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Abstract. We present and analyze a mathematical model of the transmission dy-
namics of Contagious Bovine Pleuropneumonia (CBPP) in the presence of antibiotic
treatment with limited medical supply. We use a saturated treatment function to
model the effect of delayed treatment. We prove that there exist one disease free
equilibrium and at most two endemic equilibrium solutions. A backward bifurca-
tion occurs for small values of delay constant such that two endemic equilibriums
exist if Rt ∈ (R∗

t , 1); where, Rt is the treatment reproduction number and R∗
t is a

threshold such that the disease dies out if Rt ≤ R∗
t and persists in the population

if Rt > R∗
t . However, when a backward bifurcation occurs, a disease free system

may easily be shifted to an epidemic. The bifurcation turns forward when the delay
constant increases; thus, the disease free equilibrium becomes globally asymptotically
stable if Rt < 1, and there exist unique and globally asymptotically stable endemic
equilibrium if Rt > 1. However, the amount of maximal medical resource required to
control the disease increases as the value of the delay constant increases. Thus, an-
tibiotic treatment with limited medical supply setting would not successfully control
CBPP unless we avoid any delayed treatment, improve the efficacy and availability
of medical resources or it is given along with vaccination.
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1 Introduction

Contagious Bovine Pleuropneumonia (CBPP) is a disease of cattle caused by
Mycoplasma mycoides subspecies mycoides (Mmm) small colony that infect
lungs of cattle and water buffalo [24]. Transmission of the disease occurs
through direct contact between an infected and a susceptible animal which
becomes infected by inhaling droplets disseminated by coughing [24]. It is
characterized by a relatively long incubation period, its variable course and
insidious nature [19]. CBPP spread almost to all parts of the world in the
nineteenth century through the cattle trade [27]. CBPP is one of the major
threats to cattle health and one of the main stumbling blocks to the growth of
the livestock industry on the African continent, see [8, 23, 31] for more details.
A CBPP outbreak could cause the loss of a household’s entire income from cat-
tle keeping [13]. Different controlling mechanisms including movement control,
slaughter of suspected cases [9,27] and testing strategies based on Complement
Fixation Test (CFT) [4, 11] has been employed to control the disease.

However, movement control, test and slaughter policies would be costly to
implement and cause economic crises. Trans-human livelihoods systems are
recognized as rational and environmentally friendly foundations for sustainable
development of arid lands [22]. Public health situation of CBPP in Africa, most
countries use vaccination, usually carried out by official veterinary services, as a
form of control. The T1/44 vaccine, an attenuated live MmmSC vaccine strain,
has been in use since 1956 [3]. However, vaccines were exclusively distributed
by state veterinary services so that control of CBPP was very challenging in
sub-Saharan Africa, as reported in [26], failure to deliver control services to
farmers whose cattle are at high risk of exposure to infection was one of the
policy problem for CBPP control in sub-Saharan Africa. Also, a recent study
which is conducted based on the information of the 1995 outbreak of CBPP
investigated that time factor it took after the previous outbreak (56 years),
myths, believes, perceptions towards CBPP outbreak in the district by different
ethnic groups and conflicting information disseminated by other stakeholder
sources promoted lack of adoption and compliance by the community [25].
Although the use of antibiotic is against the Office International des Epizootics
(OIE) Terrestrial Animal Health Code or is theoretically prohibited, antibiotic
treatment is widely applied in the field for the specific treatment of CBPP, or
simply to combat a range of respiratory diseases [8]. Antibiotics are already
available on the market and their use has a direct impact on poverty alleviation
by diminishing the mortality rate of cattle [7]. Therefore, vaccination and the
controversial antibiotic treatment are assumed to be the main strategies for
control of CBPP in pastoral areas [19]. However, mass vaccination programmes
based on the T1/44 vaccine that are not combined with other interventions are
unlikely to eradicate CBPP even when aggressively applied biannually over a
five-year period [19]. Proven treatment regimes have considerable impact on
the transmission of CBPP and reduce the effective reproductive numbers of the
disease [10]. Treatment programs can reduce both the prevalence of CBPP and
the morbidity, mortality and production losses associated with CBPP infection.
The data on antibiotic treatment indicate that treatment may have more value
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as a CBPP control tool than current vaccines [6].

Mathematical models provide the means to generate evidence-based infor-
mation on infectious disease control and play an important role in understand-
ing the dynamics of infectious diseases [14]. Thus, the transmission dynamics
of CBPP was also modeled by some researchers for different purposes. A de-
terministic mathematical model for the transmission of CBPP was presented
to compare economic efficiency of local (i.e., at the herd level) CBPP-control
strategies (vaccination and antibiotic treatments) in [15]. It revealed that an-
tibiotics were the most economically efficient strategy than vaccination. Ho-
mogeneous and heterogeneous population models of the transmission dynamics
of CBPP are also presented in [19] and [20], respectively. Both models indi-
cated that vaccination alone with currently available vaccines was unlikely to
eradicate the disease. In addition, a program involving vaccination of healthy
animals with treatment of clinical cases was found to be the most promising
intervention scenario [20]. In [30], modeling techniques are used to assess the
potential impact of early elimination of infected cattle via accurate diagnosis on
CBPP dynamics and the model predicted that regular testing and elimination
of positive reactors using improved tests will play a significant role in minimiz-
ing CBPP burden especially in the situation where improved vaccines are yet
to be developed. A model without any intervention is presented and elasticity
analysis was done in [1] to identify the most important parameter that affect
the dynamics of CBPP, it was found that effective contact rate and the rate of
recovery are the top two parameters that controls the transmission dynamics
of CBPP. It is known that effective contact rate and recovery rate are manage-
able by vaccination and antibiotic treatment, respectively. Considering results
obtained in [1, 19, 20, 30], a model with vaccination and antibiotic treatment,
independently and in combination was presented in [2] and it was found that
combined vaccination and antibiotic treatment is a better controlling method
than the independent use of vaccination and antibiotic treatment, which is in
agreement with [20].

However, in the previous studies, the rate of recovery due to antibiotic
treatment was taken as some constant values with simple assumptions. In this
paper, to study the impact of limited medical resource supply in resources

limited countries, we use a saturated treatment function h(I) =
aI

b+ I
, where,

a ≥ 0 represents the maximal medical resources supplied per unit time and
b > 0 is half-saturation constant that measures the extent of the effect of a
delay in the treatment of infectious cattle [12] or the efficiency of the medical
resource supply in the sense that if b is smaller, then the efficiency is higher [36].

The remaining part of this work is divided into five sections. In Section 2, we
state the basic assumptions and parameter values. In Section 3, we present the
mathematical model and show the well-posedness of the system. In Section 4,
we find the equilibrium solutions of the system and calculate the treatment
reproduction number. In Section 5, we determine the stability of disease free
equilibrium (DFE) and endemic equilibrium (EE). In Section 6, we present
numerical simulations and interpret the results. Lastly, in Section 7, we discuss
results and conclusions.

Math. Model. Anal., 26(1):1–20, 2021.
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2 Basic assumptions and parameters

We assume homogeneous cattle population subdivided into susceptible, ex-
posed, infectious, persistently infected and recovered compartments. All as-
sumption except those related to a saturated treatment function are taken
from [19,20]. It is assumed that all new born animals join susceptible class (S)
at rate µ. Susceptible cattle move to the exposed compartment (E) at a rate
β I
N . Cattle in the exposed compartment move to the infectious compartment

(I) at a rate γ. Natural mortality is assumed to be equal to birth rate, both
are denoted by µ. Natural mortality results in loss from all six compartments.
The infectious cattle either naturally heal at a rate αr or they pass through
a process of sequestration and enter into persistently infected (Q) compart-
ment at a rate αq or they receive antibiotic treatment and enter directly into
the recovered (R) compartment at a rate a

b+I , where, a ≥ 0 represents the
maximal medical resources supplied per unit time and b > 0 is half-saturation
constant which measures the efficiency of the medical resource supply in the
sense that if b is smaller, then the efficiency is higher. In any intervention
mechanism, efficacy and efficiency of the intervention method and proportion
of the targeted population that receive the proposed treatment are basic terms
that determines effectiveness of the controlling mechanism. Thus, the maximal
medical resource supply per unit time, a, refers to the proportion of cattle that
effectively receive the antibiotic treatment per unit time. Thus, the maximal
medical resources supply per unit time can be defined as a = PT εT ; PT is the
proportion of infectious cattle getting antibiotic treatment per unit time and εT
is the efficacy of antibiotic that measures how effective the antibiotic is; assum-
ing that the efficacy of the antibiotic (εT ) is 0.75 and 40% of infectious cattle
are treated (PT = 0.4), we get a = 0.3 meaning that the maximum proportion
of infectious cattle receiving effective antibiotic treatment per a day is 30%. A
delay constant b is assumed to be the average number of days that infectious
cattle are being delayed for antibiotic treatment; that is, it refers to the average
number of days that infectious cattle show clinical signs of infection before they
get antibiotic treatment. It is assume that the delayed time or values of b is
in the range of 7 days. Cattle in persistently infected compartment are encap-
sulated and infected, but not infectious. As sequestra resolve and/or become
non-infected, the animals in persistently infected compartment move to the
recovered (R) compartment at a rate ψ. A recovered cattle remain recovered
for life. Infected sequestra can occasionally be reactive and in this instance the
animal will transition from the persistently infected (Q) compartment back to
the infectious (I) compartment at a rate k. The constant population size at
time t is given by N = S(t) + E(t) + I(t) +Q(t) +R(t).

3 A mathematical model

We present a mathematical model of the transmission dynamics of CBPP con-
sidering antibiotic treatment within a limited medical supply setting as a con-
trolling mechanism of CBPP. The limitation of medical supply may lead to a
saturation phenomenon; that is, during severe disease outbreaks the number of
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Table 1. Description of parameters.

Parameter Description

β Effective contact rate
γ Transition rate from exposed to infectious compartment
αr Natural recovery rate of infectious cattle
αq Rate of sequestrum formation of infectious cattle
k Rate of sequestrum reactivation
ψ Rate of sequestrum resolution
µ Natural mortality rate
b Half saturation constant
εT Efficacy of the antibiotic
PT Proportion of infectious cattle treated per unit time
a = εTPT Maximal medical resources supply

patients who need to be treated may exceed the treatment capacity so that the
number of patients who receive treatment will reach a saturation level. Satu-
rated treatment function is used and explained in details in [12,16,21,34,35,36].
In this model we have five compartments: susceptible (S), exposed (E), in-
fectious (I), persistently infected (Q) and recovered (R) compartments. The
differential equation model for the transmission dynamics of CBPP is given by
the system (3.1)–(3.6)

dS

dt
= µN − βSI

N
− µS, (3.1)

dE

dt
=
βSI

N
− γE − µE, (3.2)

dI

dt
= γE + kQ− αrI −

aI

b+ I
− αqI − µI, (3.3)

dQ

dt
= αqI − kQ− ψQ− µQ, (3.4)

dR

dt
= αrI +

aI

b+ I
+ ψQ− µR with (3.5)

X(0) = (S(0), E(0), I(0), Q(0), R(0)) = (S0, E0, I0, Q0, R0). (3.6)

The flow diagram of the model is shown in Figure 1.

Figure 1. A compartmental model for the transmission dynamics of CBPP with
antibiotic treatment, where, h(I) = aI

b+I
is a saturated treatment function.

Math. Model. Anal., 26(1):1–20, 2021.
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3.1 Well-posedness of the system

Theorem 1. The system (3.1)–(3.6) has a unique solution X(t) which is pos-
itive and bounded provided that the initial condition, X (0), is nonnegative.

Proof. The proof is classical, see [5]. ut

4 Equilibria and treatment reproduction number

4.1 Equilibrium solution of the system

Proposition 1. The model (3.1)–(3.5) has at most three equilibrium solutions,
the disease free equilibrium and at most two endemic equilibrium.

Proof. The equilibrium solution of the system is obtained by solving the equa-
tions

dS

dt
=
dE

dt
=
dI

dt
=
dQ

dt
=
dR

dt
= 0.

We get that
X0 = (S0, E0, I0, Q0, R0) = (N, 0, 0, 0, 0) (4.1)

is the disease free equilibrium. We also get equation of the form

AI2 +BI + C = 0, (4.2)

where A = βγ̄(kαq− ᾱk̄), γ̄ = γ+µ, ᾱ = αr +αq +µ, B = (bβγ̄+ γ̄µN)(kαq−
ᾱk̄) + k̄β(γµN − aγ̄), k̄ = k + ψ + µ, C = bγ̄µN(kαq − ᾱk̄) + k̄µN(bγβ − aγ̄).
Therefore, candidate solutions of the quadratic equation (4.2) are given by the
formulas

I =
−B +

√
B2 − 4AC

2A
= I∗1 and I =

−B −
√
B2 − 4AC

2A
= I∗2 .

For I∗1 > 0 and I∗2 > 0, endemic equilibria are given by

X∗1 = (S∗1 , E
∗
1 , I
∗
1 , Q

∗
1, R

∗
1) and X∗2 = (S∗2 , E

∗
2 , I
∗
2 , Q

∗
2, R

∗
2).

Thus, there exists a disease free equilibrium and at most two endemic equilib-
rium solutions. ut

4.2 Treatment reproduction number, Rt

In the presence of antibiotic treatment, we use the term treatment reproduction
number, Rt, instead of the commonly used basic reproduction number, R0. We
used the next generation matrix, see [32], to find the treatment reproduction
number. E, I and Q compartments are considered as disease compartments,
S and R are non-disease compartments. Thus, the treatment reproduction
number is obtained as

Rt =
γβk̄

γ̄
(
k̄ (ᾱ+ a/b)− kαq

) =
k̄ᾱ− kαq

k̄ (ᾱ+ a/b)− kαq
R0, (4.3)
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where, k̄ = k + ψ + µ, ᾱ = αr + αq + µ, R0 = βγk̄

γ̄(k̄ᾱ−kαq)
is the basic repro-

duction number, without any intervention, as in [1,2] and Rt is the treatment
reproduction number which refers to the average number of secondary cases
caused by an infected individual over the course of its infectious period in the

presence of antibiotic treatment. Since
k̄ᾱ−kαq

k̄(ᾱ+a/b)−kαq
< 1, Rt < R0 and Rt

reduces to R0 if a = 0.

Proposition 2. C = 0 if and only if Rt = 1, C < 0 if and only if Rt < 1, and
C > 0 if and only if Rt > 1.

Proof. The proof is obvious. ut

Table 2 summarizes the existence of I∗1 and I∗2 for different values of B and C
or Rt.

Table 2. Summary of I∗1 and I∗2 of a CBPP model with antibiotic treatment given by
(3.1)–(3.6) showing the relation between values of Rt and existence of EE.

Rt C B B2 − 4AC I∗1 I∗2 Remark

B = 0 = 0 0 0 No EE
Rt = 1 C = 0 B < 0 = B2 < 0 0 No EE

B > 0 = B2 = 0 > 0 I∗2 is an EE

B = 0 < 0 Im Im No EE
Rt < 1 C < 0 B < 0 ∈ [0, B2) < 0 < 0 No EE

B < 0 < 0 Im Im No EE
B > 0 = 0 > 0 > 0 One EE (I∗1 = I∗2 )
B > 0 ∈ (0, B2) > 0 > 0 Two EE
B > 0 < 0 Im Im No EE

B = 0 > 0 < 0 > 0 I∗2 is an EE
Rt > 1 C > 0 B < 0 > B2 < 0 > 0 I∗2 is an EE

B > 0 > B2 < 0 > 0 I∗2 is an EE

Remark 1. There exist two endemic equilibria if and only if Rt < 1, B > 0 and
B2 − 4AC > 0 hold simultaneously.

Theorem 2. Let (µN − βb)/(µN) > 1/R0 and

R∗t = βb/
(
µN

(
1 + 1/R0 − 2

√
µN−βb
µNR0

))
, where, R0 is the basic reproduction

number without intervention. Then we have the following:

(i) Two endemic equilibrium exist if and only if Rt ∈ (R∗t , 1).

(ii) If Rt = R∗t , then there exists a unique endemic equilibrium.

(iii) If Rt < R∗t , then no endemic equilibrium exists.

Math. Model. Anal., 26(1):1–20, 2021.
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Proof.

(i) For necessity, we assume that two endemic equilibria exist. From Propo-
sition 1 and Proposition 2, Table 2, we know that Rt < 1, B > 0 and
B2 − 4AC > 0 with

B = (bβγ̄ + γ̄µN)(kαq − ᾱk̄) + k̄β(γµN − aγ̄)

= βγk̄ (µN (1− 1/R0)− βb (1/Rt)) ,

then B > 0 implies Rt > βb/µN (1− 1/R0) = R∆t .

Since µN−βb
µN > 1

R0
, we have R∆t < 1 and,

B2 − 4AC =
(
γ̄(kαq − k̄ᾱ)(βb− µN) + βk̄(γµN − aγ̄)

)2
+ 4βγµNγ̄k̄(kαq − k̄ᾱ)(µN − βb)

=
(
βγk̄

)2((
µN +

µN

R0
− βb

Rt

)2

+
4µN(βb− µN)

R0

)
.

Thus, B2 − 4AC > 0 if and only if(
µN +

µN

R0
− βb

Rt

)2

+
4µN(βb− µN)

R0
> 0

⇒ µN +
µN

R0
− βb

Rt
>

√
4µN(µN − βb)

R0
or (4.4)

µN +
µN

R0
− βb

Rt
< −

√
4µN(µN − βb)

R0
. (4.5)

(4.4) and (4.5) are equivalent to

Rt <
βb

µN
(

1 + 1/R0 + 2
√

(µN − βb)/µNR0

) = R∗∗t and

Rt >
βb

µN
(

1 + 1/R0 − 2
√

(µN − βb)/µNR0

) = R∗t .

Since R∗∗t < R∆t , we use Rt > R∗t so that B > 0 and B2 − 4AC > hold
simultaneously for some parameter values. Moreover, for µN−βb

µN > 1
R0

,

we have R∆t < R∗t < 1 thus proving Rt ∈ (R∗t , 1).

For sufficiency, we assume that Rt ∈ (R∗t , 1). Thus, obviously, we have
B > 0 and B2 − 4AC > 0. Hence, from Proposition 1 and Table 2, two
endemic equilibrium exist. Equivalently, we say that a bifurcation occurs
if and only if µN−βb

µN > 1/R0 or b < µN
β (1− 1/R0) .

(ii) From the proof of (i), Rt = R∗t impliesRt < 1 , B > 0 and B2−4AC = 0.
Then, from Table 2, there exist a unique endemic equilibrium (X∗1 = X∗2 ).
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(iii) Rt < R∗t implies Rt ∈ (0,R∗∗t ] ∪ (R∗∗t ,R∗t ). If Rt ∈ (R∗∗t ,R∗t ), it follows
that B2 − 4AC < 0 implying that both I∗1 and I∗2 does not exist. And,
if Rt ≤ R∗∗t , then B < 0; implying that both I∗1 and I∗2 are negative.
Therefore, there exists no endemic equilibrium if Rt < R∗t .

ut
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Figure 2. Plots of I∗1 and I∗2 for
b = 1 and a ∈ (0.1049, 0.1377)

showing that I∗1 and I∗2 converging to
2.1210 as a approaches 0.1377. Thus,

a backward bifurcation occurs if
a ∈ (0.1049, 0.1377) and b = 1.
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Figure 3. Plots of I∗1 > 0 and
I∗2 > 0 for b = 1 and Rt ∈ (0.7898, 1)
showing that I∗1 and I∗2 converging to
2.1210 as Rt approaches R∗

t = 0.7898.
Thus, a backward bifurcation occurs

if Rt ∈ (0.7898, 1) and b = 1.

5 Stability analysis of equilibrium solutions

Theorem 3. If X0 is a DFE of the model given by equation (4.1), then X0 is
locally asymptotically stable (LAS) if Rt ≤ 1 and unstable if Rt > 1, where,
Rt is the treatment reproduction number defined by equation (4.3).

Proof. The proof holds by [32, Theorem 2]. ut

Theorem 4. If a backward bifurcation occurs and Rt < R∗t , then the disease
free equilibrium X0 is globally asymptotically stable in Ω. If a forward bi-
furcation occurs and Rt < 1, then the disease free equilibrium X0 is globally
asymptotically stable in Ω. And, if Rt > 1, then the DFE is unstable, the
system is uniformly persistent and there exist at least one endemic equilibrium;
where, R∗t is a threshold value of Rt given in Theorem 2, Ω = {(S,E, I,Q,R) ∈
R5

+ : S ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0, S + E + I + Q + R ≤ N} is compact
subset of R5.

Proof. The system has a forward bifurcation means the DFE is the only equi-
librium solution forRt < 1. And, the system has a backward bifurcation means,
by Theorem 2, there does not exist any endemic equilibrium if Rt < R∗t < 1.
Thus, it suffices to show that the DFE is globally asymptotically stable for
Rt < 1 provided that endemic equilibrium does not exist for Rt < 1. For
this proof we use a matrix-theoretic method explained in [29]. We assume

Math. Model. Anal., 26(1):1–20, 2021.
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x = (E, I,Q)T and y = (S,R)T . Then, we set

f(x, y) = (F − V )x−F(x, y) + V(x, y) =

βS
0I

N
− βSI

N
0
0

 =
βI

N

N − S0
0

 ;

where,

F =


βSI

N
0
0

, V =

 γ̄E

(ᾱ+
a

b+ I
)I − γE − kQ

k̄Q− αqI

, F =

0 β 0
0 0 0
0 0 0

 and

V =

 γ̄ 0 0

−γ ᾱb+ a

b
−k

0 −αq k̄

.

V −1 =


1

γ̄
0 0

γbk̄

γ̄(k̄(ᾱb+ a)− kbαq)
bk̄

k̄(ᾱb+ a)− kbαq
bk

k̄(ᾱb+ a)− kbαq
γbαq

γ̄(k̄(ᾱb+ a)− kbαq)
bαq

k̄(ᾱb+ a)− kbαq
ᾱb+ a

k̄(ᾱb+ a)− kbαq

 and

V −1F=β



0
1

γ̄
0

0
γk̄

γ̄(k̄
(
ᾱ+

a

b

)
− kαq)

0

0
αqγ

γ̄(k̄
(
ᾱ+

a

b

)
− kαq)

0


=
βγ

γ̄



0
1

γ
0

0
k̄

(k̄
(
ᾱ+

a

b

)
− kαq)

0

0
αq

(k̄
(
ᾱ+

a

b

)
− kαq)

0


.

We observe that F ≥ 0, V −1 ≥ 0, f(x, y) ≥ 0 in Ω, f(x,N, 0)T = 0 in Ω. Since
matrix V −1F is reducible, we use theorem 2.1 of [29] to construct a Lyapunov
function. Let ωT = (v1, v2, v3) ≥ 0 be the left eigenvector of nonnegative
matrix V −1F corresponding to the eigen value Rt. Then

(v1, v2, v3)V −1F = Rt(v1, v2, v3) (5.1)

such that (v1, v2, v3)V −1F = βγ
γ̄ (0, x, 0), where

x =
v1

γ
+

k̄v2

(k̄ (ᾱ+ a/b)− kαq)
+

αqv3

(k̄ (ᾱ+ a/b)− kαq)
,

Rt(v1, v2, v3) =
βγ

γ̄

(
k̄

k̄ (ᾱ+ a/b)− kαq

)
(v1, v2, v3). (5.2)

Thus, from equations (5.1)–(5.2), we find that v1 = v3 = 0 and v2 ∈ R+.
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Hence, ωT = (0, v2, 0). Thus, by [29, Theorem 2.1],

L = ωTV −1x

= v2

 γk̄E

γ̄(k̄
(
ᾱ+

a

b

)
− kαq)

+
k̄I

k̄
(
ᾱ+

a

b

)
− kαq

+
kQ

k̄
(
ᾱ+

a

b

)
− kαq


= γk̄E + k̄γ̄I + kγ̄Q; for v2 = γ̄(k̄

(
ᾱ+

a

b

)
− kαq)

is a Lyapunov function for the system. And,

L′ = (Rt − 1)ωTx− ωTV −1f(x, y) = 0

implies x = 0 and y = (N, 0)T if Rt < 1 or Rt < R∗t < 1; therefore,
(N, 0, 0, 0, 0) is the only invariant set in Ω where L′ = 0. Thus, by LaSalle’s
invariance principle, the DFE (N, 0, 0, 0, 0) is globally asymptotically stable in
Ω provided that Rt < 1 and the bifurcation is forward, or if Rt < R∗t < 1
and the bifurcation is backward. If Rt > 1, L′ > 0 for x > 0 and y = y0.
By continuity, L′ > 0 in the neighborhood of X0; thus, solutions sufficiently
close to X0 move away from X0, implying that X0 is unstable. Instability of
X0 implies uniform persistence of the system. Uniform persistence and the
positive invariance of the compact set Ω imply the existence of at least one EE
of the system. ut

Theorem 5. If Rt > 1, then there exist unique and globally asymptotically
stable endemic equilibrium in the interior of Ω, where, Ω = {(S,E, I,Q,R) ∈
R5

+ : S ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0, S + E + I + Q + R ≤ N} is compact
subset of R5.

Proof. See Appendix A. ut

6 Numerical simulations

All parameter values except those in saturated treatment functions are taken
from [19, Table 1 and Sections 2.2 and 2.3]. Assuming that natural death rate
and birth rate are equal and the life expectancy of cattle is in average 5 years,
natural death rate and birth rate are given by µ = 1

5×365 . The mode value
effective contact rate is taken to be 0.126 with maximum and minimum values
0.13 and 0.07, respectively. The incubation period is between 4 and 8 weeks
with mean value of 6 weeks yields γ = 1

6×7 . Without applying antibiotic treat-
ment, the infection period is between 6 and 10 weeks with mean value of 8
weeks and αq = 3αr gives αr = 1

4×56 . The persistently infected period is given
in a range of 18−21 weeks with an average period of 19 weeks with 4 months ×
2 reactivations per month for 582 cases gives k = 0.00009 and ψ = 0.0075. We
assume that the efficacy of antibiotic treatment, εT , is 0.75. For a saturation
function, h(I) = aI

b+I , we define the maximal medical resources supplied per
unit time as: a = PT εT , where PT is the proportion of infectious cattle to
be treated per unit time and εT is the efficacy of antibiotic that measure how

Math. Model. Anal., 26(1):1–20, 2021.
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effective the antibiotic is. Values of delay constant b are assumed to be in the
range of 7 days. Global sensitivity analysis of Rt to the parameters it depends
on is performed using Latin hypercube sampling-partial rank correlation co-
efficient (LHS-PRCC) and scatter plotting methods which are explained and
used in [33], these methods are carried out using MATLAB. Parameters with
PRCC values are summarized in Table 3.

Table 3. Description of model parameters and their values with sensitivity index; indicating
baselines, ranges and references. Units are days−1 unless otherwise defined. ∗ constants. P:
Parameters.

P Description Sensitivity Baseline Value range and
Index value references

b Half saturation 0.6463 2 0 to 7 [assumed]
constant ∗

Maximal medical
a resources supply -0.6420 0.375 0 to 0.75 [assumed]

per unit time

β Effective contact rate 0.1429 0.126 0.07 to 0.13 [19]

αr Natural recovery rate -0.0308 0.0045 0.0036 to 0.0059 [19]
of infectious cattle

ψ Rate of sequestrum 0.0274 0.0075 0.0068 to 0.0079 [19]
resolution

Transition rate from
γ exposed to infectious -0.0235 0.024 0.018 to 0.036 [19]

compartment

µ Mortality rate 0.0141 0.00055 0.00050 to 0.00062 [19]

k Rate of sequestrum 0.0109 0.00009 0.00007 to 0.00011 [19]
reactivation

Rate of sequestrum
αq formation of 0.0001 0.013 0.011 to 0.018 [19]

infectious cattle

εT Efficacy of antibiotic ∗ - 0.75 [assumed]

PT Proportion treated - - > 0

It can be seen from Figure 4 that the supply of medical resources, a, and
the half saturation constant,b, have the most global influence on Rt followed
by the effective contact rate, β. Sensitivity index or PRCC values indicate
that the value of treatment reproduction number can be decreased mainly
by increasing the amount of medical resources supply and by decreasing half
saturation constant or delayed treatment. Minimizing effective contact, β, also
decreases the value of Rt to some extent.

Figures 5–8 are scatter plots indicating the correlation between treatment
reproduction number and the parameters a, b, β and αr, respectively.

It can be seen from Figures 5–8 that the scatter plots for a and b have the
most visible patterns implies that the correlations between Rt and parameters
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Figure 4. Sensitivity of treatment reproduction number to parameters it depends on.

Figure 5. The scatter plot is
having a pattern indicating that the

correlation between Rt and b is
strong implying that Rt is most

sensitive to b.

Figure 6. The scatter plot is
having a visible pattern indicating

that the correlation between Rt and a
is strong implying that Rt is also very

sensitive to a.

b and a are very strong. However, the scatter plots for β and αr have poor
patterns implies that correlations between Rt and the two parameters β and
αr are week. Thus, parameter b has the most significant influence on the value
of Rt, followed by a, but, β and αr have poor influence on the value of Rt.

Figures 9 and 10 show the dynamics of the system when a forward bifurca-
tion and a backward bifurcation occurs, respectively.

Figure 9 shows that the system converges to its DFE for Rt = 0.9243 < 1.
However, Figure 10 shows that the system converges to it endemic equilibrium
with Rt = 0.6542 < 1. In this case, a backward bifurcation occurs with a
threshold R∗t = 0.1161.

For b = 1, Figures 2–3 show that two endemic equilibriums exist for a ∈
(0.1049, 0.1377) or Rt ∈ (0.7898, 1) implying that the disease persists in the
population if the maximal medical resource supply is below 0.1377. Thus, it
is necessary to keep a ≥ 0.1377 to control the disease. a = PT εT = 0.1377
gives PT = 0.1836 implying that at least 18.36% of infectious cattle should
get antibiotic treatment per a day, to control the disease. And, a forward
bifurcation occurs if b = 2, thus, Rt = 1 or a = 0.2098 acts as a sharp threshold
implying that at least 27.97% of infectious cattle should be treated per unit
time to control the disease. Similarly, if b = 7, Rt = 1 or a = 0.7344 acts as
a sharp threshold implying that at least 73.44% of infectious cattle should be
treated per unit time to control the disease. Here, we notice that the maximal
medical resource supply (a) required to control the diseases increases as the
value of b increases.

Math. Model. Anal., 26(1):1–20, 2021.
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Figure 7. The scatter plot is having
relatively poor pattern than Figures
5–6 indicating that the correlation
between Rt and β is week implying

that Rt is poorly sensitive to β.

Figure 8. The scatter plot is
having poor pattern indicating that

the correlation between Rt and αr is
week implying that Rt is poorly

sensitive to αr.
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Figure 9. Number of cattle in each
compartment with baseline parameter
values in Table 3 except a = 0.23 and
with initial values I0 = 1, S0 = 499

and V0 = E0 = Q0 = R0 = 0
converging to its DFE (S0 = 500,
E0 = I0 = Q0 = R0 = 0). The

system has a forward bifurcation for
these parameter values with

Rt = 0.9243.
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Figure 10. Number of infectious
cattle with initial values I0 = 1,
S0 = 499 and V0 = E0 = Q0 =

R0 = 0 and with baseline parameter
values in Table 3 except b = 0.1 and
a = 0.017 . A backward bifurcation

occurs for these parameter values with
R∗

t = 0.1161 < Rt = 0.6542 < 1; the
system converges to its EE (S? = 80,
E? = 9, I? = 11, Q? = 19, R? = 380).

7 Discussion and conclusions

In our model, we used a saturation treatment function, h(t) = aI
b+I , where, a

is the maximum medical resource supply and b > 0 is a saturation constant,
to model the effect of delayed treatment in controlling CBPP such that infec-
tious cattle get antibiotic treatment and move to recovered compartment at a
rate a

b+I . The system has a disease free equilibrium and at most two endemic
equilibrium solutions. A backward bifurcation occurs for small delayed con-

stant, b < µN
β

(
1− 1

R0

)
= 1.8521 = b∗ such that two endemic equilibria exist

if Rt ∈ (R∗t , 1), where, Rt is the treatment reproduction number and R∗t is the
threshold value of Rt given by (4.3). In this case, the disease goes extinct if
Rt < R∗t < 1 and invades the population if Rt > R∗t . However, when a back-
ward bifurcation occurs, a stable endemic equilibrium co-exsit with a stable
disease free equilibrium for R∗t < Rt < 1 so that disease free state may shift to
the epidemic state for small perturbation of the system; that means, missing
to treat few infected cattle or any delayed treatment may cause epidemic in
the population. And, if b > b∗, the bifurcation turns out forward and hence
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the disease free equilibrium remain globally asymptotically stable if Rt < 1,
and there exist unique and globally asymptotically stable endemic equilibrium
if Rt > 1. However, the maximal medical resource supply required to control
the diseases increases as the delay constant b increases.

A backward bifurcation occurs for b = 1 with threshold value R∗t = 0.7898
or a = 0.1377 such that two endemic equilibrium exist if a ∈ (0.1049, 0.1377)
or Rt ∈ (0.7898, 1), as shown in Figures 2–3. a = PT εT ≥ 0.1377 gives PT ≥
0.1836 meaning that at least 18.36% of infectious cattle should be treated per
day to control the disease. And, for b = 2, a forward bifurcation occurs so
that a = 0.2098 or Rt = 1 is a sharp threshold between the disease dying out
and causing an epidemic. Where, a = 0.2098 gives PT = 0.2797 meaning that
at least 27.97% of infectious cattle should get antibiotic treatment per day to
control the disease. Similarly, for b = 7, a forward bifurcation occurs so that
a = 0.7344 or Rt = 1 is a sharp threshold between the disease dying out and
causing an epidemic. Where, a = 0.7344 gives PT = 0.9792 implying that
at least 97.92% of infectious cattle should get antibiotic treatment per day to
control the disease.

Global sensitivity analysis also show that decreasing b and increasing a
are most important measures to decrease the treatment reproduction number
and hence to control the disease. However, because of lack of awareness and
poverty, decreasing delay constant, b, or taking cattle to treatment as soon
as they are infected is probably not possible in developing countries. And,
for very small values of b, the system will experiences a backward bifurcation
and hence a stable disease free equilibrium coexist with a stable endemic equi-
librium when Rt ∈ (R∗t , 1), thus, a disease free state may shift to epidemic
for small perturbation. Meaning, the disease may persist in the population if
there is any delayed treatment. And, when a forward bifurcation occurs, the
amount of medical resources required to control the disease is large, but, the
availability of medical resource is limited in developing countries and most cat-
tle owners are economically poor to buy antibiotic for their cattle. Thus, it is
very challenging to control CBPP using antibiotic treatment unless we avoid
any delayed treatment and improve the supply and efficacy of the antibiotic.
And, sensitivity analysis indicate that decreasing effective contact rate, β, is
one way of decreasing the value of treatment reproduction number, next to
half saturation constant and maximal medical resources, thus, we should also
use vaccination along with antibiotic treatment so as to effectively control the
disease as suggested in [2, 20].
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Appendix A: Proof of Theorem 5

Proof. Since the recovered population, R, can be determined from S,E, I,Q
and N , it suffices to consider the system (3.1)–(3.4) only. In this case, Ω =
{(S,E, I,Q) ∈ R4

+ : S ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0, S+E+I+Q ≤ N} is compact
subset of R4. Now, we proof using a geometric approach introduced in [18] by
showing that the following conditions of [18, Theorem 3.5] are satisfied:
(i) Ω is simply connected,
(ii) There is a compact absorbing set K ⊂ Ω,
(iii) X∗2 is the only equilibrium of the system (3.1)–(3.4) in Ω and

(iv) q̄2 = lim supt→∞ supx0∈K
1

t

∫ t
0
µ(B(x(t, x0)))dt < 0, where, B = PfP

−1 +

PJ [2]P−1, P is a nonsingular 6× 6 matrix valued function x→ P (x) which is
C1 in Ω, | · |∞ defined by |(u, v, w, x, y, z)|∞ = max{|u|, |v|, |w|, |x|, |y|, |z|} is a
vector norm on R6, µ is the Lozinskii measure with respect to |·|, Pf = (DP )(f)
or, equivalently, Pf is the matrix obtained by replacing each entry pij in P by
its directional derivative in the direction of f and J [2] is the second additive
compound matrix of J as defined in [17, Table 1].

For (i), obviously, Ω is simply connected in R4. For (ii), the instability of the
disease-free equilibrium implies the uniform persistence of system (3.1)–(3.4),
and uniform persistence is equivalent to the existence of a compact absorbing
set K in the interior of Ω as lim inft→∞ |S(t), E(t), I(t), Q(t)| > c for some
c > 0. For (iii), from Table 2, the system has a unique endemic equilibrium in
the interior of Ω when Rt > 1. For (iv), the Jacobian matrix J of the system
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is given by

J =


−βI/N − µ 0 −βS/N 0
βI/N −(γ + µ) βS/N 0

0 γ −
(
ᾱ+ ab/(b+ I)2

)
k

0 0 αq −k̄

 ,

J [2] =



J
[2]
11 βS/N 0 βS/N 0 0

γ J
[2]
22 k 0 0 0

0 αq J
[2]
33 0 0 −βS/N

0 βI/N 0 J
[2]
44 k 0

0 0 βI/N αq J
[2]
55 βS/N

0 0 0 0 γ J
[2]
66


,

where, J
[2]
11 = −

(
βI
N + µ+ γ + µ

)
, J

[2]
22 = −

(
βI
N + µ+ ᾱ+ ab

(b+I)2

)
, J

[2]
33 =

−
(
βI
N + µ+ k̄

)
, J

[2]
44 = −

(
γ + µ+ ᾱ+ ab/(b+ I)2

)
, J

[2]
55 = −

(
γ + µ+ k̄

)
and

J
[2]
66 = −

(
ᾱ+ k̄ + ab/(b+ I)2

)
.

We choose P (S,E, I,Q) = diag [1/E, 1/I, 1/Q, S/I, S/Q, S/Q] , and we get
that

B=PfP
−1+PJ [2]P−1=



M1
βSI
EN 0 βI

EN 0 0
γE
I M2

kQ
I 0 0 0

0 αqI/Q M3 0 0 −β/N
0 βSI

N 0 M4
kQ
I 0

0 0 βSI
N

αqI
Q M5

βS
N

0 0 0 0 γ M6


,

where

M1 = J
[2]
11 −

E′

E
, M2 = J

[2]
22 −

I ′

I
, M3 = J

[2]
33 −

Q′

Q
, M4 = J

[2]
44 +

S′

S
− I ′

I
,

M5 = J
[2]
55 +

S′

S
− Q′

Q
, M6 = J

[2]
66 +

S′

S
− Q′

Q
.

Now, we write B as B =

[
B11 B12

B21 B22

]
, where

B11 =

M1
βSI
EN 0

γE
I M2

kQ
I

0
αqI
Q M3

 , B12 =

 βI
EN 0 0
0 0 0

0 0 −β
N

 ,
B21 =

0 βSI
N 0

0 0 βSI
N

0 0 0

 , B22 =

M4
kQ
I 0

αqI
Q M5

βS
N

0 γ M6

 .
Let µ(B) be the Lozinskii measure with respect to | · |∞ norm defined by

µ(B) = lim sup
h→0+

|I + hB|∞ − 1

h
.
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We have µ(B) ≤ sup{g1, g2}, see [28], where g1 = µ∞(B11) + |B12|∞ and
g2 = |B21|∞ + µ∞(B22) are matrix norms with respect to l∞ vector norm,
and µ∞ denotes the Lozinskii measure with respect to this l∞ norm. Thus,
|B12|∞ = βI

EN and |B21|∞ = βSI
N . And, to get µ∞(B11) and µ∞(B22), we add

the absolute value of the non-diagonal elements to the corresponding diagonal
element in each entire row, then the maximum of the diagonal elements will be
the measure of the matrix, see [28]. Thus, we get B

′

11 and B
′

22 corresponding
to B11 and B22, respectively, as follows:

B
′

11 =


−
(
βI
N + µ

)
βSI
EN 0

γE
I

a
b+I −

(
βI
N + µ+ ab

(b+I)2

)
kQ
I

0
αqI
Q −

(
βI
N + µ

)
 ,

B
′

22 =

 X kQ
I 0

αqI
Q

S′

S + βS
N − γ̄

βS
N

0 γ Y

 , X=
S′

S
+

a

b+ I
−
(
γ̄ +

ab

(b+ I)2
+
γE

I

)
,

Y = S′

S + γ −
(
ᾱ+

αqI
Q + ab

(b+I)2

)
. Thus,

µ∞(B11) =
a

b+ I
−
(
βI

N
+ µ+

ab

(b+ I)2

)
, µ∞(B22) =

S′

S
+
βS

N
− γ̄.

It follows that

g1 = µ∞(B11) + |B12|∞ =
a

b+ I
−
(
βI

N
+ µ+

ab

(b+ I)2

)
+

βI

EN

=
S′

S
+

a

b+ I
+

βI

EN
− µN

S
− ab

(b+ I)2
and

g2 = |B21|+ µ∞(B22) =
βSI

N
+
S′

S
+
βS

N
− γ̄ =

S′

S
+
βSI

N
+
βS

N
− γ̄.

It can be verified that sup{g1, g2} = g2 < 0 for Rt > 1. Hence,

q̄2 ≤ lim sup
t→∞

sup
x0∈K

1

t

∫ t

0

g2dt < 0,

implying that condition (iv) is satisfied. Therefore, X∗2 is globally asymptoti-
caly stable provided that Rt > 1. ut
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