
Mathematical Modelling and Analysis

Volume 26, Issue 3, 411–431, 2021

https://doi.org/10.3846/mma.2021.11911

Simultaneous Determination of a Source Term
and Diffusion Concentration for a Multi-Term
Space-Time Fractional Diffusion Equation

Salman A. Malik, Asim Ilyas and Arifa Samreen

Department of Mathematics, COMSATS University Islamabad

Park Road, Chak Shahzad Islamabad, Pakistan

E-mail(corresp.): salman.amin.malik@gmail.com

E-mail: salman amin@comsats.edu.pk

E-mail: asim.ilyas8753@gmail.com

E-mail: mahirasamreen@yahoo.co.uk

Received January 14, 2020; revised May 15, 2021; accepted May 18, 2021

Abstract. An inverse problem of determining a time dependent source term along
with diffusion/temperature concentration from a non-local over-specified condition
for a space-time fractional diffusion equation is considered. The space-time fractional
diffusion equation involve Caputo fractional derivative in space and Hilfer fractional
derivatives in time of different orders between 0 and 1. Under certain conditions
on the given data we proved that the inverse problem is locally well-posed in the
sense of Hadamard. Our method of proof based on eigenfunction expansion for which
the eigenfunctions (which are Mittag-Leffler functions) of fractional order spectral
problem and its adjoint problem are considered. Several properties of multinomial
Mittag-Leffler functions are proved.
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1 Introduction

In this article, we are concerned with the inverse problem of recovering the set
of functions {u(x, t), a(t)} for the following multi-term space-time fractional

�
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diffusion equation

Dα0,β0

0+,t
u(x, t)+

m∑
i=1

µiD
αi,βi

0+,t
u(x, t)=cDγ

0+,x
u(x, t)+a(t)f(x, t), (x, t)∈Π, (1.1)

subject to the boundary conditions

u(0, t) = 0 = u(1, t), t ∈ (0, T ), (1.2)

alongside non-homogenous initial conditions

lim
t→0

J
(1−αi)(1−βi)
0+,t

u(x, t) = iφ(x), i = 0, 1, ...,m, m ∈ N, x ∈ (0, 1), (1.3)

where Dαi,βi

0+,t
stands for the Hilfer fractional derivatives in time variable of

orders αi, 0 < αm < ... < α1 < α0 < 1 and type 0 ≤ βi ≤ 1, cDγ
0+,x

represents
Caputo fractional derivative in space variable of order 1 < γ < 2, Π := (0, 1)×
(0, T ), µi, i = 1, 2, ...,m are positive real constants and J

(1−αi)(1−βi)
0+,t

are the
Riemann-Liouville fractional integrals of orders (1− αi)(1− βi).

We need some additional data for unique solvability of the inverse problem,
usually termed as over-determination condition and is given by∫ 1

0

u(x, t)dx = E(t), t ∈ [0, T ]. (1.4)

The function E(t) following consistency relation satisfies∫ 1

0
iφ(x)dx = J

(1−αi)(1−βi)
0+,t

E(0), i = 0, 1, ...,m, m ∈ N.

The structure of the source term arise in microwave heating process, in which
the external energy is supplied to a target at a controlled level represented by
a(t) and f(x, t) is the local conversion rate of the microwave energy.

The solution of the inverse problem {u(x, t), a(t)} is said to be regular if

a ∈ C([0, T ]), tβ0(1−α0)+βi(1−αi)+1u(x, t) ∈ C(Π̄),

tβ0(1−α0)+βi(1−αi)+1
(
Dα0,β0

0+,t
+

m∑
i=1

µiD
αi,βi

0+,t

)
u(x, t) ∈ C(Π̄),

tβ0(1−α0)+βi(1−αi)+1 cDγ
0+,x

u(x, t) ∈ C(Π̄).

We will present the existence, uniqueness and stability results for the solution
of the inverse source problem.

Let us mention the importance of considering integrals and derivatives of
arbitrary order which have been introduced in the mathematical modeling of
many processes like anomalous diffusion [25], Continuous Time Random Walks
(CTRW) (see [35] and references therein), predict earthquake [27], stochastic
process [12], etc. In addition, in the case of heat conduction, the non-local
generalization of Fourier’s law and Fick’s law in the case of diffusion leads
to time-fractional Partial Differential Equations (PDEs) [28]. Time-fractional
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PDEs are used to describe the physical phenomena that have the effect on
memory and space-fractional PDEs deal with particle long-range interactions.
A part from describing anomalous diffusion there are many applications of time
or space or space-time PDEs, just to name a few in biology [11,13], finance [22],
physics [10], viscoelasticity processes [23], forecasting of extreme events such as
earthquake [8]. The order of fractional derivatives in some physical processes
play a significant role and it doesn’t remain the same, the fractional derivatives
with variable order, the distributed order fractional derivatives are considered.
In case of diffsion/transport, the order of fractional derivative used to explain
the sub-diffusion processes. We used multi-term Hilfer fractional derivatives
(as Hilfer fractional derivative has the important physical properties of both
Riemann-Liouville and Caputo fractional derivatives) which could be used as a
better model to explain anomalies by tuning the order of and type of fractional
derivatives. For more detail about the applications of multi-term fractional
PDEs, see [20,24,32] and references therein.

We provide a short survey of inverse problems for Fractional Differential
Equations (FDEs). Inverse problems are considered in [6, 16, 34] to recover a
space-dependent source term for Time Fractional Diffusion Equation (TFDE).
Inverse problems of identifying a time-dependent source term for time-fractional
telegraph equation are considered in [19], for time-fractional wave equation
is considered in [33], and in [26], TFDEs are considered. For a fourth or-
der parabolic equation with nonlocal boundary condition, two inverse source
problems are considered by Sara and Malik [7]. An inverse problem involv-
ing generalized fractional derivative in diffusion and wave equations for time
and space dependent source terms are discussed in [15]. In [4], for a Space-
Time Fractional Diffusion Equation (STFDE) inverse problem of determining
a temporal component in the source term from the total energy of the system is
considered and the recovery of a space dependent source term from final data is
discussed in [3]. Inverse problems of identifying the space and time dependent
source terms for a STFDE are considered in [5]. Recovering order of fractional
derivatives from multi-term TFDE with constant coefficients from boundary
measurements is discussed in [18]. Inverse problem of simultaneously recover-
ing the coefficient of diffusion and the source term for a multi-term TFDE is
considered in [30]. Let us mention that in [1], an inverse problem of determining
a space dependent source term for an equation involving only fractional deriva-
tives in time and Bessel operator was discussed. Here we have n terms of Hilfer
fractional derivative and we used Laplace transform technique for the solution
of multi-term fractional order ordinary differential equation (see Section 1).

In Section 2, we presented preliminaries related to the Fractional Calculus
(FC). In Section 3, we discussed the multinomial Mittag-Leffler function and
related to its estimates. A bi-orthogonal system of functions from spectral
problem and its adjoint problem are presented in Section 4. Our main results
are discussed about the existence, uniqueness and stability of the inverse source
problem in Section 5, some particular examples are also presented in the same
section and in the last section we concluded our paper.

Math. Model. Anal., 26(3):411–431, 2021.
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2 Preliminaries and spectral problem

In this section, we shall present some basic definitions from FC, properties and
lemmas related to multinomial Mittag-Leffler function.

Definition 1. [29], [14] Let f ∈ L1
loc([a, b]),−∞ < a < z < b <∞ be a locally

integrable real-valued function. The left and right sided Riemann-Liouville
fractional integral of order ξ > 0 are defined as

Jξa+,zf(z) :=
1

Γ (ξ)

∫ z

a

(z − τ)ξ−1f(τ) dτ,

Jξb−,zf(z) :=
1

Γ (ξ)

∫ b

z

(τ − z)ξ−1f(τ) dτ,

respectively.

Definition 2. [10] Let 0 < ξ < 1, 0 ≤ η ≤ 1, f ∈ L1([a, b]),−∞ < a < z <

b <∞ and J
(1−ξ)(1−η)
a+,z f ∈ AC([a, b]). The Hilfer fractional derivative of order

ξ and type η is defined as

Dξ, η
a+,zf(z) :=

(
Jη(1−ξ)a+,z

d

dz
J (1−ξ)(1−η)
a+,z f

)
(z).

The Hilfer fractional derivative interpolates both the Riemann-Liouville and
the Caputo fractional derivative.
• For η = 0, the Hilfer fractional derivative becomes the Riemann-Liouville
fractional derivative, i.e.,

Dξ,0
a+,zf(z) =

d

dz
J (1−ξ)
a+,z f(z) := RLDξ

a+,zf(z).

• For η = 1, the Hilfer fractional derivative becomes the Caputo fractional
derivative, i.e.,

Dξ,1
a+,zf(z) = J1−ξ

a+,z

d

dz
f(z) := cDξ

a+,zf(z).

Notice that for βi = 1, i = 0, 1, 2, ...,m,m ∈ N the initial conditions (1.3)
reduces to one condition, i.e., u(x, 0) = φ(x), x ∈ (0, 1).

Let 1 < ξ < 2 and f ∈ AC2([a, b]). The left-sided Caputo derivative of
order ξ is defined as

cDξ
a+,zf(z) := J2−ξ

a+τ

d2

dz2
f(z) =

1

Γ (2− ξ)

∫ z

a

(z − τ)−ξf
′′
(τ) dτ,

where for n ∈ N, we have

ACn([a, b]) =

{
f : [a, b]→ R :

dn−1

dxn−1
f(x) ∈ AC([a, b])

}
.
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Lemma 1. [4] Assume that 0 < ξ < 1, h1 ∈ AC([a, b]) and h2 ∈ Lp([a, b]),
1 ≤ p ≤ ∞. Then, the following formulae of integration by parts hold∫ b

a

h1(z)RLDξ
a+,zh2(z)dz=

∫ b

a

h2(z) cDξ
b−,z

h1(z)dz + h1(z)J1−ξ
a+,zh2(z)

∣∣∣∣z=b
z=a

,∫ b

a

h1(z)RLDξ
b−,z

h2(z)dz=

∫ b

a

h2(z) cDξ
a+,zh1(z)dz − h1(z)J1−ξ

b−,z
h2(z)

∣∣∣∣z=b
z=a

.

Lemma 2. [29] Let gi be a sequence of functions defined on (a, b] for each
i ∈ N, such that

(1) Dξ,η
a+,zgi(z) exists ∀i ∈ N, z ∈ (a, b],

(2) both series

∞∑
i=1

gi(z) and

∞∑
i=1

Dξ,η
a+,zgi(z) are uniformly convergent on the

interval [a+ ε, b] for any ε > 0.
Then,

Dξ,η
a+,z

∞∑
i=1

gi(z) =

∞∑
i=1

Dξ,η
a+,zgi(z), 0 < ξ ≤ η < 1, a < z < b.

Lemma 3. [4] For h1(z), h2(z) ∈ C1([a, b]), the following relation holds

d

dz

(
(h1 ∗ h2)(z)

)
=h1(z)h2(a)+

(
h1 ∗

d

dz
h2
)
(z)=h2(z)h1(a)+

(
h2 ∗

d

dz
h1
)
(z).

3 Multinomial Mittag-Leffler functions

Definition 3. [21] For ξi, η > 0, zi ∈ C, i = 1, 2, ...,m, m ∈ N, the multino-
mial Mittag-Leffler function is defined as

E(ξ1,ξ2,...,ξm),η(z1, z2, ..., zm) :=

∞∑
k=0

∑
l1+l2+...+lm=k
l1≥0,...,lm≥0

(k; l1, ..., lm)
Πm
i=1z

li
i

Γ
(
η +

m∑
i=1

ξili

) ,

where (k; l1, ..., lm) =
k!

l1!× ...× lm!
.

Remark 1. Notice that the multinomial Mittag-Leffler function can be repre-
sented as

E(ξ1,ξ2,...,ξm),η(z1, z2, ..., zm)

=

∞∑
k=0

k∑
l1=0

l1∑
l2=0

...

lm−2∑
lm−1=0

k!

l1!l2!...(k − l1 − l2 − ...− lm−1)!

× z
k−l1−l2−...−lm−1

1 zl12 ...z
lm−1
m

Γ (η + ξ1(k − l1 − l2 − ...− lm−1) + ξ2l1 + ...+ ξmlm−1)
.

Math. Model. Anal., 26(3):411–431, 2021.
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Remark 2. The parameter of multinomial Mittag-Leffler function commutes,
i.e.,

E(ξ1,ξ2,...,ξm),η(z1, z2, ..., zm) = E(ξm,...,ξ2,ξ1),η(zm, ..., z2, z1). (3.1)

Remark 3. For z1 6= 0 and z2 = z3 = ... = zm = 0, m ∈ N the multinomial
Mittag-Leffler function takes the following form

Eξ1,η(z1) =

∞∑
k=0

zk1
Γ (η + ξ1k)

.

For convenience, we use the following notation

E(ξ1,ξ2,...,ξm),η(τ ;σ1, ..., σm) := τη−1E(ξ1,ξ2,...,ξm),η(−σ1τ ξ1 , ...,−σmτ ξm), (3.2)

where σi > 0, i = 1, 2, ...,m.

Lemma 4. For ξi, η, τ, σi > 0, i = 1, 2, ...,m, m ∈ N the Laplace transform of
the multinomial Mittag-Leffler function is given by

L{E(ξ1,ξ2,...,ξm),η(τ ;σ1, ..., σm)} =
s−η

1 +

m∑
i=1

σis
−ξi

, if

∣∣∣∣ m∑
i=1

σis
−ξi
∣∣∣∣ < 1.

Proof. In view of notation (3.2) and Remark 1, we have

E(ξ1,ξ2,...,ξm),η(τ ;σ1, σ2, ..., σm)

= τη−1
∞∑
k=0

k∑
i1=0

i1∑
i2=0

...

im−2∑
im−1=0

(−1)kk!

i1!i2!...(k − i1 − i2 − ...− im−1)!

× (σ1τ
ξ1)k−i1−i2−...−im−1(σ2τ

ξ2)i1 ...(σmτ
ξm)im−1

Γ (η + ξ1(k − i1 − i2 − ...− im−1) + ξ2i1 + ...+ ξmim−1)
,

=

∞∑
k=0

k∑
i1=0

i1∑
i2=0

...

im−2∑
im−1=0

(−1)kk!(σ1)k−i1−i2−...−im−1(σ2)i1 ...(σm)im−1

i1!i2!...(k − i1 − i2 − ...− im−1)!

× τη−1+ξ1(k−i1−i2−...−im−1)+ξ2i1+...+ξmim−1

Γ (η + ξ1(k − i1 − i2 − ...− im−1) + ξ2i1 + ...+ ξmim−1)
.

Taking Laplace transform, we obtain

L{E(ξ1,ξ2,...,ξm),η(τ ;σ1, σ2, ..., σm)}

=

∞∑
k=0

k∑
i1=0

i1∑
i2=0

...

im−2∑
im−1=0

(−1)kk!(σ1)k−i1−i2−...−im−1(σ2)i1 ...(σm)im−1

i1!i2!...(k − i1 − i2 − ...− im−1)!

× 1

sη+ξ1(k−i1−i2−...−im−1)+ξ2i1+...+ξmim−1
. (3.3)
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Now, consider

(−1)k(σ1s
−ξ1 + σ2s

−ξ2 + ...+ σms
−ξm)k =

k∑
i1=0

i1∑
i2=0

...

im−2∑
im−1=0

(−1)kk!

× (σ1s
−ξ1)k−i1−i2−...−im−1(σ2s

−ξ2)i1 ...(σms
−ξm)im−1

i1!i2!...(k − i1 − i2 − ...− im−1)!
,

=

k∑
i1=0

i1∑
i2=0

...

im−2∑
im−1=0

(−1)kk!

i1!i2!...(k − i1 − i2 − ...− im−1)!

× (σ1)k−i1−i2−...−im−1(σ2)ii ...(σm)im−1

sξ1(k−i1−i2−...−im−1)+ξ2i1+...+ξmim−1
.

From (3.3), we obtain

L{E(ξ1,ξ2,...,ξm),η(τ ;σ1, ..., σm)} = s−η/
(

1 +

m∑
i=1

σis
−ξi
)
.

ut

Remark 4. For σ1 6= 0 and σ2 = σ3 = ... = σm = 0, m ∈ N the Laplace
transform of the multinomial Mittag-Leffler function reduces to

L{Eξ1,η(τ ;σ1)} = sξ1−η/(sξ1 + σ1), |σ1s−ξ1 | < 1.

Lemma 5. For 0 < η < 1 and 0 < ξm < ... < ξ1 < 1 be given. Assume that
ξ1π/2 < µ < ξ1π, µ ≤ |arg(zm)| ≤ π and zi > 0, i = 1, 2, ...,m. Then, there
exists a constant depending only on µ, ξi, i = 1, 2, ...,m such that

|E(ξ1−ξm,...,ξ1−ξ2,ξ1),η(zm, ..., z2, z1)| ≤ C1/(1 + |zm|).

Proof. From (3.1) and due to Lemma 3.2 of [17] required result can be proved.
ut

Lemma 6. For ξi, τ, σi > 0, i = 1, 2, ...,m, m ∈ N, the multinomial Mittag-
Leffler type function has the following form

d

dτ

(
Eξ,ξ1+1(τ ;σ1, σ2, ..., σm)

)
= Eξ,ξ1(τ ;σ1, σ2, ..., σm),

where ξ = (ξ1, ξ1 − ξ2, ..., ξ1 − ξm).

Proof. Considering the notation (3.2), taking term by term differentiation and
by arranging the terms, we get the required result. ut

Lemma 7. For g ∈ C1([a, b]) and ξi, σi > 0, for i = 1, 2, ...,m, we have

|g(τ) ∗ Eξ,ξ1(τ ;σ1, σ2, ..., σm)| ≤ C2

σ1
‖g‖C1([0,T ]),

where “ ∗ ” represents the Laplace convolution and

‖g‖C1([0,T ]) = sup
t∈[0,T ]

|g(t)|+ sup
t∈[0,T ]

|g′(t)|.

Math. Model. Anal., 26(3):411–431, 2021.
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Proof. From Lemma 6, we have

|g(τ) ∗ Eξ,ξ1(τ ;σ1, σ2, ..., σm)| =
∣∣∣g(τ) ∗ d

dτ
Eξ,ξ1+1(τ ;σ1, σ2, ..., σm)

∣∣∣. (3.4)

By using Lemma 3, we have the following relation∣∣∣g(τ) ∗ d

dτ
Eξ,ξ1+1(τ ;σ1, σ2, ..., σm)

∣∣∣ =
∣∣∣Eξ,ξ1+1(τ ;σ1, σ2, ..., σm)g(0)

+ Eξ,ξ1+1(τ ;σ1, σ2, ..., σm) ∗ d

dτ
g(τ)

∣∣∣.
By virtue of Lemma 5, we obtain∣∣∣g(τ) ∗ d

dτ
Eξ,ξ1+1(τ ;σ1, σ2, ..., σm)

∣∣∣ ≤ C1

σ1
|g(0)|+ C1

σ1

∫ t

0

∣∣∣ d
dτ
g(τ)

∣∣∣dτ
≤ C1

σ1
(1 + T )‖g‖C1[0,T ]. (3.5)

Hence, due to (3.4) and (3.5), we have

|g(τ) ∗ Eξ,ξ1(τ ;σ1, σ2, ..., σm)| ≤ C2

σ1
‖g‖C1[0,T ].

ut

Remark 5. For σ1 6= 0, σ2 = σ3 = ... = σm = 0, m ∈ N the above Lemma
reduces to the following result proved in [3]

|g(τ) ∗ τ ξ1−1Eξ1,ξ1(−σ1τ ξ1)| ≤ C2

σ1
‖g‖C1([0,T ]).

Lemma 8. For ξi, ρ, η, τ, σ > 0, i = 1, 2, ...,m m ∈ N, we have the following
relation

τρ ∗ E(ξ1,ξ2,...,ξm),η(τ ;σ1, σ2, . . . , σm) = Γ (ρ+ 1)

× E(ξ1,ξ2,...,ξm),η+ρ+1(τ ;σ1, σ2, . . . , σm).

Proof. By taking the Laplace transform on the both sides, we obtained the
result. ut

Remark 6. For σ1 6= 0, σ2 = σ3 = ... = σm = 0, m ∈ N the above Lemma
reduces the well known result

τρ ∗ Eξ1,η(τ ;σ1) = Γ (ρ+ 1)Eξ1,η+ρ+1(τ ;σ1).

Proposition 1. The following identities hold for Mittag-Leffler type function:

• Eξ1,3(τ ;σ1) = τ2/Γ (3)− σ1Eξ1,3+ξ1(τ ;σ1),

• E(ξ1,ξ1−ξ2),3−ξ2(τ ;σ1, σ2) + σ2E(ξ1,ξ1−ξ2),3+ξ1−2ξ2(τ ;σ1, σ2)

= τ2−ξ2/Γ (3− ξ2)− σ1E(ξ1,ξ1−ξ2),3+ξ1−ξ2(τ ;σ1, σ2).
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Proof. Using the series expansion of Eξ1,3(τ ;σ1) and Eξ1,3+ξ1(τ ;σ1), we have

Eξ1,3(τ ;σ1) = τ2
∞∑
k=0

(−σ1τ ξ1)k

Γ (ξ1k + 3)
, Eξ1,3+ξ1(τ ;σ1) = τ2+ξ1

∞∑
k=0

(−σ1τ ξ1)k

Γ (ξ1k+ξ1+3)
.

The first identity can be obtained from the above expression. Similarly, we can
prove the second identity. ut

4 Bi-orthogonal system

In this section, the spectral analysis corresponding to system (1.1)–(1.2) pre-
sented. We will construct the solution of the inverse source problem by using
the Fourier’s method, frequently known as separation of variables.

The spectral problem corresponding to (1.1)–(1.2) is

cDγ
0+,x

X(x) = λX(x), X(0) = 0 = X(1). (4.1)

The spectral problem was considered in [2] and the eigenfunctions of the spec-
tral problem are

{Xn(x)}∞n=1 = {xγ−1Eγ,γ(λnx
γ)}∞n=1,

corresponding to the eigenvalues λn which are the zeros of the function Eγ,γ(λn)
with Im(λn) > 0.

The set {Xn(x)}∞n=1 of eigenfunctions is complete but not orthogonal [2].
Due to fractional operator the spectral problem is non-self-adjoint. For the
adjoint problem of the spectral problem (4.1), we have〈

cDγ
0+,x

X(.), Y (.)
〉

=
〈
J2−γ
0+,x

d2

dx2
X(.), Y (.)

〉
.

Due to Lemma 4.1 of [9], integration by parts, taking Y (0) = 0 = Y (1) and
then using Lemma 1, the adjoint problem of the spectral problem (4.1) is

cDγ
1−,x

Y (x) = λY (x), Y (0) = 0 = Y (1).

For more details (see [5] page 7).
The adjoint problem has eigenfunctions Yn(x) corresponding to the same

eigenvalues as that of spectral problem while eigenfunctions are

{Yn(x)}∞n=1 = {(1− x)γ−1Eγ,γ
(
λn(1− x)γ

)
}∞n=1.

The sets {Xn(x)}∞n=1 and {Yn(x)}∞n=1 form a bi-orthogonal system of functions
[2].

Now, we are going to describe some properties of the eigenvalues of the
spectral problem.

Lemma 9. [2] The eigenvalues λn, that are the zeros of the function Eγ,γ(λ)
with Im(λn) > 0, satisfy the following relations

Math. Model. Anal., 26(3):411–431, 2021.
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• |λk| < |λk+1|, for k ≥ 1.

• For n large enough and arg(λn) > γπ
2 , we have |eλnt| < 1 and |λn| ∼

O(nγ), 1 < γ < 2.

Lemma 10. [5] For any h ∈ C2([0, 1]) such that h(0) = 0 = h(1), we have the
following relation

hn ≤
C1

|λn|(1− α)(2− α)

(
h′(0) +

∫ 1

0

h′′(x)(1− x)2−αdx

)
,

where C1 is a constant and hn = 〈h(.), Yn(.)〉.

5 The main results

In this section, we will discuss the main results of this research article. Firstly,
we are going to present the following theorem that states the conditions under
which inverse problem has a classical solution.

Theorem 1. Let the following conditions hold:

(1) iφ ∈ C2([0, 1]) be such that iφ(0) = 0 = iφ(1) for i = 0, 1, ...,m.

(2) f(., t) ∈ C2([0, 1]) be such that f(0, t) = 0 = f(1, t).

Furthermore, (∫ 1

0

f(x, t)dx

)−1
≤M1

for some positive constant M1,

(3) E ∈ AC([0, T ]) and satisfies the following consistency conditions∫ 1

0
iφ(x)dx = lim

t→0
J
(1−αi)(1−βi)
0+,t

E(t), i = 0, 1, ...,m.

Then, the inverse problem (1.1)–(1.4), is locally well-posed in time.

Proof. Our proof consists of three steps, construction of the series solution by
eigenfunction expansion method, unique existence of the solution and stability
of the solution.

Construction of the solution: The solution of the inverse problem (1.1)–
(1.4) can be written by using Fourier’s method

u(x, t) =

∞∑
n=1

Tn(t)Xn(x),

where Tn(t) satisfy the following fractional differential equation

Dα0,β0

0+,t
Tn(t) +

m∑
i=1

µiD
αi,βi

0+,t
Tn(t) = λnTn(t) + a(t)fn(t)
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and fn(t) = 〈f(., t), Yn(.)〉.
By using the Laplace transform and the initial conditions (1.3), we get

L{Tn(t)}= 0φns
β0(α0−1)

sα0+

m∑
i=1

µis
αi−λn

+

∑m
i=1 iφnµis

βi(αi−1)

sα0+

m∑
i=1

µis
αi−λn

+
L{a(t)fn(t)}

sα0+

m∑
i=1

µis
αi−λn

,

where 0φn = 〈0φ(.), Yn(.)〉 and iφn = 〈iφ(.), Yn(.)〉, for i = 1, 2, ...,m are the
coefficients of series expansion of iφ(x).

By virtue of Lemma 4, we have

Tn(t) =0φnEα,α0+β0−α0β0
(t;λn, µ1, µ2, ..., µm)

+

m∑
i=1

iφnµiEα,α0+βi−αiβi
(t;λn, µ1, µ2, ..., µm)

+ a(t)fn(t) ∗ Eα,α0(t;λn, µ1, µ2, ..., µm),

where α is defined as α = (α0, α0 − α1, ..., α0 − αm).

Hence, the solution u(x, t) takes the form

u(x, t) =

∞∑
n=1

{
0φnEα,α0+β0−α0β0(t;λn, µ1, µ2, ..., µm)

+

m∑
i=1

iφnµiEα,α0+βi−αiβi
(t;λn, µ1, µ2, ..., µm)

+ a(t)fn(t) ∗ Eα,α0
(t;λn, µ1, µ2, ..., µm)

}
xγ−1Eγ,γ(λnx

γ), (5.1)

where a(t) is still to be determined.

By using over-determination condition (1.4), we get

∫ 1

0

(
Dα0,β0

0+,t
u(x, t) +

m∑
i=1

µiD
αi,βi

0+,t
u(x, t)

)
dx =

(
Dα0,β0

0+,t
+

m∑
i=1

µiD
αi,βi

0+,t

)
E(t).

From (1.1), we obtain

∫ 1

0

(
cDγ

0+,x
u(x, t) + a(t)f(x, t)

)
dx = Dα0,β0

0+,t
E(t) +

m∑
i=1

µiD
αi,βi

0+,t
E(t),
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which leads to

a(t) =

[∫ 1

0

f(x, t)dx

]−1 [
Dα0,β0

0+,t
E(t) +

m∑
i=1

µiD
αi,βi

0+,t
E(t)

−
{ ∞∑
n=1

λn

(
0φnEα,α0+β0−α0β0(t;λn, µ1, µ2, ..., µm)

+

m∑
i=1

iφnµiEα,α0+βi−αiβi
(t;λn, µ1, µ2, ..., µm)

)
+

∫ t

0

∞∑
n=1

a(τ)fn(τ)(t− τ)α0−1Eα,α0(t− τ ;λn, µ1, µ2, ..., µm)dτ

}
(
Eγ,1(λn)− 1

)]
. (5.2)

Setting

z(t) =

∞∑
n=1

λn

{
0φnEα,α0+β0−α0β0

(t;λn, µ1, µ2, . . . , µm)

+

m∑
i=1

iφnµiEα,α0+βi−αiβi(t;λn, µ1, µ2, ..., µm)
}(

Eγ,1(λn)− 1

)
(5.3)

K(t, τ) =

∞∑
n=1

λnfn(τ)(t−τ)α0−1Eα,α0(t−τ ;λn, µ1, µ2, . . . , µm)
(
Eγ,1(λn)−1

)
.

(5.4)

Thus, (5.2) can be written as

a(t) =

(∫ 1

0

f(x, t)dx

)−1(
Dα0,β0

0+,t
E(t) +

m∑
i=1

µiD
αi,βi

0+,t
E(t)−z(t)

−
∫ t

0

K(t, τ)a(τ)dτ

)
. (5.5)

Define the mapping B : C([0, T ])→ C([0, T ]) by

B(a(t)) := a(t), (5.6)

where a(t) is given by (5.5).
First, we will show that for a ∈ C([0, T ]), i.e., the mapping B(a(t)) is well-

defined then the mapping will be proved to be a contraction. Lemma 5 and
Equation (5.3) yield the following relation

tβ0(1−α0)+βi(1−αi)+1|z(t)| ≤
∞∑
n=1

C2
1

|λn|

{
|0φn|tβi(1−αi)+1

+

m∑
i=1

µi|iφn|tβ0(1−α0)+1

}
. (5.7)
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The uniform convergence of the series involved in (5.7) is ensured by us-
ing Lemmas 9–10 and continuity of iφ(x). Hence, by Weierstrass M-test,
tβ0(1−α0)+βi(1−αi)+1z(t) represents a continuous function.

Next, we will show that K(t, τ) represents a continuous function. Using
Lemma 5 and Equation (5.4), we have the following inequality

(t− τ)|K(t, τ)| ≤
∞∑
n=1

C2
1

|λn|
|fn(τ)|. (5.8)

By using Lemma 9, continuity of f(x, t) and by Weierstrass M-test for the
uniform convergence of the series involved in (5.8), we can deduce that (t −
τ)K(t, τ) represents a continuous function. Furthermore, we can have M2 > 0
such that ∫ t

0

|K(t, τ)|dτ ≤ TM2.

Hence, the mapping defined by (5.6) is well-defined.
Now, we will show that the mapping B(a(t)) := a(t) is a contraction. Con-

sider

|B(a(t))−B(b(t))| =
(∫ 1

0

f(x, t)dx

)−1(∫ t

0

K(t, τ)|a(τ)− b(τ)|dτ
)
.

By assumptions of Theorem 1, we obtain

max
0≤t≤T

|B(a(t))−B(b(t))| ≤M1M2T max
0≤t≤T

|a(τ)− b(τ)|,

‖B(a)−B(b)‖C([0,T ]) ≤M1M2T‖a− b‖C([0,T ])

for T < 1
M1M2

, where M1 and M2 are positive constants independent of n.
Which shows that the mapping is a contraction. Hence, by Banach fixed point
theorem unique existence of a(t) is ensured.

Next, we will prove the regularity of the solution u(x, t) given by (5.1), that
is, tβ0(1−α0)+βi(1−αi)+1u(x, t), tβ0(1−α0)+βi(1−αi)+1 cDγ

0+,x
u(x, t) and

tβ0(1−α0)+βi(1−αi)+1
(
Dα0,β0

0+,t
u(x, t) +

∑m
i=1 µiD

αi,βi

0+,t
u(x, t)

)
represent continu-

ous functions.
Since, a ∈ C([0, T ]) and for some M > 0, we have ‖a‖C([0,T ]) ≤ M. From

Equation (5.1) and due to Lemmas 5, 7, we obtain

tβ0(1−α0)+βi(1−αi)+1|u(x, t)| ≤
∞∑
n=1

C1

|λn|2

{
C1|0φn|tβi(1−αi)+1

+

m∑
i=1

C1µi|iφn|tβ0(1−α0)+1 + C2M‖fn‖C([0,T ])

}
. (5.9)

Consequently, continuity of iφ(x), a(t), by virtue of Lemmas 9 and 10, Weier-
strass M-test and inequality (5.9), the uniform convergence of series involved
in tβ0(1−α0)+βi(1−αi)+1 u(x, t) is obtained. For the uniform convergence of
tβ0(1−α0)+βi(1−αi)+1 cDγ

0+,x
u(x, t) , we consider
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∞∑
n=1

cDγ
0+,x

Tn(t)Xn(x) =

∞∑
n=1

λnTn(t)Xn(x),

=

∞∑
n=1

λn

{
φ0Eα,α0+β0−α0β0

(t;λn, µ1, µ2, . . . , µm)

+

m∑
i=1

iφnµiEα,α0+βi−αiβi(t;λn, µ1, µ2, . . . , µm)

+ a(t)fn(t) ∗ Eα,α0(t;λn, µ1, µ2, . . . , µm)
}
xγ−1Eγ,γ(λnx

γ).

By using Lemmas 5 and 7, we have the following inequality

tβ0(1−α0)+βi(1−αi)+1

∣∣∣∣ ∞∑
n=1

cDγ
0+,x

Tn(t)Xn(x)

∣∣∣∣ ≤ ∞∑
n=1

C1

|λn|

[
C1|0φn|tβi(1−αi)+1

+

m∑
i=1

C1µi|iφn|tβ0(1−α0)+1 + C2M‖fn‖C([0,T ])

]
.

This implies tβ0(1−α0)+βi(1−αi)+1
∑∞
n=1

cDγ
0+,x

Tn(t)Xn(x) represents a contin-

uous function. Hence, by using Lemma 2, tβ0(1−α0)+βi(1−αi)+1cDγ
0+,x

u(x, t) is
uniformly convergent. Similarly, the uniform convergence of

tβ0(1−α0)+βi(1−αi)+1
(
Dα0,β0

0+,t
+
∑m
i=1 µiD

αi,βi

0+,t

)
u(x, t) can be obtained.

Uniqueness of the Solution: Let {u(x, t), a1(t)} and {v(x, t), a2(t)} be the
two regular solution sets of the inverse problem (1.1)–(1.3) and define ũ(x, t) =
u(x, t) − v(x, t), ã(t) = a1(t) − a2(t). Then, the function ũ(x, t) satisfy the
following equation

Dα0,β0

0+,t
ũ(x, t) +

m∑
i=1

µiD
αi,βi

0+,t
ũ(x, t) = cDγ

0+,x
ũ(x, t), (x, t) ∈ Π

with the boundary conditions

ũ(0, t) = 0 = ũ(1, t), t ∈ [0, T ]

and the initial conditions

lim
t→0

J
(1−αi)(1−βi)
0+,t

ũ(x, t) = 0, i = 0, 1, ...,m, m ∈ N, x ∈ [0, 1]. (5.10)

Consider the function

T̃n(t) =

∫ 1

0

ũ(x, t)Yn(x)dx.

Applying the multi-term Hilfer fractional derivatives, we have

Dα0,β0

0+,t
T̃n(t)+

m∑
i=1

µiD
αi,βi

0+,t
T̃n(t) =

(
Dα0,β0

0+,t
+

m∑
i=1

µiD
αi,βi

0+,t

)∫ 1

0

ũ(x, t)Yn(x)dx.
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By virtue of (1.1), we have the following fractional differential equation

Dα0,β0

0+,t
T̃n(t) +

m∑
i=1

µiD
αi,βi

0+,t
T̃n(t) = λnT̃n(t) + ã(t)fn(t).

The solution of the above equation is

T̃n(t) =J
(1−α0)(1−β0)
0+,t

T̃n(0)Eα,α0+β0−α0β0
(t;λn, µ1, µ2, ..., µm)

+

m∑
i=1

J
(1−αi)(1−βi)
0+,t

T̃n(0)µiEα,α0+βi−αiβi(t;λn, µ1, µ2, ..., µm)

+ ã(t)fn(t) ∗ Eα,α0
(t;λn, µ1, µ2, ..., µm).

By applying the initial conditions (5.10), uniqueness of ã(t) and completeness
of Yn(x), we obtain

T̃n(t) = 0, ∀ n ∈ N ∪ {0}
and u(x, t) = v(x, t), respectively.

Stability of the Solution: Let {u(x, t), a(t)} and {ũ(x, t), ã(t)} be two
solution sets of the inverse problem (1.1)–(1.4), corresponding to the data
{iφ(x), E(t)} and {iφ̃(x), Ẽ(t)}, respectively. Using (5.5), we have

|a(t)− ã(t)| =
(∫ 1

0

f(x, t)dx

)−1 {(
Dα0,β0

0+,t
E(t)−Dα0,β0

0+,t
Ẽ(t)

)
+

m∑
i=1

µi

(
Dαi,βi

0+,t
E(t)−Dαi,βi

0+,t
Ẽ(t)

)
+
(
z(t)−z̃(t)

)
+
(
V (t)−Ṽ (t)

)}
, (5.11)

where z(t) and z̃(t) are given by (5.3), corresponding to data {iφ(x), E(t)}
and {iφ̃(x), Ẽ(t)}, respectively, V (t) and Ṽ (t) are

V (t) =

∞∑
n=1

λna(t)fn(t) ∗ Eα,α0
(t;λn, µ1, µ2, ..., µm)

(
Eα,1(λn)− 1

)
, (5.12)

Ṽ (t) =

∞∑
n=1

λnã(t)fn(t) ∗ Eα,α0(t;λn, µ1, µ2..., µm)

(
Eα,1(λn)− 1

)
. (5.13)

For the Equation (5.3) and due to Lemma 5, we obtain

tβ0(1−α0)+βi(1−αi)+1|z(t)− z̃(t)| ≤
∞∑
n=1

C2
1

|λn|

{
tβi(1−αi)+1|0φn − 0φ̃n|

+

m∑
i=1

µit
β0(1−α0)+1|iφn − iφ̃n|

}
.

By using Cauchy-Bunyakovsky-Schwarz inequality, we obtain

tβ0(1−α0)+βi(1−αi)+1‖z− z̃‖C([0,T ]) ≤
∞∑
n=1

C2
1

|λn|

{
tβi(1−αi)+1‖0φ− 0φ̃‖C2([0,1])

+

m∑
i=1

µit
β0(1−α0)+1‖iφ− iφ̃‖C2([0,1])

}
.
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Similarly, from the Equations (5.12) and (5.13), we obtain

‖V − Ṽ ‖C([0,T ]) ≤
∞∑
n=1

A1C1C2

|λn|
‖a− ã‖C([0,T ]),

where A1 = ‖f‖C(Π).

Under the assumption ‖RLDαi+βi−αiβi

0+,t
E(t)‖C([0,T ]) ≤ A2‖E‖C([0,T ]), where

A2 is constant, we can have (see [31])

‖Dαi,βi

0+,t
E −Dαi,βi

0+,t
Ẽ‖C([0,T ]) ≤ A3‖E − Ẽ‖C([0,T ]), i = 0, 1, ...,m, m ∈ N,

for some constant A3, and from (5.11), we obtain(
1−

∞∑
n=1

A1C1C2

|λn|

)
‖a− ã‖C([0,T ]) ≤M1

{
A2‖E − Ẽ‖C([0,T ])

+

m∑
i=1

µiA2‖E − Ẽ‖C([0,T ]) +

∞∑
n=1

C2
1

|λn|

(
tβi(1−αi)+1‖0φ− 0φ̃‖C2([0,1])

+

m∑
i=1

µit
β0(1−α0)+1‖iφ− iφ̃‖C2([0,1])

)}
.

Hence, we obtain

‖a− ã‖C([0,T ]) ≤M1

(
1−

∞∑
n=1

A1C1C2

|λn|

)−1{
A2‖E − Ẽ‖C([0,T ])

+

m∑
i=1

µiA2‖E − Ẽ‖C([0,T ]) +

∞∑
n=1

C2
1

|λn|

(
tβi(1−αi)+1‖0φ− 0φ̃‖C2([0,1])

+

m∑
i=1

µit
β0(1−α0)+1‖iφ− iφ̃‖C2([0,1])

)}
,

which shows the stability of time dependent term a(t). Similarly, stability of
u(x, t) can be proved. ut

Remark 7. For βi = 1, i = 0, 1, 2, ...,m, m ∈ N, the solution u(x, t) has the
following form

u(x, t) =

∞∑
n=1

{
φnEα,1(t;λn, µ1, µ2, ..., µm) +

m∑
i=1

φnµiEα,α0−αi+1(t;λn, µ1,

µ2, . . . , µm) + a(t)fn(t) ∗ Eα,α0(t;λn, µ1, µ2, . . . , µm)
}
xγ−1Eγ,γ(λnx

γ).

Remark 8. The inverse problem proved to be locally well-posed in Theorem 1,
the result about global existence of the source term can be obtained by applying
other fixed point arguments. The T is required to be small in proving existence
of the solution of inverse problem, better estimates of multinomial Mittag-
Leffler functions is one way for having global solution in time.
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Example 1. In Equation (1.1), we take only one fractional derivative, that is,

µi = 0, i = 1, 2, ...,m, f(x, t) =
(

Γ (4)
Γ (4−α0)

− λ1tα0

)
xγ−1Eγ,γ(λ1x

α0), in (1.3)

the initial condition is taken to be zero and over-specified condition is∫ 1

0

u(x, t)dx = t3
(
Eγ,1(λ1)− 1

)
.

Indeed, using (5.1) the solution of the system is given by

u(x, t) =
{
a(t)f1(t) ∗ Eα0,α0

(t;λ1)
}
xγ−1Eγ,γ(λ1x

γ),

where

f1(t) =
(
Γ (4)/Γ (4− α0)− λ1tα0

)
.

By using Lemma 8 and Proposition 1, we obtain

u(x, t) = t3xγ−1Eγ,γ(λ1x
γ).

The expression for a(t) given by (5.5) takes the form

a(t) =

(∫ 1

0

f(x, t)dx

)−1(
Dα0,β0

0+,t
E(t)−z(t)−

∫ t

0

K(t, τ)a(τ)dτ

)
,

where∫ 1

0

f(x, t)dx =

(
Γ (4)

Γ (4− α0)
− λ1tα0

)(
Eγ,1(λ1)− 1

)
,

Dα0,β0

0+,t
E(t) =

Γ (4)

Γ (4− α0)
t3−α0

(
Eγ,1(λ1)− 1

)
, z(t) = 0,

K(t, τ) =

(
Γ (4)

Γ (4− α0)
− λ1τα0

)
Eα0,α0(t− τ ;λ1)

(
Eγ,1(λ1)− 1

)
.

In this case, we can find expression for a(t) given by

a(t) = t3−α0 .

Example 2. In Equation (1.1), we take two fractional derivatives, that is, µi =

0, i = 2, 3, ...,m, f(x, t) =
(

Γ (4−α1)
Γ (4−α0−α1)

+ µ1
Γ (4−α1)
Γ (4−2α1)

tα0−α1 − λ1tα0

)
xγ−1Eγ,γ(λ1x

α0), in (1.3) the initial condition is taken to be zero and over-
specified condition is∫ 1

0

u(x, t)dx = t3−α1

(
Eγ,1(λ1)− 1

)
.
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The solution in this case involve multinomial Mittag-Leffler function and is
given by

u(x, t) =

{
a(t)f1(t) ∗ E(α0,α0−α1),α0

(t;λ1, µ1)

}
xγ−1Eγ,γ(λ1x

γ),

where

f1(t) =

(
Γ (4− α1)

Γ (4− α0 − α1)
+ µ1

Γ (4− α1)

Γ (4− 2α1)
tα0−α1 − λ1tα0

)
.

Due to Lemma 8 and Proposition 1, we get

u(x, t) = t3−α1xγ−1Eγ,γ(λ1x
γ).

The expression for a(t) given by (5.5) takes the form

a(t)=

(∫ 1

0

f(x, t)dx

)−1(
Dα0,β0

0+,t
E(t)+µ1D

α1,β1

0+,t
E(t)−z(t)−

∫ t

0

K(t, τ)a(τ)dτ

)
,

where∫ 1

0

f(x, t)dx=

(
Γ (4− α1)

Γ (4−α0−α1)
+µ1

Γ (4− α1)

Γ (4− 2α1)
tα0−α1 − λ1tα0

)(
Eγ,1(λ1)− 1

)
,

Dα0,β0

0+,t
E(t) =

Γ (4− α1)

Γ (4− α0 − α1)
t3−α0−α1

(
Eγ,1(λ1)− 1

)
,

Dα1,β1

0+,t
E(t) =

Γ (4− α1)

Γ (4− 2α1)
t3−2α1

(
Eγ,1(λ1)− 1

)
, z(t) = 0,

K(t, τ) = λ1

(
Γ (4− α1)

Γ (4− α0 − α1)
+ µ1

Γ (4− α1)

Γ (4− 2α1)
τα0−α1 − λ1τα0

)
× Eα0,α0

(t− τ ;λ1, µ1)(Eγ,1(λ1)− 1).

In this case, we can find expression for a(t) given by a(t) = t3−α0−α1 .

6 Conclusions

An inverse problem of determining a time dependent source term and diffu-
sion concentration for a space-time fractional differential equation (STFDE),
with multi-term Hilfer fractional derivatives in time of orders αi, 0 < αm <
... < α1 < α0 < 1 and type 0 ≤ βi ≤ 1 and Caputo fractional derivative in
space variable of order 0 < γ < 2 with homogeneous boundary condition is
investigated. A bi-orthogonal system of functions consisting of Mittag-Leffler
functions is obtained from the spectral problem and its adjoint problem. The
multi-term fractional order ordinary differential equations obtained by eigen-
function expansion method are solved by Laplace transformation method. A
series representation involving multinomial Mittag-Leffler functions is obtained
for u(x, t) where as local existence and uniqueness of the source term has been
proved by applying Banach fixed point theorem. The series solution u(x, t)



Simultaneous Determination of a Source Term 429

is proved to be classical solution, in order to do so, we have developed some
estimates for multinomial Mittag-Leffler function. The solution of the inverse
problem is proved to be locally well-posed. Let us mention that several other
inverse problems for STFDE considered here yet to be considered for example,
an important class of inverse problems is to determine the order of fractional
derivatives, which explains the anomalies in the diffusion process specially the
sub diffusion process. Let us mention that numerical investigation for the multi-
nomial Mittag-Leffler function is the topic which has not been considered in
the literature and hence the regularization techniques for the inverse problems
for multi-term differential equations is also very rare in literature. Another in-
teresting set of problems is related to the development of convergent numerical
algorithms for solving direct and inverse problems related to STFDE.
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[11] F. Höfling and T. Franosch. Anomalous transport in the crowded world of bio-
logical cells. Rep. Prog. Phys., 76:046602, 2013. https://doi.org/10.1088/0034-
4885/76/4/046602.

[12] D.B. Hughes. Random Walks and Random Environments, Volume I: Random
Walks. Oxford University Press, 1995.

[13] C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado and J.H.T. Bates.
The role of fractional calculus in modelling biological phenomena: A
review. Commun. Nonlinear Sci. Numer. Simulat., 51:141–159, 2017.
https://doi.org/10.1016/j.cnsns.2017.04.001.

[14] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo. Theory and applications of frac-
tional differential equations. Elsevier Science Limimited, 204, 2006.

[15] N. Kinash and J. Janno. An inverse problem for a generalized fractional deriva-
tive with an application in reconstruction of time- and space-dependent sources
in fractional diffusion and wave equations. Mathematics, 7(12):1138, 2019.
https://doi.org/10.3390/math7121138.

[16] M. Kirane, S.A. Malik and M.A. Al-Gwaiz. An inverse source prob-
lem for a two dimensional time fractional diffusion equation with nonlo-
cal boundary conditions. Math. Meth. Appl. Sci., 36:1056–1069, 2013.
https://doi.org/10.1002/mma.2661.

[17] Z. Li, Y. Liu and M. Yamamoto. Initial-boundary value problems for
multi-term time-fractional diffusion equations with positive constant co-
efficients. Applied Mathematics and Composition, 257:381–397, 2015.
https://doi.org/10.1016/j.amc.2014.11.073.

[18] Z. Li and M. Yamamoto. Uniqueness for inverse problems of determining or-
ders of multi-term time- fractional derivatives of diffusion equation. Applicable
Analysis, 94:570–579, 2015. https://doi.org/10.1080/00036811.2014.926335.

[19] H. Lopushanska and V. Rapita. Inverse coefficient problem for the semi-linear
fractional telegraph equation. Electronic Journal of Differential Equations,
153:1–13, 2015.

[20] Y. Luchko. Initial-boundary-value problems for the generalized multi-term
time-fractional diffusion equation. J. Math. Anal. Appl., 374:538–548, 2011.
https://doi.org/10.1016/j.jmaa.2010.08.048.

[21] Y. Luchko and R. Gorenflo. An operational method for solving fractional dif-
ferential equations with the Caputo derivatives. Acta Mathematica Vietnamica,
24:207–233, 1999.

[22] J.A.T. Machado and A.M. Lopes. Relative fractional dynamics of stock markets.
Nonlinear Dyn., 86:1613–1619, 2016. https://doi.org/10.1007/s11071-016-2980-
1.

[23] F. Mainardi. Fractional calculus and waves in linear viscoelaticity. Imperial
College Press, 2010. https://doi.org/10.1142/p614.

[24] A.K. Mani and M.D. Narayanan. Analytical and numerical solution of an n-term
fractional nonlinear dynamic oscillator. Nonlinear Dynamics, 1000:999–1012,
2020. https://doi.org/10.1007/s11071-020-05539-0.

https://doi.org/10.1142/3779
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1016/j.cnsns.2017.04.001
https://doi.org/10.3390/math7121138
https://doi.org/10.1002/mma.2661
https://doi.org/10.1016/j.amc.2014.11.073
https://doi.org/10.1080/00036811.2014.926335
https://doi.org/10.1016/j.jmaa.2010.08.048
https://doi.org/10.1007/s11071-016-2980-1
https://doi.org/10.1007/s11071-016-2980-1
https://doi.org/10.1142/p614
https://doi.org/10.1007/s11071-020-05539-0


Simultaneous Determination of a Source Term 431

[25] R. Metzler, J.H. Jeon, A.G. Cherstvy and E. Barkai. Anomalous diffusion models
and their properties: non-stationarity, non-ergodicity, and ageing at the cente-
nary of single particle tracking. Physical Chemistry Chemical Physics, 16:24128–
24164, 2014. https://doi.org/10.1039/C4CP03465A.

[26] A. Mohebbi and M. Abbasi. A fourth-order compact difference scheme for the
parabolic inverse problem with an overspecification at a point. Inverse Probl.
Sci. Eng., 23:457–478, 2015. https://doi.org/10.1080/17415977.2014.922075.

[27] M. Di Paola. Complex Fractional Moments and Their Use in Earthquake Engi-
neering: in Encyclopedia of Earthquake Engineering. Springer Berlin Heidelberg,
2014.

[28] Y. Povstenko. Linear fractional diffusion-wave equation for scien-
tists and engineers. Springer Internatinal Publishing Switzerland, 2015.
https://doi.org/10.1007/978-3-319-17954-4.

[29] G.S. Samko, A.A. Kilbas and D.I. Marichev. Fractional Integrals and Derivatives:
Theory and applications. Gordon and Breach Science Publishers, 1993.

[30] H. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Chen. A new col-
lection of real world applications of fractional calculus in science and
engineering. Commun Nonlinear Sci Numer Simul, 64:213–231, 2018.
https://doi.org/10.1016/j.cnsns.2018.04.019.

[31] Z. Tomovski, R. Hilfer and H.M. Srivastava. Fractional and operational cal-
culus with generalized fractional derivative operators and MittagLeffler type
functions. Integral Transforms and Special Functions, 21:797–814, 2010.
https://doi.org/10.1080/10652461003675737.

[32] P.J. Torvik and R.L. Bagley. On the appearance of the fractional derivative in
the behavior of real materials. Journal of Applied Mechanics, 51:294–298, 1984.
https://doi.org/10.1115/1.3167615.
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