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Abstract. This work contains a description of a technique for constructing two
synthetic indicators (measures) using a graphical presentation in the form of radar
maps. The paper presents the structure and properties of indicators and their formal
notation specially created for this purpose using the analogon of a scalar product of
vectors. In particular, it proves the theorem on polygon fields, induced by radar maps,
prepared for structural vectors, which allows to build concentration indicators. In or-
der to demonstrate the usefulness of tools constructed by such means, the example
shows how significant structural changes can be imperceptible when utilizing only the
GINI concentration indicator’s value, but are noticeable when using the concentra-
tion indicator developed by the authors. In addition, it illustrates the change in the
value of concentration indicators (GINI and the indicator developed by the authors)
on two families of Lorenz curves, together with changes in concentration. The prac-
tical application of this technique for constructing indicators that create rankings is
presented on empirical data on the level of material deprivation in the countries that
joined the EU in 2004 and 2007. These data have also been annotated (for compar-
ison purposes) using the so-called overrepresentation maps (Grade Correspondence
Analysis method).

Keywords: radar chart, concentration measure, S-shift operator.

AMS Subject Classification: 65H10; 68W30.

1 Introduction

The graphical presentation of data plays a very important role in the Multidi-
mensional Data Analysis. The method of data presentation leads to the con-
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struction of measures/indicators for evaluation the objects described by these
data, in particular, to organize them and build various data rankings (as for
example in [12, 13]). However, apart from graphical interpretation, the basic
aspect of each measurement is its basic properties. Sometimes these meth-
ods give us misconceptions about data structure. Radar charts are a useful
tool for graphical analysis of multidimensional data [11]. In the literature, the
name radar charts is also known under other names [11]: polar graph, Kiviata
diagram, star chart, irregular polygon, etc.

Let us assume that the variables X1, ..., Xn, with non-negative values, de-
scribing different objects, have identical weights and are expressed on the same
scale. Then, for the selected object x = (x1, ..., xn), the value of the synthetic
index W of the x object can be taken as the chart field, with the bases of
particular bars equal to 1

n and values x1, ..., xn. Let the vector x1, ..., xn, where
0 ≤ x1 ≤ x2 ≤ ... ≤ xn and x1 + ... + xn = 1, show a specific structure for
a certain population of Zs, (s = 1, ...,m) composed of ms objects. However,
let the vector x̂ = (x̂1, ..., x̂n), where for i = 1, ..., n, denotes the accumula-
tion of the structure. The GINI concentration factor, calculated for a given
structure, is expressed as a supplement to the one of the quotient of fields
between the OX axis and two curves determined by the sets of points: the
first curve

(
(0; 0), ( 1

n ; x̂1), ( 2
n ; x̂2), ..., (n−1

n ; x̂n−1), (1; 1)
)

and the second curve(
(0; 0), ( 1

n ; 1
n ), ( 2

n ; 2
n ), ..., (n−1

n ; n−1
n ), (1; 1)

)
(see in [6, 7]).

Graphically, these curves are the diagonal of the unit square and the Lorenz
curve (see in [1]). Both of these, synthetic index W and GINI measures,
are used as tools for multidimensional comparative analysis, based on graphs
of objects in the Cartesian system. Using radar charts, we can create the
equivalents of these two indicators [2,3,4]. In order to determine the properties
of these indicators, the authors defined analogs of the scalar product of vectors
as S-scalar product) and the standard of the vector (under the name S-norm).
The square of the vectors standard considered here is equal (to the nearest
constant multiplier) to the field of the polygon formed by the radar plot of
these vectors.

The work presents the properties of two measures, which in practical appli-
cations can be used to build rankings of objects described by many variables
and to assess the level of concentration of features f or objects o in a set (pop-
ulation) (see in [13, 14]). Radar methods have proved very useful for data
analysis in scientific research (e.g. see in [2]) and e.g. Big data (see in [12])
due to the easy visualization of multidimensional data. These methods meet
the basic postulate of stability of the applied method, for example they do not
depend on the ordering of the vectors features describing the given object.

It is worth noting that in addition to the definition of the indicator itself
using geometric interpretation, a very important issue is to determine the prop-
erties of these indicators. For this purpose we have attempted to describe them
formally. Some properties of the indicators discussed in earlier papers (see [4]
and [3]). In this paper, an analogon of the scalar product of vectors (under
the name S-scalar product) and the vector norm (under the name S-norm) has
been introduced.

These concepts were used to formally present the technique of creating and
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study properties of indicators (using the idea of presentation in the form of
radar charts). The usefulness of the developed indicators was presented by the
Authors in this paper on empirical data on the level of material deprivation in
the countries that joined the EU in 2004 and 2007. The presentation of data
in the form of overrepresentation maps was also used for this purpose.

The concepts discussed in this work and our previous works were used to
formally present the technique for creating and representing the properties of
indicators using radar maps. This work presents for the first time the formal
construction of an analogon of a scalar product of vectors used to build indica-
tors and study their properties. The work consists of 5 sections and an abstract,
conclusions and bibliography. Section 2 presents a mathematical description of
building synthetic indicators with the use of radar maps and a verification of
their properties. Section 3 presents the formal structure of the construction of
a synthetic indicator for ordering objects. Section 4 shows how a concentration
indicator can be created and performs a comparative analysis of the properties
of the two discussed indicators (GINI and the one constructed by the authors).
Finally, in the last Section 5 we discuss the results of the analysis of empirical
data. In addition, we performed a similar analysis of empirical material using
overrepresentation maps in order to compare the two methods.

2 S-shift operator

2.1 S-scalar product

Let us consider here and define the S-shift operator. Let X = Rn be the n-
dimensional space of Euclid. The set of all linear operators whose fields are
equal (X space with linear subsets) and whose values also belong to the X
space is denoted by L0(X).

Definition 1. S-operator S : X→ X will be the S-shift operator if for every-
one x = (x1, x2, ..., xn) ∈ X:

Sx := (x2, x3, ..., xn, x1).

Theorem 1. Let I be the identifier operator. The S-operator has the following
properties: a) S ∈ L0(X), b) Sn = I, c) S-operator is a reversible operator,
i.e. there is such an operator S−1 ∈ L0(X) that we have on X : SS−1 =
S−1S = I, d) if a ∈ X is a constant vector, that is a = (a, a, ..., a) then
Sa = a.

Proof. a). Let x = (x1, x2, ..., xn) ∈ X and y = (y1, y2, ..., yn) ∈ X, α, β ∈ R
be freely set vectors, numbers, respectively. By definition, we have:

S(αx + βy) = S(αx1 + βy1, αx2 + βy2, ..., αxn + βyn)

= (αx2 + βy2, αx3 + βy3, ..., αxn + βyn, αx1 + β, y1)

= α(x2, x3, ..., xn, x1) + β(y2, y3, ..., yn, y1) = αSx + βSy.

c). The reverse operator to S is S−1x := (xn, x1, x2, ..., xn−1), where x =
(x1, x2, ..., xn). It’s easy to check that SS−1 = S−1S = I.

Statements b) and d) follow directly from definition. ut

Math. Model. Anal., 25(3):473–489, 2020.
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Definition 2. The mapping of the product of the space X×X into a set of
real numbers R, determined by the formula: 〈x,y〉S := 〈x,Sy〉 we call S-scalar
product of x and y vectors, where the symbol 〈·〉means the scalar product. It is
easy to check that the S-scalar product so defined has the following properties:

Theorem 2. If x,y ∈ X are given vectors and α, β ∈ R then:

a) 〈αx,y〉S = 〈x, αy〉S = α〈x,y〉S, b) 〈x + y, z〉S = 〈x, z〉S + 〈y, z〉S,

c) 〈x,y + z〉S = 〈x,y〉S + 〈x, z〉S, d) 〈x,x〉S = 〈Sx,x〉, e) 〈Sx,Sy〉 = 〈x,y〉.

Note that the scalar S-scalar product does not satisfy the third and fourth
axioms of the scalar product of linear space elements (see in [5]). The following
example proves this.

Example 1. Let n=3, x = (1, 0, 0), y = (0, 0, 1), the symbol of ◦ means the
scalar multiplication operation. We have then:

Sx = y, Sy = (0, 1, 0), 〈x,y〉S = 〈x,Sy〉 = (1, 0, 0) ◦ (0, 1, 0) = 0,

〈y,x〉S = 〈y,Sx〉 = (0, 0, 1) ◦ (0, 0, 1) = 1,

〈x,x〉S = 〈x,Sx〉 = (1, 0, 0) ◦ (0, 0, 1) = 0.

It follows from the above that 〈x,y〉S 6= 〈y,x〉S and 〈x,x〉S = 0 for the vector
x 6= (0, ..., 0).

2.2 Pseudonorms generated by S-scalar product

Let us assume the following definition of a norm generated by a S-scalar prod-
uct.

Definition 3. The function ‖‖S : X → R+, where R+ := {α : α ≥ 0} deter-
mined by the formula:

‖x‖S := |<x,x>S |1/2 =

(
1

n
|
n∑
k=1

xkxk+1|
)1/2

,

where x = (x1, x2, ..., xn), xn+1 := x1 we will be called the S-norm and the
number ‖x‖S the S-norm of the x-vector. In some cases the S-norm can be
given a simple geometrical interpretation.

Example 2. Let x = (x1, x2, ..., xn) ∈ Rn, 1 ≥ xi ≥ 0, i = {1, 2, ..., n}, n ≥ 2.
On the plane, we enter the regular n-polygon into a unit circle (with radius
r=1) with the center at the beginning of the coordinate system and connect the
vertices of this polygon with the center of the system. The straight segments
of length 1 obtained in this way are determined successively by O1,O2, ...,On

(to draw attention), starting from the section lying on the vertical axis. Co-
ordinates of the vector x can be represented by means of a radar plot. For
this purpose, let us denote by xi the points on the axis 0i arising from the
intersection of the axis 0i with the circle with the center at the beginning of
the system and the radius equal to xi, i = 1, 2, ..., n.
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Figure 1. Radar chart for vector x = (0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9). Painted circles
are the tops of a regular octagon, open squares are the coordinates of the x vector. Source:

own study.

The following Figure 1 (radar chart) gives the illustrations for the vector:
x = (0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9). Painted dots indicate the vertices of a
regular polygon (octagon). The empty squares correspond to the coordinates
of the vector x.

By connecting the points in order x1 with x2, x2 with x3, ..., xn with x1
we obtain a n-polygon (n = 8) whose field S1 (area of the polygon defined by
the vector x – points marked with the squares) is defined by the formula:

S1 =

n∑
i=1

1

2
xixi+1 sin

(2π

n

)
=

1

2
sin
(2π

n

) n∑
i=1

xixi+1 =
1

2
n sin

(2π

n

)
‖x‖2S ,

where xn+1 := x1. The area of the regular n-polygon inscribed in a circle (of
radius 1) specifies the formula:

S0 =

n∑
i=1

1

2
· 1 · 1 · sin

(2π

n

)
=

1

2
n sin

(2π

n

)
,

whereas the ratio of fields of these polygons S1/S0 is determined by the number:

Ŝ(x) :=
S1

S0
=

1

n

n∑
i=1

xixi+1 = ‖X‖2S ,

From this follows the following note.

Attention. The square of the S-norm of the vector x is the quotient of
the area of the polygon induced by this vector and the field of the regular n-
polygon, induced by the unit vector, i.e. ‖X‖2S = Ŝ. So the question is whether
W (x) := ‖x‖S can be a good indicator for organizing linear objects (each of
which is described with n values). The considerations presented below allow
us to resolve this dilemma.

Math. Model. Anal., 25(3):473–489, 2020.
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2.3 S-norms of vectors belonging to the cone Rn+
Let be the cone in space Rn

x = Rn+ := {x = (x1, x2, · · · , xn) : xi ≥ 0, i = 1, 2, · · ·n},

vectors 0 = (0, 0, · · · , 0), 1 = (1, 1, · · · , 1). Let

x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ X.

If
xk > yk, (xk ≥ yk), for k = 1, 2, · · · , n,

then we will write that x > y, (x ≥ y).
It is not difficult to notice that if x ≥ y and x 6= y it is natural to call the

vector x better (higher evaluated) than the vector y. This means that none of
the components of the vector x is smaller than the corresponding components
of the vector y, and at least one of them has a higher value, i.e. there is such
a k ∈ [1, n] that xk > yk.

Let the equality h(x) = 〈x,x〉S be satisfied. Assume the following designa-
tions for the mapping kernel h: kerh := {x ≥ 0 : h(x) = 0}, and

Ne := {x = (0, x2, 0, x4, 0, · · · , 0, xn) ∨ x = (x1, 0, x3, 0, x5, 0, · · · , xn−1, 0)},

when n is an even number,

No := {x = (0, x2, 0, x4, 0, · · · , 0, xn) ∨ x = (x1, 0, x3, 0, · · · , 0, xn−2, 0, 0)},

when n is an odd number and

N :=

{
Ne, when n is an even number,
No, when n is an odd number.

The following theorem can be proved.

Theorem 3. Scalar product 〈x,x〉S = 0⇔ x ∈ N.

Conclusion. Let it be x ∈ X, S-norm of vector ‖x‖S = 0 ⇔ x ∈ N. If the
x,y ∈ X vectors meet the conditions of x ≥ y and x 6= y, then it is obvious
that ‖x‖S ≥ ‖y‖S .

For x,y ∈ N : x ≥ y and x 6= y equality is fulfilled ‖x‖S = ‖y‖S . The
equality of these norms can also occur for x,y /∈ N. This is illustrated by the
following Example 3.

Example 3. Let x = (1, 0, 2, 0, 1), y = (1, 0, 1, 0, 1). Then we have that x,y /∈
N0,x ≥ y and x 6= y,

Sx = (0, 2, 0, 1, 1), Sy = (0, 1, 0, 1, 1),

(‖x‖S)2 = (1 · 0 + 0 · 2 + 2 · 0 + 0 · 1 + 1 · 1)/5 = 1/5,

(‖y‖S)2 = (1 · 0 + 0 · 1 + 1 · 0 + 0 · 1 + 1 · 1)/5 = 1/5.

From here we have ‖x‖S = ‖y‖S . The following lemma specifies for which
x,y ∈ X \N, the inequality of ‖x‖S > ‖y‖S is met. The following property is
true.
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Property 1. If the vectors x = (x1, x2, ..., xn),y = (y1, y2, ..., yn) ∈ X meet
the conditions x ≥ y and y 6= x and there is such a k ∈ [1, n] : xk > yk and
xk−1xk+1 > 0, then ‖x‖S > ‖y‖S .

The following conclusion follows from the above property.
Conclusion. If x,y ∈ X vectors meet the conditions x ≥ y > 0 and x 6= y
then ‖x‖S > ‖y‖S .

The following theorem can be proved.

Theorem 4. Function f(x) = f(x1, x2, . . . , xn) := ‖x‖S ,x ∈ X,x > 0, with
fixed values of x1, x2, · · · , xj−1, xj+1, . . . , xn is an increasing function of the
real variable xj > 0, for j ∈ [1, n].

Let’s take the following note:

N1 := {x ∈ X : x = (0, 0, . . . , 0,xi, 0, . . . , 0, 0), i ∈ [1, n]},

i.e. set N1 contains all those vectors x ≥ 0, for which all coordinates - except
perhaps one, are equal to zero. It’s easy to see that N1 ⊂ N. Let the vector x =
(x1, x2, . . . , xn) ∈ X be arbitrarily set. Let us denote the j -th permutation of
the set of x-coordinates by xj := (x1j , x2j , · · · , xnj), where j = 1, 2, ..., n!,x1 :=
x.

You can see that the following note is true.
Attention. If x ∈ N1 then ‖x‖S = 0 for each j = 1, 2, . . . , n!

Further, without losing the general nature of our considerations, one can
make the following assumption that regarding the permutation of the set of
coordinates of the considered vectors: if x,y ∈ X satisfy the conditions: x ≥ y
and x 6= y then these conditions are also met by vectors that are permutations
of their coordinates, i.e. xi ≥ yi and xi 6= yi for each j = 1, 2, . . . , n!

The following statements can be proved.

Theorem 5. If the vector x ∈ X\N1 then there is permutation of the vector
x-vector xj coordinates, which S-norm is greater than zero, i.e. there is such
a j ∈ {1, 2, · · · , n!} that ‖xj‖S > 0.

Theorem 6. If the vectors x ∈ X\N1 and y ∈ X meet the conditions: x ≥ y
and x 6= y then there are such permutations xj, yj vectors x, y that ‖x‖S >
‖y‖S, where j ∈ {1, 2, · · · , n!}.

Theorem 7. Let n > 1 and vector x ∈ X = Rn+, natural number k :=
n!,x1,x2, · · · ,xk ∈ X be the vectors obtained from the vector x through all
permutations of its coordinates. If x ∈ X\N1 then a finite set of k-numbers of
A := {‖x1‖S , ‖x2‖S , · · · , ‖xk‖S} contains at most 0.5(n− 1) different values.

Next, we will formulate further definition.

Definition 4. If x ∈ X then the numbers:

‖x‖M := max
1≤j≤k

‖xj‖S , ‖x‖Ξ :=
1

k

k∑
j=1

‖xj‖S , ‖x‖m := min
1≤j≤k

‖xj‖S

will be called the maximum, average and minimum norm of the x vector,
respectively.

Math. Model. Anal., 25(3):473–489, 2020.
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Directly from the definition it follows that:
Attention. If the vector x ∈ N1, then ‖x‖M = ‖x‖S = ‖x‖m = 0.
Attention. For each 0 6= x ∈ X : ‖x‖M ≥ ‖x‖Ξ ≥ ‖x‖m > 0.

3 Synthetic measures induced by S-norms

Let the x ∈ X = Rn+ vector, the natural number k := n!, x1,x2, ...,xk ∈
X be the vectors obtained from the vector x through all permutations of its
coordinates. The following definition is met.

Definition 5. Let it be a vector x = (x1, x2, · · · , xn) ∈ X and x̄ = (x1 + x2 +
. . .+ xn)/n. The numbers

M(x) :=

{
‖x‖M forx ∈ X\N1,
x̄ forx ∈ N1,

s(x) :=

{
‖x‖Ξ forx ∈ X\N1,
x̄ forx ∈ N1,

m(x) :=

{
‖x‖m forx ∈ X\N1,
x̄ forx ∈ N1

will be called radar synthetic measures of the vector x ∈ X: maximum, medium
and minimum, respectively.

From the definitions and previous properties follows the following note.
Attention. If x,y ∈ X meet the conditions: x ≥ y and x 6= y then

a)M(x) > M(y), b)S(x) > S(y), c)m(x) ≥ m(y).

The following theorems follow.

Theorem 8. Let x = (x1, x2, . . . , xn) ∈ x ∈ X\N1 then at fixed values
x1, x2, . . . , xj−1, xj+1, . . . , xn radar synthetic measures (m(x), s(x),M(x)) are
functions that grow in the real variable xj ≥ 0, for j ∈ [1, n].

Theorem 9. If x, a = (a, a, . . . , a) ∈ X, α ∈ R+, 1 = (1, . . . , 1), then:

a. M(αx) = αM(x);S(αx) = αS(x);m(αx) = αm(x),

b. M(a) = M(a1) = aM(1) = a;
S(a) = S(a1) = aS(1) = a;
m(a) = m(a1) = am(1) = a,

c. If 0 ≤ x = (x1, x2, . . . , xn) ≤ 1, then
0 ≤ m(x) ≤ S(x) ≤M(x) ≤ 1.

It follows from the above considerations that the indicator W (x) := ‖x‖S
can be used only in special practical situations, because it has undesirable
properties in general (its value depends on the order of the x-coordinates and
assumes a value of zero in too many cases).

A typical example of its use would be to compare the concentration of
features (good) in different populations, which will be described in the next
section. On the other hand, the meters m(x), S(x) and M(x) no longer have
these disadvantages for x ∈ X\N1.
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4 Measure of concentration induced by S -norm

4.1 Concentration measurement

Practitioners studying the degree of income and resource diversification in the
possession of a certain group of objects most often present the following pos-
tulates regarding the d(x,y) indicator used for measurement (in the case of
aggregated data it concerns the differentiation between the structure of x units
and the structure of y resources owned by them):

I. the index assumes a value equal to zero if the good is distributed evenly
among all objects (the both structures are identical, i.e. x = y);

II. the values of the indicator are consistent with the principle of trans-
fers, which states that the transfer of a poorer object to any part of its
resources to the richer always entails an increase in inequality in the pop-
ulation (this means that the flow of values between the components of xi
and xi+s increases the value of d(x,y));

III. sensitivity of transfer (transfer sensitivity axiom): the impact on transfer
of goods from a ”poor” object to a ”poorer” object to a change in the
value of the indicator, with a constant transfer rate, the higher the value
of good in possession of the object from which the transfer was made
(i.e. further away is the component from which the transfer originates
in relation to the component to which the transfer affects the bigger the
value should change);

IV. the value of the indicator will not change if the same good proportions
in the possession of particular objects (such as scale invariance axiom)
change with the same proportional changes.

The most popular indicator used to measure the concentration (inequality)
of the distribution that meets these demands is the GINI coefficient defined
as the doubled field between the Lorenz curve and the diagonal of the unit
square (see in [1,8]). The next section will present the method of creating the
measurement using the presentation of good structures in the form of radar
charts.

4.2 Concentration measure induced by a radar vector graph

Let be

X ⊃ Rn+ := {x = (x1, x2, . . . , xn) : xi ≥ 0, i = 1, 2, . . . , n}, n ∈ N,

Rn+ ⊃ Ω := {x = (x1, x2, . . . , xn) ∈ Rn+ :

n∑
i=1

xi = 1}.

Elements of Ω set are called structural vectors or short structures. The vector
e = (1/n, 1/n, · · · , 1/n) will be called an egalitarian structure and vector o =
(0, 0, · · · , 0, 1) will be called an extremely concentrated structure.

Math. Model. Anal., 25(3):473–489, 2020.
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Let be x = (x1, x2, . . . , xn) ∈ X, the set A := {x1, x2, . . . , xn}. The vec-
tor x

′
:= (x

′

1, x
′

2, . . . , x
′

n) will be called the ordered vector, where the follow-
ing order x

′

1 ≤ x
′

2 ≤ . . . ≤ x
′

n is the permutation of the set A and vector

xa := (xa1 , x
a
2 , . . . , x

a
n ), for xai :=

∑i
j=1 xj , i = 1, 2, . . . , n will be called the

accumulation of the x vector.
If x = (x1, x2, . . . , xn) ∈ Ω then by the symbol x

′a := (x
′a
1 , x

′a
2 , . . . , x

′a
n ),

where x
′a
i :=

∑i
j=1 x

′

j , i = 1, 2, . . . , n. we will understand the vector created
respectively by ordering and accumulation of the x-structure.

In order to define a concentration coefficient that uses radar vectors and
has identical properties as the GINI coefficient, the following theorem can be
proved.

Theorem 10. If radar polygons Wx′a , Wea they are generated by x
′a and

e
′a vectors, respectively, then Wx′a ⊆We′a .

Using the above theorem, it can be shown that the measurement based on
the structure presentation in the form of a radar plot can be used to measure
concentration. The following theorem can be proved.

Theorem 11. If P (x) denotes the area of the radar polygon induced by the
structure x = (x1, x2, . . . , xn) ∈ Ω, then the coefficient

GR = 1− P (x
′a)

P (ea)
= 1− 6n

2n2 + 4

[ n−1∑
i=1

x
′a
i x

′a
i+1 + x

′

1

]
= 1− 6n2

2n2 + 4
‖x

′a‖2S ,

where x
′a :=

∑i
j=1 x

′

j it meets all four basic demands (I, II, III, IV ) of the
concentration.

Definition 6. The measurement defined by the above formula will be called
a radar concentration factor (e.g. income inequality). It can be shown directly
from the definition that the GR meets the conditions:

GR(e) = 0, GR(0) = 1.

The obtained formula for GR coefficient is similar to the formula for the
standardized GINI coefficient (that is, the classic GINI measurement mul-
tiplied by n/(n − 1), then it meets the condition G(o) = 1, which takes the
form:

G∗ = 1− 2

n− 1

n−1∑
i=1

x
′a
i .

4.3 GINI concentration index vs GR index

Let’s consider two examples to illustrate the differences in response to changes
in GR and GINI indicators.
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Figure 2. Left side: an exemplary data structure, the concentration of which is described
by the Lorenz curves. Right side: there are clear differences between these curves for GINI

and GR indicators. Source: own study.

Example 4. We have ten objects, whose structures are presented in the rows
of the Table 1, named Z0, Z1, Z2, Z3. The Z0 is an egalitarian structure.
Graphically, the Z0, . . . , Z3 structures are illustrated in Figure 2: on the left
as Lorenz curves, and on the right they were presented as radar charts. There
are clear differences between these curves for GINI and GR indicators (see
Figure 2). The polygon designated by (x̂1, x̂2, . . . , x̂n−1, 1) is contained in the
polygon designated by (see Figure 2) (1/n, 2/n, . . . , (n− 1)/n, 1).

Table 1. The values of the GINI concentration index and the GR index for the structures
(Z0 ÷ Z3) showing the distribution of income, where: D01, ..., D10 are the names of the
objects.

— D01 [%] D02 [%] D03 [%] D04 [%] D05 [%] D06 [%] D07 [%] D08 [%] D09 [%] D10 [%] GINI GR

Z0 10 10 10 10 10 10 10 10 10 10 0 0
Z1 1.30 2.30 4.00 4.40 5.02 6.00 17.00 17.80 18.80 23.38 0.422 0.5242
Z2 0.89 2.75 6.70 7.00 7.10 7.20 7.40 8.00 17.60 35.36 0.422 0.5858
Z3 5.31 5.31 5.31 5.31 5.31 5.31 5.32 5.32 5.32 52.18 0.422 0.6446

It’s easy to check that the fields under Lorenz curves are identical, so GINI
doesn’t notice the changes, and the fields of the radar charts are getting smaller.
Thus, the GR indicator catches the differences between Z0 and the structures
Z1, Z2, Z3.

The figure on the right side shows GR measure and the structural differences
between the curves (which can be seen on the radar charts – they differ in fields).

It illustrates how significant changes may be unnoticeable for the GINI
indicator, but will be noted when we apply two GINI i and GR indices (an
index developed by the authors using radar charts) for the analysis. The level
of material deprivation in Poland and Latvia in 2008, 2011 and 2017 is shown
in Figure 6.

Example 5. The first example concerned specific changes between structures.
In order to approximate the differences in sensitivity to changes in regular
situations, we will present in the next example changes in 10-element structures
that are built by discretization of the curves determined using the Lorenz curves

Math. Model. Anal., 25(3):473–489, 2020.
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(see Figure 3). L1(t) = ta, and L2(t) = Φ[Φ−1(t)− µ], t ∈ [0, 1] for

µ = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].

Figure 3. Lorenz curves for different L(t). Source: own study.

The values of GR and GINI indicators are presented in Figure 4.

Figure 4. GR and GINI indicators. Source: own study.

Figure 3 presents Lorenz curves for structures obtained from curves defined
by the formula:

(Li(0.1), Li(0.2)− Li(0.1), · · · , Li(1)− Li(0.9)),

a = [1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, .75, 3, 3.25, 3.5] and µ = [0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] for i = 1 (left side) and i = 2 (right side).

5 Data ranking due to the level of material deprivation

In this section, we will present the usefulness of indicators constructed on the
basis of radar charts to present the ranking on the level of material deprivation
in 12 countries that joined the EU in 2004 and 2017 (based on data from
Eurostat).
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Table 2. Measure values (‖x‖S)2 for 12 EU countries that joined the EU in 2004 and 2007.
Source: own study based on EUROSTAT data.

2008 2017
Countries W1 = ‖X‖2 Rank1 W2 = ‖X‖2 Rank2 W2 −W1 Rank

Bulgaria 5.39 12 6.10 12 0.71 5
Czech Rep. 8.01 2 8.63 2 0.62 7

Estonia 8.19 1 8.33 4 0.14 10
Cyprus 7.57 5 7.38 8 -0.2 12
Latvia 6.72 9 7.32 9 0.6 8

Lithuania 7.50 6 7.32 10 -0.18 11
Hungary 6.61 10 7.49 7 0.88 4

Malta 7.76 4 8.67 1 0.91 2
Poland 6.92 8 8.11 5 1.19 1

Romania 5.77 11 6.67 11 0.88 3
Slovenia 8.00 3 8.35 3 0.35 9
Slovakia 7.30 7 7.95 6 0.65 6

Eurostat data can easily extract information on the population structure
of individual 12 countries due to the declared number of material deprivation
symptoms (for j -th country xj = (100%, 0%, ..., 0%) means that everyone in
the country declares no deprivation symptoms). Material deprivation is the
percentage of persons in households declaring the lack of possibility to satisfy
several needs due to financial reasons (see in [9]). In other words, we have avector

xj = (xj0, xj1, ..., xj9), j = 1, 2, ..., 12

for each country, where xji for i=0,1,...,9 is the percentage of declared i-
symptoms of material deprivation.

In this case, we have a naturally established order of coordinates of the
vector x describing the structure of the population of a given country. The
best situation is in a country in which it would be represented by the vector
x = (1, 0, ..., 0), and the worst would be if the representation was realized by
the vector x = (0, 0, ..., 0, 1).

It is easy to see that radar charts of x̂j vectors (j =1,2,...,12) are a good
presentation, which in an intuitive way presents the situation regarding the
level of material deprivation in such a way that the larger is the field of the
polygon, the better is situation in the country. We present the visualization
in the form of radar charts for 2017 in Figure 1, and the values of the meter
(‖(x)S‖)2 for 2008 and 2017 in Table 2.

Table 2 (and Figure 5) shows that in 2017 the best situation is in Malta and
the Czech Republic. However, compared to 2008, the situation has improved
the most (in line with the change in the value of the measure) in Poland, Malta
and Hungary, but it worsened in Cyprus and Lithuania.

Figure 6 illustrates the fact that in these two countries the changes between
2008 and 2011 went in opposite directions.

On this basis, radar maps are not very suitable for presenting data for
many countries. A much better tool is the so-called overrepresentation maps
(see Figure 7). For more on overrepresentation maps, see [9, 10].

Math. Model. Anal., 25(3):473–489, 2020.
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Figure 5. Presentation of the level of material deprivation in 2017. Source: own
study based on EUROSTAT.

A typical example are presented radar charts and indicators using a polygon
field. The presented considerations illustrate in a formal way the properties of
this type of the measurement. If we order the descending structure of the 12
new EU member states according to this indicator in the period 2008–2017,
then these structures can be presented in the form of an overrepresentation
map (you can read more about them in the works (see in [9, 10]).

The degree of gray in this case presents the quotient of individual cells in
a row to the average structure of these 12 countries for the period 2008–2017.
As the average structure, we mean a vector, which is the arithmetic average of
the row vectors. It is mean, that in each row the structure

(xi,0, xi,1, xi,2, . . . , xi,9), xi,j ≥ 0

describes material deprivation. This structure is presented on the average struc-
ture

(x0, x1, x2, . . . , xi,9)
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Figure 6. Presentation of the level of material deprivation in 2008, 2011 and
2017. Source: own study based on EUROSTAT.

Figure 7. Overrepresentation map presenting the structures of the 12 new
States due to the level of material deprivation. Source: own study.

of 12 EU countries in 2008,2011,2013,2015,2017. This structure mean indicator
in formula

wij =
xij
xj
.

The presentation in Figure 7 shows that in some countries of the new EU
from 2008, the situation is improving (see e.g. Poland marked with a triangle

Math. Model. Anal., 25(3):473–489, 2020.
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marker), and in others (see e.g. Latvia and Estonia marked with black markers)
situation in relation to 2008 it was worse until 2013. Of course, in 2017, it is
better than in 2008, except two countries.

Using the definition of ‖x‖S, different measures of the distance (impossibil-
ity) of two vectors can be constructed differently. On the other hand, having
the distance measure, you can easily construct both concentration indicators
and measurements that order vectors using distances from patterns.

6 Conclusions

This paper discussed techniques for constructing two synthetic indicators (mea-
sures) using graphical presentation in the form of radar maps. The work pre-
sented for the first time the formal construction of an analogon of a scalar
product of vectors used to build indicators and study their properties. The
discussed techniques are a typical example of using geometric methods to build
synthetic indicators. The work discussed the structures and properties of two
indicators: one for ordering objects, another for measuring concentration. Us-
ing the definition of ‖x‖S , one can construct different measures of distance
(similarity) of two vectors differently. Then, having a measurement of dis-
tance, it is easy to construct both concentration indicators and indicators that
organize vectors using their distances from templates/models (see in [2]). Due
to classic indicators’ limited sensitivity to changes (see e.g. Example 4), it is
worth including more than one indicator to track changes for the purposes of
reporting processes. The presented technique of constructing indicators illus-
trates how one can construct many different indicators based on other graphic
representations and organize a formal study of their properties.
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