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Abstract. The authors present some new oscillation criteria for higher order non-
linear difference equations with nonnegative real coefficients of the form

∆
(

(a(t)
(
∆n−1x(t)

)α)
+ q(t) xβ(t−m+ 1) = 0.

Both of the cases n even and n odd are considered. They give examples to illustrate
their results.
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1 Introduction

In this paper, we study the oscillatory behavior of all solutions of the higher
order nonlinear difference equation

∆
(

(a(t)
(
∆n−1x(t)

)α)
+ q(t)xβ(t−m+ 1) = 0, t ≥ t0, (1.1)

where n ≥ 3. We assume throughout that:

(i) α and β are the ratios of odd positive integers with α ≥ β;

�
Copyright c© 2020 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2020.11447
mailto:John-Graef@utc.edu
mailto:saidgrace@yahoo.com
http://creativecommons.org/licenses/by/4.0/


Higher Order Nonlinear Difference Equations 523

(ii) {a(t)} and {q(t)} are sequences of positive real numbers for t ≥ t0;

(iii) m > 1.

We let

A(v, u) =

v∑
s=u

1

a1/α(s)
, v ≥ u ≥ t0,

and assume that
lim
t→∞

A(t, t0) <∞. (1.2)

By a solution of Equation (1.1), we mean a real sequence {x(t)} defined for
all t ≥ t0 − m + 1 that satisfies Equation (1.1) for all t ≥ t0. A solution of
Equation (1.1) is called oscillatory if its terms are neither eventually positive
nor eventually negative, and it is called nonoscillatory otherwise. If all solutions
of the equation are oscillatory, then the equation itself is called oscillatory.

In recent years there has been much research activity concerning the os-
cillation and asymptotic behavior of solutions of various classes of difference
equations and we mention [1, 2, 3, 4, 5, 6, 7] and the references cited therein as
examples of some recent contributions in this area. There have been numerous
studies on second order difference equations due to their use in the natural sci-
ences and as well as for theoretical interests. Recent results on the oscillatory
and asymptotic behavior of solutions of second order difference equations can
be found, for example, in [8,9,10,11,12,13,17,18,19]. However, it appears that
there are no known results regarding the oscillation of solutions of higher order
difference equations of the form of Equation (1.1). In view of this, our aim
in this paper is to present some new sufficient conditions that ensure that all
solutions of Equation (1.1) are oscillatory.

2 Main results

We begin with some useful lemmas.

Lemma 1. ( [1, Theorem 1.8.11], [3, Lemma 1]) Let {x(t)} be defined for t ≥ t0
and x(t) > 0 with ∆nx(t) of constant sign and not identically zero for t ≥ t0.
Then there exists an integer p, 0 ≤ p ≤ n, with p + n even if ∆nx(t) ≥ 0 and
p+ n odd for ∆nx(t) ≤ 0, such that:

i) p ≤ n− 1 implies (−1)p+i∆ix(t) > 0 for t ≥ t0 and p ≤ i ≤ n− 1;

ii) p ≥ 1 implies ∆ix(t) > 0 for all large t ≥ t0 and 1 ≤ i ≤ p− 1.

Lemma 2. ( [1, Corollary 1.8.12], [3, Lemma 2]) Let {x(t)} be defined for t ≥ t0
with x(t) > 0 and ∆nx(t) ≤ 0 and not identically zero for t ≥ t0. Then there
exists t1 ≥ t0 such that

x(t) ≥ 1

(n− 1)!
(t− t1)n−1∆n−1x(2n−p−1t) for t ≥ t1,

where p is defined as in Lemma 1. Furthermore, if {x(t)} is increasing, then

x(t) ≥ 1

(n− 1)!

(
t

2n−1

)n−1
∆n−1x(t) for t ≥ t1.
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The following lemma is an extension of the discrete analogue of known
results in [15] and [16, Corollary 1]; it can also be found in [2, Lemma 6.2.2]
and [14, Corollary 7.4.1]. The proof is immediate.

Lemma 3. Let {q(t)} be a sequence of positive real numbers, m and p be pos-
itive numbers, and f : R → R be a continuous nondecreasing function with
xf(x) > 0 for x 6= 0. If the first order delay inequality

∆y(t) + q(t)f(y(t−m+ 1)) ≤ 0

has an eventually positive solution, then so does the delay equation

∆y(t) + q(t)f(y(t−m+ 1)) = 0.

We are now ready for our first oscillation result; it is for the case where n
is even.

Theorem 1. Let n be even and assume that there is a number k such that
m > (n− 2)k + 1. If the first order equations

∆Y (t) + q(t)

(
1

2n−1(n− 1)!

)β (
(t−m+ 1)

(n−1)β
a−β/α(t−m+ 1)

)
× Y β/α(t−m+ 1) = 0, (2.1)

∆Z(t) +

(
1

a(t)

t−1∑
s=t0

(
1

2n−2(n− 2)!

)β
q(s) (s−m+ 1)

(n−2)β

)1/α

× Zβ/α(t−m+ 1) = 0, (2.2)

and

∆W (t) +

(
kn−2

)β/α
a1/α(t)

(
t−1∑
s=t0

q(s)

)1/α

W β/α(t−m+ (n− 2)k + 1) = 0,

are oscillatory, then Equation (1.1) is oscillatory.

Proof. Let {x(t)} be a nonoscillatory solution of Equation (1.1), say x(t) > 0
and x(t−m+ 1) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from Equation (1.1)
that

∆
(
a(t)

(
∆n−1x(t)

)α) ≤ −q(t)xβ(t−m+ 1) ≤ 0 (2.3)

for t ≥ t1. Hence, a(t)
(
∆n−1x(t)

)α
is nonincreasing and eventually of one sign.

That is, there exists t2 ≥ t1 such that

(I) ∆n−1x(t) > 0 or (II) ∆n−1x(t) < 0 and ∆n−2x(t) > 0 for t ≥ t2.

First, we consider Case (I). By Lemma 1, we have ∆x(t) > 0 for t ≥ t2. From
Lemma 2, we see that

x(t) ≥ 1

(n− 1)!

(
t

2n−1

)n−1
∆n−1x(t) for t ≥ t2,
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and so

x(t−m+ 1) ≥ 1

(n− 1)!

(
t−m+ 1

2n−1

)n−1
∆n−1x(t−m+ 1) for t ≥ t3, (2.4)

for some t3 ≥ t2. Using (2.4) in (2.3), we obtain

∆
(
a(t)

(
∆n−1x(t)

)α)
≤ −q(t)

(
1

2n−1(n− 1)!

)β
(t−m+ 1)

(n−1)β (
∆n−1x(t−m+ 1)

)β
or

∆Y (t) + q(t)

(
1

2n−1(n− 1)!

)β (
(t−m+ 1)

(n−1)β
a−β/α(t−m+ 1)

)
× Y β/α(t−m+ 1) ≤ 0 (2.5)

for t ≥ t3, where Y(t) = a(t)
(
∆n−1x(t)

)α
. It follows from Lemma 3 that the

corresponding Equation (2.1) also has a positive solution, which is a contradic-
tion.

Next, we consider Case (II). Since n is even, we distinguish the following
two cases (recall that (2.3) holds):

(III) x(t) > 0, ∆x(t) > 0, . . . , ∆n−2x(t) > 0, ∆n−1x(t) < 0 for t ≥ t2,

or

(IV) x(t) > 0, ∆x(t) < 0, . . . , ∆n−2x(t) > 0, ∆n−1x(t) < 0 for t ≥ t2.

If (III) holds, then by Lemma 2, we see that

x(t−m+ 1) ≥ 1

(n− 2)!

(
t−m+ 1

2n−2

)n−2
∆n−2x(t−m+ 1) for t ≥ t3 (2.6)

for some t3 ≥ t2. Using (2.6) in (2.3), we have

∆
(
a(t)

(
∆n−1x(t)

)α)
≤ −q(t)

(
1

2n−2(n− 2)!

)β
(t−m+ 1)

(n−2)β (
∆n−2x(t−m+ 1)

)β
for t ≥ t3. Summing this inequality from t3 to t− 1 gives

−
(
a(t)

(
∆n−1x(t)

)α)
≥

(
t−1∑
s=t3

(
1

2n−2(n− 2)!

)β
q(s) (s−m+ 1)

(n−2)β

)(
∆n−2x(t−m+ 1)

)β
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or

−∆n−1x(t) ≥

(
1

a(t)

t−1∑
s=t3

(
1

2n−2(n− 2)!

)β
q(s) (s−m+ 1)

(n−2)β

)1/α

×
(
∆n−2x(t−m+ 1)

)β/α
,

so

∆Z(t) +

(
1

a(t)

t−1∑
s=t3

(
1

2n−2(n− 2)!

)β
q(s) (s−m+ 1)

(n−2)β

)1/α

× Zβ/α(t−m+ 1) ≤ 0

for t ≥ t3, where Z(t) = ∆n−2x(t) > 0. The remainder of the proof in this case
is similar to that of Case (I) and is omitted.

Finally, we consider Case (IV). We have

(−1)i∆ix(t) > 0 for i = 0, 1, . . . , n− 1, and t ≥ t2. (2.7)

Notice that

−∆n−3x(t) ≥ ∆n−3x(t+ k)−∆n−3x(t) =

t+k−1∑
s=t

∆n−2x(s) ≥ k(∆n−2x(t+ k)).

Repeating this n− 2 times, we arrive at

x(t) ≥ kn−2∆n−2(t+ (n− 2)k),

so
x(t−m+ 1) ≥ kn−2∆n−2(t−m+ (n− 2)k + 1).

Using this inequality in (2.3), we have

∆
(
a(t)

(
−∆n−1x(t)

)α) ≥ q(t) (kn−2∆n−2(t−m+ (n− 2)k + 1)
)β
.

Summing from t2 to t− 1 yields

a(t)
(
−∆n−1x(t)

)α − a(t2)
(
−∆n−1x(t2)

)α
≥

t−1∑
s=t2

q(s)
(
kn−2∆n−2x(s−m+ (n− 2)k + 1)

)β
or

−∆n−1x(t) ≥
(
kn−2

)β/α
a1/α(t)

(
t−1∑
s=t2

q(s)

)1/α (
∆n−2x(t−m+ (n− 2)k + 1)

)β/α
,

and hence we obtain

∆W (t) +

(
kn−2

)β/α
a1/α(t)

(
t−1∑
s=t1

q(s)

)1/α

W β/α(t−m+ (n− 2)k + 1) ≤ 0,
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where W (t) = ∆n−2x(t) > 0. The rest of the proof is similar to that of Case
(I) and is left to the reader. This completes the proof of the theorem. ut

To obtain some consequences of the above theorem, we let

P (t) ≤ min

{
q(t)

(
1

2n−1(n− 1)!

)β
(t−m+1)

(n−1)β
a−β/α(t−m+ 1),

(
1

a(t)

×
t−1∑
s=t0

(
1

2n−2(n− 2)!

)β
q(s) (s−m+ 1)

(n−2)β
) 1

α

,

(
kn−2

) β
α

a1/α(t)

(
t−1∑
s=t0

q(s)

) 1
α }

.

and τ = max{m− (n− 2)k − 1, m− 1}.
The following corollaries are immediate consequences of known results.

Corollary 1. Let n be even and k be a number such that m > (n− 2)k + 1. If
the first order delay equation

∆y(t) + P (t)yβ/α(t− τ) = 0

is oscillatory, then Equation (1.1) is oscillatory.

Corollary 2. Let n be even and k be a number such that m > (n− 2)k + 1. If

lim inf
t→∞

t−1∑
s=t−m+1

P (s)

{
> (τ−1)τ−1

ττ , if β = α,

=∞, if β < α,

then Equation (1.1) is oscillatory.

We now turn our attention to the case where n is odd.

Theorem 2. Let n be odd and k be a number such that m > (n − 1)k + 1. If
the first order Equations (2.1)–(2.2), and

∆W (t) + q(t)

(
kn−1

a1/α(t)

)β
W β/α(t−m+ (n− 1)k + 1) = 0 (2.8)

are oscillatory, then Equation (1.1) is oscillatory.

Proof. Let {x(t)} be a nonoscillatory solution of Equation (1.1), say x(t) > 0
and x(t−m+ 1) > 0 for t ≥ t1 for some t1 ≥ t0. As in the proof of Theorem 1,
we see that a(t)

(
∆n−1x(t)

)α
is nonincreasing and eventually of one sign. That

is, there exists t2 ≥ t1 such that

(I) ∆n−1x(t) > 0 or (II) ∆n−1x(t) < 0 and ∆n−2x(t) > 0 for t ≥ t2.

If Case (I) holds, either we have (A) ∆x(t) > 0, or (B) ∆x(t) < 0 for t ≥
t2. By Lemma 2 and (A), we obtain (2.4) and (2.5) which leads to a contra-
diction. If (B) holds, we see that (2.7) holds, and as in the proof of Theorem
1, we have

x(t−m+ 1) ≥ kn−1∆n−1(t−m+ (n− 1)k + 1).

Math. Model. Anal., 25(4):522–530, 2020.
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Thus,

∆
(
a(t)

(
∆n−1x(t)

)α) ≤ −q(t) (kn−1∆n−1x(t−m+ (n− 1)k + 1)
)β

or

∆W (t) ≤ −q(t)
(

kn−1

a1/α(t−m+ (n− 1)k + 1)

)β
W β/α(t−m+ (n− 1)k + 1),

where W (t) = a(t)
(
∆n−1x(t)

)α
> 0. The rest of the proof is similar to that of

the proof of Case I in Theorem 1 and hence is omitted. ut

Next, we consider Case (II). By Lemma 2 and as in the proof of Theo-
rem 1, we obtain (2.6). The rest of the proof is similar to that of Case (III) in
Theorem 1 and so we omit the details. This proves the theorem.

Now let

P ∗(t) ≤ min

{
q(t)

(
1

2n−1(n−1)!

)β(
(t−m+1)

(n−1)β
a−β/α(t−m+1)

)
,(

1

a(t)

t−1∑
s=t0

(
1

2n−2(n−2)!

)β
q(s) (s−m+1)

(n−2)β

) 1
α

,

(
kn−1

) β
α

a1/α(t)

(
t−1∑
s=t0

q(s)

) 1
α }

and τ∗ = max{m− (n− 1)k − 1,m− 1}.
The following corollaries are analogous to those for the case where n is even.

Corollary 3. Let n be odd and k be a number such that m > (n − 1)k + 1. If
the first order delay equation

∆y(t) + P ∗(t)yβ/α(t− τ∗) = 0

is oscillatory, then Equation (1.1) is oscillatory.

Corollary 4. Let n be odd and k be a number with m > (n− 1)k + 1. If

lim inf
t→∞

t−1∑
s=t−m+1

P ∗(s)

> (τ∗ − 1)τ
∗−1

τ∗τ
∗ , if β = α,

=∞, if β < α,

then Equation (1.1) is oscillatory.

Remark 1. Clearly our results hold if n = 2, and they appear to be new in this
case as well.

If we replace condition (1.2) by

lim
t→∞

A(t, t0) =∞, (2.9)

it is easy to obtain the following results.
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Theorem 3. Let n be even, condition (2.9) hold, and there exists a number k
with m > (n − 2)k + 1. If the first order Equation (2.1) is oscillatory, then
Equation (1.1) is oscillatory.

Theorem 4. Let n be odd, condition (2.9) hold, and k be a number with m >
(n− 1)k + 1. If the first order Equations (2.1) and (2.8) are oscillatory, then
Equation (1.1) is oscillatory.

As an example to illustrate our results, consider the difference equation

∆

(
1

t6
(
∆n−1x(t)

)3)
+ x3(t−m+ 1) = 0. (2.10)

It is easy to see that if n is even and m > (n − 2)k + 1 (n is odd and m >
(n − 1)k + 1) the conditions of Corollary 2.2 (respectively Corollary 2.4) are
satisfied and hence we conclude that Equation (2.10) is oscillatory.

We conclude this paper with a suggestion for future research, namely, to
study the oscillatory behavior of solutions of Equation (1.1) in case β > α.
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