϕ)(I −Qn)K′m(ϕ)(I −Qn)v‖∞ = O
(
hr+5

)
. (3.6)

Also,
‖K′m(ϕ)(I −Qn)K′m(ϕ)‖ = O

(
h2
)
. (3.7)

Proof. The proof of (3.6) is similar to that of (3.1). For s ∈ [0, 1], we write

K′m(ϕ)(I−Qn)K′m(ϕ)(I−Qn)v(s)=

n∑
j=1

〈(I−Qn,j)`∗,s, K′m(ϕ)(I −Qn)v〉∆j .

If s = ti, for some i, then using (2.14) and (3.1) we obtain

|K′m(ϕ)(I −Qn)K′m(ϕ)(I −Qn)v(ti)| ≤ (C5)3(C6)2‖v(r+1)‖∞h2r+4.

If s ∈ (ti−1, ti), then we write

K′m(ϕ)(I−Qn)K′m(ϕ)(I−Qn)v(s)=

n∑
j=1

j 6=i

〈(I−Qn,j)`∗,s, K′m(ϕ)(I−Qn)v〉∆j

+ 〈`∗,s − gi, K′m(ϕ)(I −Qn)v〉∆i .

Proceeding as in the proof of Proposition 1, we obtain

|K′m(ϕ)(I −Qn)K′m(ϕ)(I −Qn)v(s)| ≤ (C5)3(C6)2‖v(r+1)‖∞hr+5.

The estimate (3.6) follows from the above two estimates. In order to prove
(3.7), consider v ∈ C[0, 1]. Let s = ti for some i. Then

|K′m(ϕ)(I −Qn)v(s)| ≤ C5C6‖v‖∞hr+1. (3.8)

Math. Model. Anal., 25(3):421–440, 2020.
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Now let s ∈ (ti−1, ti). We write

K′m(ϕ)(I−Qn)v(s) =

n∑
j=1

j 6=i

〈(I−Qn,j)`∗,s, v〉∆j+〈(I−Qn,i)(`∗,s−gi), v〉∆i

and obtain

|K′m(ϕ)(I −Qn)v(s)| ≤ (1 + C4 + C5)C6‖v‖∞h2.

Combining (3.8) and the above estimate, we obtain

‖K′m(ϕ)(I −Qn)v‖∞ ≤ (1 + C4 + C5)C6‖v‖∞h2. (3.9)

Since from (2.3), ‖K′m(ϕ)v‖∞ ≤ C1‖v‖∞, we obtain

‖K′m(ϕ)(I −Qn)K′m(ϕ)v‖∞ ≤ C1(1 + C4 + C5)C6‖v‖∞h2

and the required result follows taking the supremum over unit ball in C[0, 1].
ut

3.2 Error in the discrete modified projection method

As in Grammont [5], it can be shown that there is a δ0 > 0 such that (2.16)
has a unique solution zMn in B(ϕ, δ0) and that

‖zMn − ϕ‖∞

≤ 6
∥∥∥(I −K′(ϕ))

−1
∥∥∥(‖K(ϕ)−Km(ϕ)‖∞ + ‖Km(ϕ)− K̃Mn (ϕ)‖∞

)
. (3.10)

In the following theorem, we obtain the order of convergence of the discrete
modified projection solution.

Theorem 1. Let r ≥ 1, κ be of class G2(r + 1, 0) and f ∈ Cr+1[0, 1]. Let ϕ be
the unique solution of (1.2) and assume that 1 is not an eigenvalue of K′(ϕ).
Let Xn be the space of piecewise polynomials of degree ≤ r with respect to the
partition (2.9) and Qn be the discrete orthogonal projection defined by (2.12).
Let zMn be the discrete modified projection solution in B(ϕ, δ0). Then

‖zMn − ϕ‖∞ = O(max{h̃2, hr+3}). (3.11)

Proof. From (2.5),

‖K(ϕ)−Km(ϕ)‖∞ = O
(
h̃2
)
. (3.12)

Since ϕ ∈ Cr+1[0, 1], it follows from (2.15) that ‖Qnϕ− ϕ‖∞ = O(hr+1). Note
that

‖Km(ϕ)−K̃Mn (ϕ)‖∞ ≤ ‖(I−Qn)(Km(Qnϕ)−Km(ϕ)−K′m(ϕ)(Qnϕ− ϕ))‖∞
+ ‖(I −Qn)K′m(ϕ)(Qnϕ− ϕ)‖∞.
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From (2.7), (2.8) and (2.15),

‖Km(Qnϕ)−Km(ϕ)−K′m(ϕ)(Qnϕ−ϕ)‖∞ ≤ C2‖Qnϕ− ϕ‖2∞ = O(h2r+2).

By (2.13) and Proposition 1,

‖(I−Qn)K′m(ϕ)(Qnϕ−ϕ)‖∞ ≤ (1+C4)‖K′m(ϕ)(Qnϕ−ϕ)‖∞ = O(hr+3).

Since r ≥ 1, it follows that ‖Km(ϕ)− K̃Mn (ϕ)‖∞ = O(hr+3).
The required result follows from (3.10), (3.12) and the above estimate. ut

Remark 1. It can be shown that

‖zGn−ϕ‖∞=O
(

max
{
h̃2, hr+1

})
, ‖zSn−ϕ‖∞=O

(
max

{
h̃2, hr+3

})
. (3.13)

3.3 Error in the discrete iterated modified projection method

Note that z̃Mn − ϕm = Km(zMn )−Km(ϕm). From (2.7) and (2.8),

Km(zMn )−Km(ϕm) = K′m(ϕm)(zMn − ϕm) +O
(
‖zMn − ϕm‖2∞

)
.

From (2.6) and Theorem 1, we obtain

‖zMn − ϕm‖∞ ≤ ‖zMn − ϕ‖∞ + ‖ϕ− ϕm‖∞ = O(max{h̃2, hr+3}).

Thus,

z̃Mn − ϕm = K′m(ϕm)(zMn − ϕm) +O(max{h̃2, hr+3}2). (3.14)

Let
Lm = [I −K′m(ϕm)]

−1K′m(ϕm).

We quote the following result from Kulkarni-Rakshit [11]:

K′m(ϕm)(zMn − ϕm) = − Lm

{
Km(ϕm)− K̃Mn (ϕm)

}
+Lm

{
K̃Mn (zMn )− K̃Mn (ϕm)−

(
K̃Mn

)′
(ϕm)(zMn − ϕm)

}
+Lm

{((
K̃Mn

)′
(ϕm)−K′m(ϕm)

)
(zMn − ϕm)

}
. (3.15)

We obtain below orders of convergence for the three terms in (3.15).

Proposition 3. Let ϕm be the Nyström solution. Then∥∥∥K′m(ϕm)
(
Km(ϕm)− K̃Mn (ϕm)

)∥∥∥
∞

= O
(
h4 max{h̃2, hr+1}

)
.

Proof. Let v ∈ C[0, 1]. Then from (2.4), (2.6) and (3.9),

‖K′m(ϕm)(I −Qn)v‖∞
≤ ‖ [K′m(ϕm)−K′m(ϕ)] (I −Qn)v‖∞ + ‖K′m(ϕ)(I −Qn)v‖∞
≤ C2(1 + C4)‖v‖∞‖ϕm − ϕ‖∞ + (1 + C4 + C5)C6‖v‖∞h2

≤ C7‖v‖∞h2. (3.16)
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Note that

Km(ϕm)− K̃Mn (ϕm) = −(I −Qn)(Km(Qnϕm)−Km(ϕm)

−K′m(ϕm)(Qnϕm − ϕm))− (I −Qn)K′m(ϕm)(Qnϕm − ϕm). (3.17)

Let

yn = Km(Qnϕm)−Km(ϕm)−K′m(ϕm)(Qnϕm − ϕm) = R(Qnϕm − ϕm).

Then by (3.16)

‖K′m(ϕm)(I −Qn)yn‖∞ ≤ C7‖yn‖∞h2.

By (2.8)

‖yn‖∞ = ‖R(Qnϕm − ϕm)‖∞ ≤ C2‖Qnϕm − ϕm‖2∞.

Using (2.6), (2.13) and (2.15), we obtain

‖Qnϕm − ϕm‖∞ = O(max{h̃2, hr+1}). (3.18)

Thus,

‖K′m(ϕm)(I −Qn)yn‖∞ = O
(
h2 max{h̃2, hr+1}2

)
. (3.19)

Using (3.6) it can be checked that

‖K′m(ϕm)(I −Qn)K′m(ϕm)(I −Qn)ϕm‖∞ = O
(
h4 max{h̃2, hr+1}

)
.

The required result then follows from (3.17), (3.19) and the above estimate.
ut

Proposition 4. Let ϕm be the Nyström solution and zMn be the discrete mod-
ified projection solution. Then∥∥∥K̃Mn (zMn )−K̃Mn (ϕm)−

(
K̃Mn

)′
(ϕm)(zMn −ϕm)

∥∥∥
∞

=O
(

max
{
h̃2, hr+3

}2)
.

Proof. Note that for m and n big enough, ϕm, z
M
n ∈ B (ϕ, δ0) . By the gener-

alized Taylor’s theorem,

K̃Mn (zMn )(s)− K̃Mn (ϕm)(s)−
(
K̃Mn

)′
(ϕm)(zMn − ϕm)(s)

=

∫ 1

0

(1− θ)
(
K̃Mn

)′′(
ϕm + θ(zMn − ϕm)

)
(zMn − ϕm)2(s) dθ.

Hence ∥∥∥∥K̃Mn (zMn )− K̃Mn (ϕm)−
(
K̃Mn

)′
(ϕm)(zMn − ϕm)

∥∥∥∥
∞

≤ 1

2
max
0≤θ≤1

∥∥∥∥(K̃Mn )′′(ϕm + θ(zMn − ϕm)
)∥∥∥∥ ‖zMn − ϕm‖2∞.
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It can be shown that

max
0≤θ≤1

∥∥∥∥(K̃Mn )′′(ϕm + θ(zMn − ϕm)
)∥∥∥∥ ≤ C8.

We skip the details. The required result then follows from Theorem 1. ut

Proposition 5. Let ϕm be the Nyström solution and zMn be the discrete modi-
fied projection solution. Then∥∥∥∥K′m(ϕm)

((
K̃Mn

)′
(ϕm)−K′m(ϕm)

)
(zMn −ϕm)

∥∥∥∥
∞

=O
(
h2 max

{
h̃2, hr+3

})
.

Proof. Note that

K′m(ϕm)
((
K̃Mn

)′
(ϕm)−K′m(ϕm)

)
= K′m(ϕm)(I −Qn)(K′m(Qnϕm)

−K′m(ϕm))Qn −K′m(ϕm)(I −Qn)K′m(ϕm)(I −Qn).

Using (2.3) and (3.16) it can be shown that

‖K′m(ϕm)(I −Qn)K′m(ϕm)‖ = O(h2).

By (2.4) and (3.18),

‖K′m(Qnϕm)−K′m(ϕm)‖ ≤ C2‖Qnϕm − ϕm‖∞ = O(max{h̃2, hr+1}).

Since by (2.3), ‖K′m(ϕm)‖ ≤ C1, it follows that∥∥∥K′m(ϕm)
((
K̃Mn

)′
(ϕm)−K′m(ϕm)

)∥∥∥ = O(h2).

The required result follows using the estimate for ‖zMn −ϕ‖∞ from Theorem 1.
ut

We now prove our main result about the order of convergence in the discrete
iterated modified projection method.

Theorem 2. Let r ≥ 1, κ be of class G2(r + 1, 0) and f ∈ Cr+1[0, 1]. Let ϕ be
the unique solution of (1.2) and assume that 1 is not an eigenvalue of K′(ϕ).
Let Xn be the space of piecewise polynomials of degree ≤ r with respect to the
partition (2.9) and Qn be the discrete orthogonal projection defined by (2.12).
Let z̃Mn be the discrete iterated modified projection solution defined by (2.17).
Then

‖z̃Mn − ϕ‖∞ = O
(

max
{
h̃2, hr+5

})
. (3.20)

Proof. We have from (3.14)

z̃Mn − ϕm = K′m(ϕm)(zMn − ϕm) +O(max{h̃2, hr+3}2).
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By Proposition 4.2 from Kulkarni-Rakshit [11], we have∥∥∥[I −K′m(ϕm)]
−1
∥∥∥ ≤ 4

∥∥∥(I −K′(ϕ))
−1
∥∥∥ .

Hence by Propositions 3–5 and the estimate (3.15),∥∥K′m(ϕm)(zMn −ϕm)
∥∥
∞ = O

(
max

{
h4 max{h̃2, hr+1}, h2 max{h̃2, hr+3}

})
,

It follows that ∥∥z̃Mn − ϕm∥∥∞ = O
(
h2 max{h̃2, hr+3}

)
.

Since, z̃Mn − ϕ = z̃Mn − ϕm + ϕm − ϕ and ‖ϕ− ϕm‖∞ = O
(
h̃2
)
, the required

result follows. ut

4 Piecewise constant function approximation: r = 0

In this section we assume that κ is of class G2(2, 0). If we follow the development
in Section 3, then we obtain the following orders of convergence:

‖zMn − ϕ‖∞ = O(h2), ‖z̃Mn − ϕ‖∞ = O(max{h̃2, h3}).

But by looking at the proofs more carefully, we are able to improve the above
estimates. While for r ≥ 1, both ‖K′m(ϕ)(I−Qn)v‖∞ and ‖(I−Qn)K′m(ϕ)(I−
Qn)v‖∞ are of the same order, we could show that for r = 0,

‖K′m(ϕ)(I −Qn)v‖∞ = O(h2) and ‖(I −Qn)K′m(ϕ)(I −Qn)v‖∞ = O(h3).

Consider Xn to be the space of piecewise constant functions with respect to
the partition (2.9). We choose Gauss 2 point rule as a basic quadrature rule:∫ 1

0

f(t)dt ≈ w1f(µ1)+w2f(µ2), w1 = w2 =
1

2
, µ1 =

1

2
− 1

2
√

3
, µ2 =

1

2
+

1

2
√

3
.

A composite integration rule with respect to the fine partition (2.1) is then
defined as ∫ 1

0

f(t)dt ≈ h̃

m∑
i=1

2∑
q=1

wq f(ζiq), ζiq = si−1 + µqh̃.

Recall from (2.10) that for f, g ∈ C(∆j),

〈f, g〉∆j = h̃

p∑
ν=1

2∑
q=1

wq f
(
ζ(j−1)p+νq

)
g
(
ζ(j−1)p+νq

)
.

The discrete orthogonal projection Qn,j : C(∆j)→ P0,∆j is defined as follows:

(Qn,jv)(t) =
1

p

[
p∑
ν=1

2∑
q=1

wqv
(
ζ(j−1)p+νq

)]
, t ∈ (tj−1, tj ],
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and

(Qn,1v)(0) =
1

p

[
p∑
ν=1

2∑
q=1

wqv
(
ζνq
)]
.

A discrete orthogonal projection Qn : C[0, 1]→ Xn is defined as

Qnv =

n∑
j=1

Qn,jv. (4.1)

The following result is crucial in obtaining improved orders of convergence.

Proposition 6. If v ∈ C1[0, 1], then

‖(I −Qn)K′m(ϕ)(I −Qn)v‖∞ = O(h3), (4.2)

‖K′m(ϕ)(I −Qn)K′m(ϕ)(I −Qn)v‖∞ = O(h4). (4.3)

Proof. Note that

‖(I−Qn)K′m(ϕ)(I−Qn)v‖∞= max
1≤i≤n

sup
s∈[ti−1,ti]

|(I−Qn,i)K′m(ϕ)(I−Qn)v(s)| .

For s ∈ [ti−1, ti],

(I −Qn,i)K′m(ϕ)(I −Qn)v(s)

=
1

p

p∑
ν=1

2∑
q=1

wq

{
K′m(ϕ)(I −Qn)v(s)−K′m(ϕ)(I −Qn)v

(
ζ(i−1)p+νq

)}

=
1

p

p∑
ν=1

2∑
q=1

n∑
j=1

j 6=i

wq〈`∗,s − `∗,ζ(i−1)p+ν
q

, (I −Qn,j)v〉∆j

+
1

p

p∑
ν=1

2∑
q=1

wq〈`∗,s − `∗,ζ(i−1)p+ν
q

, (I −Qn,i)v〉∆i . (4.4)

For j 6= i,

〈`∗,s − `∗,ζ(i−1)p+ν
q

, (I −Qn,j)v〉∆j
= (s− ζ(i−1)p+νq )〈D(1,0)`∗(η

(i−1)p+ν
q , ·), (I −Qn,j)v〉∆j ,

for some η
(i−1)p+ν
q ∈ (ti−1, ti). Define the following constant function

g(i−1)p+νq (t) = D(1,0)`∗

(
η(i−1)p+νq ,

tj−1 + tj
2

)
, t ∈ [tj−1, tj ].

Then

〈`∗,s − `∗,ζ(i−1)p+ν
q

, (I −Qn,j)v〉∆j

=
(
s− ζ(i−1)p+νq

)
〈D(1,0)`∗(η

(i−1)p+ν
q , ·)− g(i−1)p+νq , (I −Qn,j)v〉∆j .
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From (2.11) and (2.14),∣∣∣〈`∗,s − `∗,ζ(i−1)p+ν
q

, (I −Qn,j)v〉∆j
∣∣∣ ≤ C5

(
max
s6=t

∣∣∣D(1,1)`∗(s, t)
∣∣∣) ‖v′‖∞h4.

On the other hand, from (3.5) with r = 0,∣∣∣〈`∗,s − `∗,ζ(i−1)p+ν
q

, (I −Qn,i)v〉∆i
∣∣∣ ≤ 2C5C6‖v′‖∞h3, ν = 1, . . . , p.

Thus, from (4.4) and the above two estimates,

‖(I −Qn,i)K′m(ϕ)(I −Qn)v‖∆i,∞

≤ C5 max

{
2C6,max

s6=t

∣∣∣D(1,1)`∗(s, t)
∣∣∣} ‖v′‖∞h3.

This completes the proof of (4.2). Proceeding as in the proof of Proposition 2
and using the estimate (4.2), (4.3) is proved. ut

Theorem 3. Let κ be of class G2(2, 0) and f ∈ C2[0, 1]. Let ϕ be the unique
solution of (1.2) and assume that 1 is not an eigenvalue of K′(ϕ). Let Xn be
the space of piecewise constant functions with respect to the partition (2.9) and
Qn : L∞[0, 1] → Xn be the discrete orthogonal projection defined by (4.1). Let
zMn be the discrete modified projection solution in B(ϕ, δ0). Then

‖zMn − ϕ‖∞ = O
(

max{h̃2, h3}
)
. (4.5)

Proof. Recall from (3.10) that

‖zMn − ϕ‖∞ ≤ 6
∥∥∥(I−K′(ϕ)

)−1∥∥∥(‖K(ϕ)−Km(ϕ)‖∞+‖Km(ϕ)−K̃Mn (ϕ)‖∞
)
.

From (2.5) we have

‖K(ϕ)−Km(ϕ)‖∞ = O(h̃2). (4.6)

On the other hand,

‖Km(ϕ)−K̃Mn (ϕ)‖∞ ≤ ‖(I−Qn)(Km(Qnϕ)−Km(ϕ)−K′m(ϕ)(Qnϕ− ϕ))‖∞
+ ‖(I −Qn)K′m(ϕ)(Qnϕ− ϕ)‖∞. (4.7)

Recall from (2.7) that

Km(Qnϕ)−Km(ϕ)−K′m(ϕ)(Qnϕ− ϕ) = R(Qnϕ− ϕ),

where

R(Qnϕ− ϕ)(s) =

∫ 1

0

K′′m(ϕ+ θ(Qnϕ− ϕ))(Qnϕ− ϕ)2(s)(1− θ)dθ.
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Let

C9= max

{
sup

0≤t<s≤1

|u|≤‖ϕ‖∞+δ0

∣∣∣D(0,1,1)`1(s, t, u)
∣∣∣ , sup

0≤s<t≤1

|u|≤‖ϕ‖∞+δ0

∣∣∣D(0,1,1)`2(s, t, u)
∣∣∣ }.

It can be checked that

K′′m(ϕ+θ(Qnϕ−ϕ))(Qnϕ−ϕ)2(s) =

n∑
j=1

〈
(I−Qn,j)σn,s, ((I −Qn,j)ϕ)2

〉
∆j
,

where for a fixed s ∈ [0, 1],

σn,s(t) = σn(s, t) =
∂2κ

∂u2
(s, t, ϕ(t) + θ(Qnϕ− ϕ)(t)) , t ∈ [0, 1].

If s = ti for some i, then for all j and if s ∈ (ti−1, ti) for some i, then for j 6= i,

‖(I −Qn,j)σn,s‖∆j ,∞ ≤ C5C9h.

We then obtain
∥∥K′′m(ϕ+ θ(Qnϕ− ϕ))(Qnϕ− ϕ)2

∥∥
∞ = O(h3). It follows

that

‖(I −Qn)(Km(Qnϕ)−Km(ϕ)−K′m(ϕ)(Qnϕ− ϕ))‖∞ = O(h3). (4.8)

Using the estimate (4.2) of Proposition 6 and (4.7), we thus obtain

‖Km(ϕ)− K̃Mn (ϕ)‖∞ = O(h3).

The required result follows from (4.6) and the above estimate. ut

Theorem 4. Let κ be of class G2(2, 0) and f ∈ C2[0, 1]. Let ϕ be the unique
solution of (1.2) and assume that 1 is not an eigenvalue of K′(ϕ). Let Xn be
the space of piecewise constant functions with respect to the partition (2.9) and
Qn : L∞[0, 1] → Xn be the discrete orthogonal projection defined by (4.1). Let
z̃Mn be the discrete iterated modified projection solution defined by (2.17). Then

‖z̃Mn − ϕ‖∞ = O
(

max
{
h̃2, h4

} )
. (4.9)

Proof. Recall from Section 3.3 that

z̃Mn − ϕm = K′m(ϕm)(zMn − ϕm) +O(‖zMn − ϕ‖2∞).

Hence by Theorem 3,

z̃Mn − ϕm = K′m(ϕm)(zMn − ϕm) +O
(

max{h̃2, h3}2
)
. (4.10)

We now obtain estimates for the three terms in the expression forK′m(ϕm)(zMn −
ϕm) given in (3.15). Note that

‖Km(ϕm)− K̃Mn (ϕm)‖∞ ≤ ‖(I −Qn)(Km(Qnϕm)−Km(ϕm)

−K′m(ϕm)(Qnϕm − ϕm))‖∞ + ‖(I −Qn)K′m(ϕm)(Qnϕm − ϕm)‖∞. (4.11)
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Recall from (2.7) that

yn = Km(Qnϕm)−Km(ϕm)−K′m(ϕm)(Qnϕm − ϕm) = R(Qnϕm − ϕm).

Now proceeding as in the proof of Theorem 3, we obtain

‖yn‖∞ = ‖R(Qnϕm − ϕm)‖∞ = O
(

max
{
h̃2, h3

})
.

Note that

‖K′m(ϕm)(I −Qn)yn‖∞ ≤ C7‖yn‖∞h = O
(
hmax

{
h̃2, h3

})
. (4.12)

Using (4.3) it can be seen that

‖K′m(ϕm)(I −Qn)K′m(ϕm)(I −Qn)ϕm‖∞ = O
(
h4
)
.

Thus, from (4.11), (4.12) and the above estimate, we obtain

‖K′m(ϕm)(Km(ϕm)− K̃Mn (ϕm))‖∞ = O
(
hmax

{
h̃2, h3

})
. (4.13)

We recall the following result from Proposition 4:∥∥∥∥K̃Mn (zMn )− K̃Mn (ϕm)−
(
K̃Mn

)′
(ϕm)(zMn − ϕm)

∥∥∥∥
∞

≤ C8

∥∥zMn − ϕm∥∥2∞ = O
(

max{h̃2, h3}2
)
. (4.14)

Note that ∥∥K′m(ϕm)
((
K̃Mn

)′
(ϕm)−K′m(ϕm)

)∥∥ = O(h).

Hence∥∥K′m(ϕm)
((
K̃Mn

)′
(ϕm)−K′m(ϕm)

)
(zMn −ϕm)

∥∥
∞ = O

(
hmax{h̃2, h3}

)
. (4.15)

We thus obtain the following estimate using (3.15), (4.13)–(4.15):

‖K′m(ϕm)(zMn − ϕm)‖∞ = O
(
hmax{h̃2, h3}

)
.

From (4.10) it follows that ‖z̃Mn −ϕm‖∞=O(hmax{h̃2, h3}). Since ‖ϕ−ϕm‖∞ =
O(h̃2), the required result follows. ut

Remark 2. It can be shown that

‖zGn − ϕ‖∞ = O (h) , ‖zSn − ϕ‖∞ = O
(
h2
)
. (4.16)
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5 Numerical results

For the sake of illustration, we quote some numerical results from Grammont
et al [7] for the following example considered in Atkinson-Potra [3].

Consider

x(s)−
∫ 1

0

κ(s, t) [f(t, x(t)] dt =

∫ 1

0

κ(s, t)z(t)dt, 0 ≤ s ≤ 1, (5.1)

where

κ(s, t) =

{
(1− s)t, 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1,
and f(t, u) =

1

1 + t+ u

with z(t) so chosen that ϕ(t) =
t(1− t)
t+ 1

is the solution of (5.1). In this example,

r can be chosen as large as we want.

5.1 Piecewise constant functions (r = 0)

Let Xn be the space of piecewise constant functions with respect to the partition
(2.9) and Qn : L∞[0, 1]→ Xn be the discrete orthogonal projection defined by
(4.1). The numerical quadrature is chosen to be the composite Gauss 2 rule
with respect to partition (2.1) with m = n2 subintervals. Then h̃ = h2.

In Table 1 and Table 2, the computed orders of convergence in the dis-
crete Galerkin, discrete iterated Galerkin, discrete Modified Projection and
the discrete iterated Modified Projection methods are denoted respectively by
δG, δS , δM and δIM . It can be seen from Table 1 that the computed values
of order of convergence match well with the theoretically predicted values in
(4.5), (4.9) and (4.16).

Table 1. Piecewise constant functions

n ‖ϕ−zGn ‖∞ δG ‖ϕ−zSn‖ δS ‖ϕ− zMn ‖∞ δM ‖ϕ− z̃Mn ‖∞ δIM

2 1.22e−1 8.40e−3 4.34× 10−3 5.23× 10−3

4 8.65e−2 0.49 2.35e−3 1.84 4.31× 10−4 3.33 3.14× 10−4 4.06

8 5.09e−2 0.77 6.22e−4 1.92 5.28× 10−5 3.03 1.89× 10−5 4.05

16 2.70e−2 0.91 1.59e−4 1.96 6.92× 10−6 2.93 1.36× 10−6 3.80

32 1.33e−2 1.02 4.02e−5 1.98 8.38× 10−7 3.05 4.55× 10−8 4.90

5.2 Piecewise linear functions (r = 1)

Let Xn be the space of piecewise linear polynomials w.r.t. the partition (2.9)
and Qn be the discrete orthogonal projection defined by (2.12). We choose the
composite Gauss 2 point rule with n2 intervals for the Galerkin methods and
the composite Gauss 2 point rule with n3 intervals for the modified projection
methods. In the latter case h̃2 = h6.
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Table 2. Piecewise linear functions

n ‖ϕ−ϕG
n ‖∞ δG ‖ϕ−ϕS

n‖ δS ‖ϕ− ϕM
n ‖∞ δM ‖ϕ− ϕ̃M

n ‖∞ δIM

2 1.32e−1 4.97e−3 1.54× 10−3 1.34× 10−3

4 4.98e−2 1.41 4.46e−4 3.48 1.12× 10−4 3.78 1.89× 10−5 6.15

8 1.58e−2 1.66 3.89e−5 3.52 1.06× 10−5 3.40 2.48× 10−7 6.25

16 4.51e−3 1.81 3.15e−6 3.62 9.10× 10−7 3.54 2.92× 10−9 6.41

It can be seen from Table 2 that the computed values of the orders of
convergence match well with the theoretically predicted values in (3.11), (3.13)
and (3.20).
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