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Abstract. In the present paper, reproducing kernel method (RKM) is introduced,
which is employed to solve singularly perturbed convection-diffusion parabolic prob-
lems (SPCDPPs). It is noteworthy to mention that regarding very serve singularities,
there are regular boundary layers in SPCDPPs. On the other hand, getting a reliable
approximate solution could be difficult due to the layer behavior of SPCDPPs. The
strategy developed in our method is dividing the problem region into two regions, so
that one of them would contain a boundary layer behavior. For more illustrations of
the method, certain linear and nonlinear SPCDPP are solved.
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1 Introduction

Let us consider the following singularly perturbed convection-diffusion parabolic
problem,


L(y(x, t)) +N (y(x, t)) = f(x, t),
(x, t) ∈ D ≡ [0, 1]× [0, 1],
y(0, t) = y(1, t) = 0, t ∈ [0, 1],
y(x, 0) = y0(x), x ∈ [0, 1],

(1.1)

where Ly ≡ −ε∂2xy(x, t)+p(x, t)∂xy(x, t)+q(x, t)y(x, t)+∂ty(x, t) and 0 < ε�
1, is perturbation parameter and p(x, t), q(x, t), f(x, t) are sufficiently smooth
functions such that, p(x, t) ≥ α > 0, q(x, t) ≥ β ≥ 0, andN (y(x, t)) is nonlinear
differential operator. Problem (1.1) with the above-mentioned conditions is of
a unique solution y(x, t) with boundary layer behavior, in which the boundary
layer width is O(ε ln( 1

ε )) at neighborhood x = 1, see [22]. SPCDPPs have sev-
eral applications in various fields of science; for example, the fluid dynamics,
electromagnetic field problems, semiconductor device modeling, and meteo-
rological, biological and chemical applications [6, 12, 18, 20, 23, 24, 30]. Some
applications of the RKM and singularly perturbed problems are introduced
in [14,16,26,28]. In addition, we can observe applications of the RKM method
to solve fractional problems in [1, 2, 3, 4, 5, 9, 27,29].

In this study, the RKM is utilized without the Gram-Schmidt orthogonal-
ization process, which was primarily introduced by Wang et al., [32, 33, 34].
The strategy developed in order to solve these problems with layer behavior is
explained in three steps. The first step is splitting the region into two regions,
so that one of them would contain a boundary layer behavior; the second step
is shifting the layer region to another region, and as the final step, a proper
set of collocation points is also required for the boundary layer and regular
regions. Since the RKM is a powerful numerical method, if these three steps
are properly applied to the problem, this technique will be able to provide an
appropriate approximation of the solution, even with severe singularities.

Remark 1. Problem (1.1) with two regions, such that one of the regions contains
a boundary layer behavior, therefore D = D1∪D2, where D1 ≡ [0, 1−µ]× [0, 1]
and D2 ≡ [1− µ, 1]× [0, 1]. Since, the RKM does not provide an approximate
solution for the right layer region, it is essential to shift region D2 to another
region, such as D3 ≡ [−1, 0]× [0, 1]. Further details are provided in [34].

2 Main idea

2.1 Preliminaries and notations

Definition 1. Wm
2 [a, b] =

{
u(x)|u(m−1)(x) is absolutely continuous , u(m)(x) ∈

L2[a, b], u(a) = u(b) = 0
}

. The inner product and norm in Wm
2 [a, b] are given
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as follows,

< u1(x), u2(x) >Wm
2 [a,b]=

m−1∑
i=0

u
(i)
1 (a)u

(i)
2 (a) +

∫ b

a

u
(m)
1 (x)u

(m)
2 (x)dx,

‖u(x)‖Wm
2 [a,b] =

√
< u, u >Wm

2 [a,b], u1(x), u2(x) ∈ Wm
2 [a, b].

Definition 2. W(m,n)
2 (D)=Wm

2 [a, b]⊗Wn
2 [c, d] =

{
u(x, t)|∂

m+n−2u(x,t)
∂xm−1∂tn−1 is com-

pletely continuous in D , ∂
m+nu(x,t)
∂xm∂tn ∈L

2(D), u(a, t)=u(b, t)=u(x, c)=0
}

.

The inner product and norm in W(m,n)
2 (D) are given as follows,

< u1(x, t), u2(x, t) >W(m,n)
2 (D)

=

m−1∑
i=0

∫ d

c

[
∂n

∂tn
∂i

∂xi
u1(a, t)

∂n

∂tn
∂i

∂xi
u2(a, t)

]
dt

+

n−1∑
j=0

〈
∂j

∂tj
u1(x, c),

∂j

∂tj
u2(x, c)

〉
Wm

2 [a,b]

+

∫ b

a

∫ d

c

∂m

∂xm
∂n

∂tn
u1(x, t)

∂m

∂xm
∂n

∂tn
u2(x, t)dxdt,

‖u(x, t)‖W(m,n)
2 (D)

=
√
< u, u >W(m,n)

2 (D)
, u1(x, t), u2(x, t) ∈ W(m,n)

2 (D).

Remark 2. Reproducing kernel for spaces W3
2 [0, 1− µ], W2

2 [0, 1] and W3
2 [−1, 0]

are given as follow,

Ṙη(x) =

{
Ṙ(x, η), x ≤ η,
Ṙ(η, x), η > x,

Ṙ(x, η) =
x5

120
− ηx4

24
+
η2x3

12
+
η2x2

4
+ ηx,

R̊ξ(t) =

{
R̊(t, ξ), t ≤ ξ,
R̊(ξ, t), ξ > t,

R̊(t, ξ) = − t
3

6
+
ξt2

2
+ ξt,

R̈η(x) =

{
R̈(x, η), x ≤ η,
R̈(η, x), η > x,

R̈(x, η) = − η5

120
− η5x5

18720
− η2x5

468
− ηx5

96

− ηx4

24
+
η2x3

12
− η5x2

468
+

97η2x2

234
+
ηx2

3
− η5x

96
+
η2x

3
+

29ηx

96
.

2.1.1 Reproducing kernel spaces for regular region
D1 ≡ [0,1− µ]× [0,1]

Consider reproducing kernel spaces W(3,2)
2 (D1) and W(1,1)

2 (D1) where their

reproducing kernels are given as K̇η,ξ(x, t) = Ṙη(x)R̊ξ(t) and k̇η,ξ(x, t) =
ṙη(x)̊rξ(t), respectively.

2.1.2 Reproducing kernel spaces for shifted boundary-layer region
D3 ≡ [−1,0]× [0,1]

Consider reproducing kernel spaces W(3,2)
2 (D3) and W(1,1)

2 (D3) where their

reproducing kernels are given as, K̈η,ξ(x, t) = R̈η(x)R̊ξ(t) and k̈η,ξ(x, t) =
r̈η(x)̊rξ(t), respectively. See [11].



Implementing Reproducing Kernel Method to... 119

2.2 Reproducing kernel method

Consider L :W(3,2)
2 (D1) −→W(1,1)

2 (D1) for the regular region in equation (1.1)
where L is a invertible bounded linear differential operator, and N (y(x, t)) is a
continuous nonlinear differential operator, and y(x, t) is an unknown function.

The functions K̇η,ξ(x, t) and k̇η,ξ(x, t) are reproducing kernels ofW(3,2)
2 (D1) and

W(1,1)
2 (D1) respectively. Now we choose a countable dense points {(xi, tj)}∞i,j=1

on the region D1 and define,

φij(x, t) = k̇η,ξ(x, t)|(η,ξ)=(xi,tj), ψij(x, t) = L∗φij(x, t),

where L∗ is adjoint operator of L. It is clear that,

ψij(x, t) = Lη,ξK̇η,ξ(x, t)|(η,ξ)=(xi,tj), ϕij(x, t) = K̇η,ξ(x, t)|(η,ξ)=(xi,tj)

are complete functional systems for reproducing kernel spaceW(3,2)
2 (D1) where

i, j = 1, 2, . . . , [32, 33,34].

Theorem 1. Suppose that the inverse of the linear operator L exists. The exact
solution of the equation (1.1) can be represented as,

y(x, t) =

∞∑
`=1

%`ϕ`(x, t), (2.1)

where {(xi, tj)}∞i,j=1 are countable dense sequence of points on the D1 and %`
are the unknown coefficients that must be determined and ` ≡ i, j.

Proof. See [34]. ut

Therefore by truncating the series (2.1), we can provide an approximate
solution for the SPCDPP (1.1)

ẏṅ,n(x, t) =

ṅ∑
`=1

%`,ṅ,nϕ`(x, t), n = 1, 2, . . . , (2.2)

where n is the number of iteration for nonlinear term N (y(x, t)), and n must
be sufficiently large. ṅ is the number of collocation points to apply the present
RKM in the regular region D1 and ṅ1× ṅ2 = ṅ. ` ≡ i, j, where i = 1, 2, . . . , ṅ1
and j = 1, 2, . . . , ṅ2. Based on the general technique for nonlinear problem, it
is clear that the nonlinear problem (1.1) turns to a sequence of iterations to
solve a linear problem in the form, L(ẏṅ,n(x, t)) = N (ẏṅ,n−1(x, t))+f(x, t). For
n = 1 we choose the initial function ẏṅ,0(x, t) such that satisfies in the regular
region conditions and for each iteration n = 2, 3, . . . we obtain N (ẏṅ,n−1(x, t)).
Now we determine the unknown coefficients %`,ṅ,n by using the fundamental
concepts of the Galerkin method. Consider the following equation

Rṅ(x, t) = L(ẏṅ,n(x, t))−N (ẏṅ,n−1(x, t))− f(x, t), (2.3)

such that
〈
Rṅ(x, t), ϕ`(x, t)

〉
W(3,2)

2 (D1)
= 0 for ` ≡ i, j where i = 1, 2, . . . , ṅ1

and j = 1, 2, . . . , ṅ2 and ṅ1 × ṅ2 = ṅ. Using equations (2.2) and (2.3) it is
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easy to see that we have the following system of algebraic equations to obtain
coefficients %`,ṅ,n:

ṅ∑
`=1

%`,ṅ,nLϕ`(x, t)|(x,t)=(xi,tj) = N (ẏṅ,n−1(x, t))|(x,t)=(xi,tj) + f(xi, tj),

n = 1, 2, . . . , i = 1, 2, . . . , ṅ1 j = 1, 2, . . . , ṅ2 ṅ1 × ṅ2 = ṅ.

(2.4)

2.3 Implementing RKM for SPCDPP

Consider the regular region (x, t) ∈ D1 ≡ [0, 1− µ]× [0, 1]
−ε∂2xy(x, t) + p(x, t)∂xy(x, t) + q(x, t)y(x, t) + ∂ty(x, t)

= N (y(x, t)) + f(x, t), (x, t) ∈ D1,
y(0, t) = 0, t ∈ [0, 1],
y(x, 0) = y0(x), x ∈ [0, 1− µ].

(2.5)

Now homogenize the equation (2.5) and solve it by using the RKM in the space

W(3,2)
2 (D1). In the right layer region (x, t) ∈ D2 ≡ [1−µ, 1]× [0, 1] we have

−ε∂2xy(x, t) + p(x, t)∂xy(x, t) + q(x, t)y(x, t) + ∂ty(x, t)
= N (y(x, t)) + f(x, t), (x, t) ∈ D2,

y(1, t) = 0, y(1− µ, t) is known, t ∈ [0, 1],
y(x, 0) = y0(x), x ∈ [1− µ, 1].

(2.6)

Suppose that x = µz + 1 and y(x, t) = u(z, t) such that ∂zu(z, t) = µ∂xy(x, t)
and ∂2zu(z, t) = µ2∂2xy(x, t) therefore the equation (2.6) turns into,

−ε
µ2
∂2zu(z, t)+

1

µ
p(µz + 1, t)∂zu(z, t)+q(µz + 1, t)u(z, t)+∂tu(z, t)

= N (u(z, t))+f(µz + 1, t), (z, t) ∈ D3 ≡ [−1, 0]× [0, 1],
u(0, t) = 0, u(−1, t) is known, t ∈ [0, 1],
u(z, 0) = u0(z), z ∈ [−1, 0].

(2.7)

Now again homogenize the equation (2.7) and solve it by using the RKM in

the space W(3,2)
2 (D3).

2.4 Convergence analysis

Lemma 1. Suppose Q = {ẏṅ,n(x, t)| ‖ẏṅ,n(x, t)‖W(3,2)
2 (D1)

≤ c̊}, then Q is

compact set in space C(D1), where c̊ is a constant and n = 1, 2, . . . .

Proof. See [21,25,32]. ut

Theorem 2. Suppose ẏṅ,n(x, t), y(x, t) are the approximate solution in space

W(3,2)
2 (D1) and the exact solution for the problem (1.1) respectively, and
{(xi, tj)}∞i,j=1 are dense points on the region D1 then ẏṅ,n(x, t) −→ y(x, t) when
ṅ −→∞.
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Proof. First, we need to show that ‖ẏṅ,n(x, t) − y(x, t)‖W(3,2)
2

−→ 0 when

ṅ −→ ∞ then we prove that ẏṅ,n(x, t) uniformly convergent to y(x, t) using
the reproducing properties. See [25]. ut

Corollary 1. Similar to Theorem 2 we have ∂tẏṅ,n(x, t) −→ ∂ty(x, t) when,
ṅ→∞.

3 Error analysis

3.1 Preliminaries and notations for the boundary layer region

Suppose y(x, t) is exact solution for the problem (1.1) with a boundary layer
behavior and Yn(x, t) is approximate solution as following form,

YN,n(x, t) =

{
ẏṅ,n(x, t), x ∈ D1 ≡ [0, 1− µ]× [0, 1],
ÿn̈,n(x, t), x ∈ D2 ≡ [1− µ, 1]× [0, 1],

where ẏṅ(x, t) and ÿn̈(x, t) are approximate solutions that obtained from the
present method in the regions D1 and D2, respectively. Number of collocation
points throughout the region D is N and ṅ, n̈ are number of collocation points
on D1 and D2, respectively and N = ṅ+ n̈.

Theorem 3. Suppose the problem (1.1) as linear form which has homogeneous
initial-boundary conditions and f(x, t) is sufficiently smooth function such that
the following conditions are satisfied

f(1, 0) = 0,
∣∣∣∂k+mf(x, t)

∂xk∂tm

∣∣∣
(x,t)=(0,0)

= 0,

where k+2m ≤ 3, then we have the following bound for solution of the problem
(1.1),∣∣∣∂k+my(x, t)

∂xk∂tm

∣∣∣ ≤ C(1 + ε−ke
−β(1−x)

ε ), (x, t) ∈ D, k = 0, 1, k +m ≤ 2.

Proof. See [10,31]. ut

Corollary 2. According to Theorem 3 upper bound for derivative of y(x, t) rel-
ative to x is infinite when ε→ 0 and x→ 1,

lim
x→1, ε→0

∂xy(x, t)→∞.

Corollary 3. According to Theorem 3 upper bound for derivative of y(x, t) rel-
ative to t is independent of the negative powers of the ε and therefore it is
finite.

We know that the solution of problem (1.1) and its derivative relative to x
(∂xy(x, t)) has the boundary layer behavior. Moreover, in the boundary layer
region, the derivative of the solution relative to x is of great value, see Figure 7

Math. Model. Anal., 26(1):116–134, 2021.
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(Appendix). Therefore, in order to solve problem (1.1) region D is split into
two regions, so that one of them would contain a boundary layer behavior and
uses a proper variable change in this region. It should be remarked that the
present method is employed only to approach the solution of problem (1.1) and
is not applicable to the approximate derivative of the solution, since on the
boundary layer region, the value of the solution derivative (∂xy(x, t)) is very
high.

Remark 3. In summary, since the derivative of solution (1.1) relative to x has
the boundary layer behavior and its value is large, the present method is not
appropriate to approach the derivation of the solution according to Corollary 2.

Remark 4. According to Remark 3, error analysis theorems are valid if, in the
process of proving theorems, we do not use the derivative of the approximate
solution (∂xÿn̈,n(x, t)). Accordingly, in the present work the proof process for
the error analysis theorems are provided without using the derivative of the
approximate solution (∂xÿn̈,n(x, t)), but using the ∂tẏṅ,n(x, t), instead. (Theo-
rems 6, 7).

Remark 5. Since in the process of proving error analysis theorems, uniform
convergence to the exact solution is required, the approximate solution is il-
lustrated, and its derivation relative to t (∂ty(x, t)) is uniformly convergent in
Theorem 2 and Corollary 1.

3.2 Error estimation

Theorem 4. Suppose ẏṅ,n(x, t) is the approximate solution of the problem (2.5)

in space W(3,2)
2 (D1) and y(x, t) is the exact solution, if y(x, t) ∈ W(3,2)

2 (D1)
then,

‖y(x, t)− ẏṅ,n(x, t)‖∞ ≤ C1hx + C2ht,

where (x, t) ∈ D1 and ‖ẏṅ,n(x, t) − y(x, t)‖∞ = max(x,t)∈D1
|ẏṅ(x, t) − y(x, t)|

and C1, C2 are positive constants, hx = max1≤i≤ṅ1
|xi+1 − xi|, and ht =

max1≤j≤ṅ2 |tj+1 − tj |. ṅ = ṅ1 × ṅ2 are number of collocation points in re-
gion D1.

Proof. From [7,8, 13,19], and in each [xi, xi+1]× [tj , tj+1] ⊂ D1 we have,

‖L−1Rṅ(x, t)‖∞ = ‖y(x, t)− ẏṅ,n(x, t)‖∞
= ‖y(x, t)−y(xi, tj)+ẏṅ,n(xi, tj)−ẏṅ,n(x, t)+y(xi, tj)−ẏṅ,n(xi, tj)‖∞.

(3.1)

By expansion of y(x, t) at the point (xi, tj) we have,

y(x, t) ' y(xi, tj) +
[
(x− xi)∂xy(xi, tj) + (t− tj)∂ty(xi, tj)

]
,

|y(x, t)− y(xi, tj)| ≤
∣∣(x− xi)∂xy(xi, tj)

∣∣+
∣∣(t− tj)∂ty(xi, tj)

∣∣,
since y(x, t) ∈ W(3,2)

2 (D1), constants C̃1, C̃2 exist such that, ∀(x, t) ∈ D1

|∂xy(x, t)| ≤ C̃1 and |∂ty(x, t)| ≤ C̃2 and we have,

‖y(x, t)− y(xi, tj)‖∞ ≤ C̃1hx + C̃2ht, (3.2)
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moreover, we can write

ẏṅ,n(xi, tj)− ẏṅ,n(x, t) = −
∫ x

xi

∂sẏṅ,n(s, tj)ds−
∫ t

tj

∂wẏṅ,n(x,w)dw,

|ẏṅ,n(xi, tj)− ẏṅ,n(x, t)| ≤
∫ x

xi

|∂sẏṅ,n(s, tj)|ds+

∫ t

tj

|∂wẏṅ,n(x,w)|dw,

since ẏṅ,n(x, t) ∈ W(3,2)
2 (D1), constants Ĉ1, Ĉ2 exist such that, |∂xẏṅ,n(x, t)| ≤

Ĉ1 and |∂tẏṅ,n(x, t)| ≤ Ĉ2 and therefore we have,

‖ẏṅ,n(xi, tj)− ẏṅ,n(x, t)‖∞ ≤ Ĉ1hx + Ĉ2ht. (3.3)

From Theorem 2 we have ẏṅ,n(x, t) −→ y(x, t) when ṅ → ∞ , therefore for
sufficiently large ṅ, |ẏṅ,n(xi, tj) − y(xi, tj)| < ε1 and by combining the above
inequalities equations,

‖Rṅ(x, t)‖∞ ≤ C̊1hx + C̊2ht, ‖y(x, t)− ẏṅ,n(x, t)‖∞ ≤ C1hx + C2ht.

ut

Theorem 5. Consider assumptions of the Theorem 4 then,

‖∂ty(x, t)− ∂tẏṅ,n(x, t)‖∞ ≤ K1hx +K2ht,

where (x, t) ∈ D1 and ‖∂tẏṅ,n(x, t) − ∂ty(x, t)‖∞ = max(x,t)∈D1
|∂tẏṅ,n(x, t) −

∂ty(x, t)| and K1,K2 are positive constants.

Proof. Similar to Theorem 4 and in each [xi, xi+1]× [tj , tj+1] ⊂ D1 we have,

‖L−1∂tRṅ(x, t)‖∞ = ‖∂ty(x, t)− ∂tẏṅ,n(x, t)‖∞ = ‖∂ty(x, t)− ∂ty(xi, tj)

+ ∂tẏṅ,n(xi, tj)− ∂tẏṅ,n(x, t) + ∂ty(xi, tj)− ∂tẏṅ,n(xi, tj)‖. (3.4)

By expansion of ∂ty(x, t) at the point (xi, tj) we have,

∂ty(x, t) = ∂ty(xi, tj) +
[
(x− xi)

∂2y(xi, tj)

∂x∂t
+ (t− tj)

∂2y(xi, tj)

∂t∂x

]
,

since y(x, t) ∈ W(3,2)
2 (D1) there exists constant K̃1 such that, |∂

2y(x,t)
∂x∂t | ≤ K̃1,

‖∂ty(x, t)− ∂ty(xi, tj)‖∞ ≤ K̃1hx + K̃1ht, (3.5)

moreover, we can write

∂tẏṅ,n(xi, tj)− ∂tẏṅ,n(x, t) = −
∫ x

xi

∂t∂sẏṅ,n(s, tj)ds−
∫ t

tj

∂2wẏṅ,n(x,w)dw,

and since ẏṅ,n(x, t) ∈ W(3,2)
2 (D1) there exist constants K̂1, K̂2 where

|∂t∂xẏṅ,n(x, t)| ≤ K̂1, |∂2t ẏṅ,n(x, t)| ≤ K̂2 and therefore we have,

‖∂tẏṅ,n(xi, tj)− ∂tẏṅ,n(x, t)‖∞ ≤ K̂1hx + K̂2ht. (3.6)

Math. Model. Anal., 26(1):116–134, 2021.
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From Theorem 2 and properties of reproducing kernel we have ∂tẏṅ,n(x, t) −→
∂ty(x, t) when ṅ → ∞ , therefore for sufficiently large ṅ, |∂tẏṅ,n(xi, tj) −
∂ty(xi, tj)| < ε2 and by combining above equations,

‖∂tRṅ(x, t)‖∞ ≤ K̊1hx + K̊2ht, ‖∂ty(x, t)− ∂tẏṅ,n(x, t)‖∞ ≤ K1hx +K2ht.

ut

Now, in order to obtain error estimation between ÿn̈,n(x, t) and y(x, t) on the
region D2, first provide some essential preliminaries, so consider equation (2.6)
as follows [15],

−ε∂2xy(x, t) + p(x, t)∂xy(x, t) + q(x, t)y(x, t) + ∂ty(x, t)
= N (y(x, t)) + f(x, t), (x, t) ∈ D2,
y(1, t) = 0, y(1− µ, t) = ẏṅ,n(1− µ, t), t ∈ [0, 1],
y(x, 0) = y0(x), x ∈ [1− µ, 1].

(3.7)

Consider following assumptions and change region D2 into D3, x = µz + 1
and y(x, t) = u(z, t) such that ∂zu(z, t) = µ∂xy(x, t) and ∂2zu(z, t) = µ2∂2xy(x, t)
therefore the equation (3.7) turns into,

−ε
µ2 ∂

2
zu(z, t) + 1

µp(µz + 1, t)∂zu(z, t) + q(µz + 1, t)u(z, t) + ∂tu(z, t)

= N (u(z, t)) + f(µz + 1, t), (z, t) ∈ D3 ≡ [−1, 0]× [0, 1],
u(0, t) = 0, u(−1, t) = ẏṅ,n(1− µ, t), t ∈ [0, 1],
u(z, 0) = u0(z), z ∈ [−1, 0].

(3.8)
Now by homogenizing the initial and boundary conditions of problem (3.8)

with function u(z, t) = u(z, t)+H1(z, t) such that H1(z, 0) = u0(z) = y0(µz+1)
and H1(−1, t) = ẏṅ,n(1− µ, t), therefore we have following equation,

−ε
µ2 ∂

2
zu(z, t) + 1

µp(µz + 1, t)∂zu(z, t) + q(µz + 1, t)u(z, t) + ∂tu(z, t)

= N (u(z, t)) + f(µz + 1, t), (z, t) ∈ D3 ≡ [−1, 0]× [0, 1],
u(0, t) = 0, u(−1, t) = 0, t ∈ [0, 1],
u(z, 0) = 0, z ∈ [−1, 0].

(3.9)
Suppose u(z, t) is the approximate solution of the problem (3.9) that has

been obtained using RKM in space W(3,2)
2 (D3), therefore

ÿn̈,n(x, t) = u
(
(x− 1)/µ, t

)
+H1

(
(x− 1)/µ, t

)
.

Consider the following equation,
−ε∂2xv(x, t) + p(x, t)∂xv(x, t) + q(x, t)v(x, t) + ∂tv(x, t)
= N (v(x, t)) + g(x, t), (x, t) ∈ D2,
v(1, t) = 0, v(1− µ, t) = y(1− µ, t), t ∈ [0, 1],
v(x, 0) = v0(x), x ∈ [1− µ, 1].

(3.10)

It is clear that the solution of the problem (3.10) is y(x, t) where (x, t) ∈ D2.
By using the following variable change, x = µz + 1 and v(x, t) = ν(z, t) such
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that ∂zν(z, t) = µ∂xv(x, t) and ∂2zν(z, t) = µ2∂2xv(x, t), we have shifted problem
(3.8) to the problem (3.10),

−ε
µ2
∂2zν(z, t) + 1

µp(µz + 1, t)∂zν(z, t) + q(µz + 1, t)ν(z, t) + ∂tν(z, t)

= N (ν(z, t)) + g(µz + 1, t), (z, t) ∈ D3 ≡ [−1, 0]× [0, 1],
ν(0, t) = 0, ν(−1, t) = y(1− µ, t), t ∈ [0, 1],
ν(z, 0) = ν0(z), z ∈ [−1, 0].

(3.11)
Therefore we homogenize obtained problem (3.11), with ν(z, t) = ν(z, t) +

H2(z, t) such that H2(z, 0) = ν0(z) = v0(µz + 1) and H2(−1, t) = y(1 − µ, t),
therefore problem (3.11) turns to,

−ε
µ2
∂2zν(z, t) + 1

µp(µz + 1, t)∂zν(z, t) + q(µz + 1, t)ν(z, t) + ∂tν(z, t)

= N (ν(z, t)) + g(µz + 1, t), (z, t) ∈ D3 ≡ [−1, 0]× [0, 1],
ν(0, t) = 0, ν(−1, t) = 0, t ∈ [0, 1],
ν(z, 0) = 0, z ∈ [−1, 0],

(3.12)
and suppose ν(z, t) is the approximate solution of the problem (3.12) that has

been obtained using RKM in space W(3,2)
2 (D3).

Theorem 6. Suppose u(z, t) is the approximate solution of the equation (3.9)
and ν(z, t) is the solution of the equation (3.12) and p(µz+ 1, t), q(µz+ 1, t) ∈
C2(D3) then,

‖u(z, t)− ν(z, t)‖∞ ≤M1hx +M2ht,

where (xi, tj) ∈ D3 and ‖u(z, t) − ν(z, t)‖∞ = max(x,t)∈D3
= |u(z, t) − ν(z, t)|

and M1,M2 are constants, hx = max1≤i≤n̈1 |xi+1 − xi|, and ht = max1≤j≤n̈2

|tj+1 − tj |. Number of collocation points in region D3 are n̈ = n̈1 × n̈2.

Proof. Since u(z, t), ν(z, t) are approximate solutions of the equations (3.9)
and (3.12), respectively, therefore we have

‖Rn̈(z, t)‖∞ = ‖Lu(z, t)− Lν(z, t)‖∞=‖Lu(z, t)−f(µz + 1, t) + f(µz + 1, t)

− Lν(z, t)‖∞≤‖Lu(z, t)−f(µz+1, t)‖∞+‖f(µz+1, t)−g(µz+1, t)‖∞. (3.13)

By using Theorems 4 it is clear that ‖Lu(z, t)− f(µz + 1, t)‖∞max(x,t)∈D3
=

|Lu(z, t) − f(µz + 1, t)| ≤ M̂1hx + M̂2ht. From problem (3.8) and u(z, t) =
u(z, t) +H1(z, t) we have,

f(µz + 1, t) =
−ε
µ2
∂2zH1(z, t) +

1

µ
p(µz + 1, t)∂zH1(z, t) + q(µz + 1, t)H1(z, t)

+ ∂tH1(z, t).

Using the problem (3.11) and ν(z, t) = ν(z, t) +H2(z, t) we have,

g(µz + 1, t) =
−ε
µ2
∂2zH2(z, t) +

1

µ
p(µz + 1, t)∂zH2(z, t) + q(µz + 1, t)H2(z, t)

+ ∂tH2(z, t),
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it is easy to see that homogenization functions H1(z, t), H2(z, t) can be de-
fined in the from, H1(z, t) = a(z, t)u0(z) + b(z, t)ẏṅ,n(1 − µ, t) and H2(z, t) =
a(z, t)ν0(z) + b(z, t)y(1− µ, t) such that a(z, 0) = 1, b(z, 0) = 0 and a(−1, t) =
0, b(−1, t) = 1 therefore we have,

∂2zH1(z, t) =a1(z, t) + ẏṅ,n(1− µ, t)∂2zb(z, t),
∂zH1(z, t) =a2(z, t) + ẏṅ,n(1− µ, t)∂zb(z, t),
∂tH1(z, t) =a3(z, t) + ẏṅ,n(1− µ, t)∂tb(z, t) + b(z, t)∂tẏṅ,n(1− µ, t),
∂2zH2(z, t) =a1(z, t) + y(1− µ, t)∂2zb(z, t),
∂zH2(z, t) =a2(z, t) + y(1− µ, t)∂zb(z, t),
∂tH2(z, t) =a3(z, t) + y(1− µ, t)∂tb(z, t) + b(z, t)∂ty(1− µ, t),

also |p(µz + 1, t)| ≤ m1, |q(µz + 1, t)| ≤ m2 and we can write,

‖f(µz + 1, t)−g(µz+1, t)‖∞≤
−ε
µ2
‖∂2zH1(z, t)−∂2zH2(z, t)‖∞+

m1

µ
‖∂zH1(z, t)

− ∂zH2(z, t)‖∞ +m2‖H1(z, t)−H2(z, t)‖∞ + ‖∂tH1(z, t)− ∂tH2(z, t)‖∞,

where,

‖H1(z, t)−H2(z, t)‖∞ = ‖a(z, t)u0(z)− a(z, t)ν0(z) + b(z, t)ẏṅ,n(1− µ, t)
− b(z, t)y(1− µ, t)‖∞ ≤ ‖a(z, t)u0(z)− a(z, t)ν0(z)‖∞
+ ‖b(z, t)ẏṅ,n(1− µ, t)− b(z, t)y(1− µ, t)‖∞ ≤ M̃1hx + M̃2ht. (3.14)

Similar to equation (3.14) and using Theorems 4, 5 we have, ‖f(µz+ 1, t)−
g(µz + 1, t)‖∞ ≤ M̌1hx + M̌2ht, and therefore we have

‖Rn̈(z, t)‖∞ = ‖Lu(z, t)− Lν(z, t)‖∞ ≤ M̊1hx + M̊2ht

and from Theorem 4 it is clear ‖u(z, t)− ν(z, t)‖∞ ≤M1hx +M2ht. ut

Theorem 7. Suppose ÿn̈,n(x, t) is the approximate solution of the problem (2.6)

in spaceW(3,2)
2 (D3) and y(x, t) is the exact solution, if y(x, t) ∈ W(3,2)

2 (D) then,

‖y(x, t)− ÿn̈,n(x, t)‖∞ ≤ C3hx + C4ht,

where (xi, tj) ∈ D3 and ‖y(x, t) − ÿn̈,n(x, t)‖∞ = max(x,t)∈D3
= |y(x, t) −

ÿn̈,n(x, t)| and C3, C4 are constants, hx = max1≤i≤n̈1 |xi+1 − xi|, and ht =
max1≤j≤n̈2

|tj+1 − tj |. Number of collocation points in region D3 are n̈ =
n̈1 × n̈2.

Proof. From mentioned preliminaries, u(z, t) is approximate solution of equa-
tion (3.9) and y(x, t) is exact solution of equation (3.10) and ÿn̈,n(x, t) =
u(z, t) +H1(z, t), y(x, t) = ν(z, t) +H2(z, t) where z = x−1

µ therefore we have,

‖y(x, t)− ÿn̈,n(x, t)‖∞ = ‖u(z, t) +H1(z, t)− ν(z, t)−H2(z, t)‖∞
≤ ‖u(z, t)− ν(z, t)‖∞ + ‖H1(z, t)−H2(z, t)‖∞,

(3.15)

using Theorem 6 the proof is completed. ut
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Theorem 8. Suppose YN,n(x, t) is the approximate solution of the problem

(1.1) that has been obtained using RKM in space W(3,2)
2 and y(x, t) is the

exact solution, if p(x, t), q(x, t) ∈ C2(D) and D ≡ [0, 1]× [0, 1] then,

‖YN,n(x, t)− y(x, t)‖∞ = max
(x,t)∈D

|YN,n(x, t)− y(x, t)| ≤ Cxhx + Ctht,

where (xi, tj) ∈ D and Cx, Ct are constants, hx = max1≤i≤N |xi+1 − xi|, and
ht = max1≤j≤N |tj+1 − tj |. Number of collocation points in throughout region
D is N , and N = ṅ+ n̈.

Proof. By using Theorems 4 and 7 and definition of YN,n(x, t) on the region
D,

YN,n(x, t) =

{
ẏṅ,n(x, t) (x, t) ∈ D1,
ÿn̈,n(x, t) (x, t) ∈ D2,

and the proof is completed. ut

4 Numerical results

We consider the following numerical examples [17],

Example 1. −ε∂2xy(x, t) + (1 + x− x2)∂xy(x, t) + ∂ty(x, t) = f1(x, t).

Example 2. −ε∂2xy(x, t) + (−x2 + x+ 1)∂xy(x, t) + ∂ty(x, t) + ey(x,t) = f2(x, t).

Example 3. −ε∂2xy(x, t) + (−x2 + x + 1)∂xy(x, t)y(x, t) + ∂ty(x, t) + ey(x,t) =
f3(x, t).

Example 4. −ε∂2xy(x, t)+(2−x2)∂xy(x, t)+xy(x, t)+∂ty(x, t) = 10t2e−tx(1−x).

For Examples 1, 2 and 3, the exact solution is, y(x, t) = e−t
(
x
(
1− e−1/ε

)
−e x−1

ε + e−1/ε
)

where y0(x) = x
(
1− e−1/ε

)
− e

x−1
ε + e−1/ε and for Exam-

ple 4 the exact solution is not known and y0(x) = 0. See Figure 1 for Ex-
ample 1, Figure 2 for Example 2, Figure 3 for Example 3, and Figure 4
for Example 4 which they show the maximum absolute error for various ε.
If perturbation parameter is not too small (ε = 1, 10−2), then nonuniform
collocation points are

(
1 − ( i

n1+
1
3

)2, j
n2+

1
2

)
, in throughout region D where

i = 1, 2, ..., n1 , j = 1, 2, ..., n2. Otherwise (ε = 10−4,−6,−8,...) nonuniform col-
location points for boundary layer region, are

(
− ( i

n̈1+
1
3

)2, j
n̈2+

1
2

)
throughout

D3 where i = 1, 2, ..., n̈1 , j = 1, 2, ..., n̈2, and collocation points for the regular
region are

(
1 − ( i

ṅ1+
1
7

)2, ( j
ṅ2+

1
6

)2
)

throughout D1, where i = 1, 2, ..., ṅ1 , j =

1, 2, ..., ṅ2. Examples 1, 2 and 3 have the same exact solution, see Figure 5 for
different values of ε, and Figure 6 for Example 4. All present numerical results
are obtained using Wolfram Mathematica 10 software.

Remark 6. For solving problem (1.1), first we divided D to regular region
D1 ≡ [0, 1 − µ] × [0, 1] and boundary layer region D2 ≡ [1 − µ, 1] × [0, 1]
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and we shifted region D2 into D3 ≡ [−1, 0] × [0, 1] and obtain the reproduc-
ing kernels K̇η,ξ(x, t) and K̈η,ξ(x, t) for regular and shifted boundary layer re-
gions, respectively. Then we construct complete functional systems ϕij(x, t) =

K̇η,ξ(x, t)|(η,ξ)=(xi,tj) and ϕij(x, t) = K̈η,ξ(x, t)|(η,ξ)=(xi,tj) for reproducing ker-

nel spaces W(3,2)
2 (D1) and W(3,2)

2 (D3) respectively. For regular region D1,
ṅ = ṅ1 × ṅ2 where i = 1, 2, . . . , ṅ1 and j = 1, 2, . . . , ṅ2. For shifted boundary
layer region D3, n̈ = n̈1 × n̈2 where i = 1, 2, . . . , n̈1 and j = 1, 2, . . . , n̈2 and
` ≡ i, j. Therefor we solve problem (1.1) in the regular and shifted boundary
layer region such that approximate solutions are as following form,

ẏṅ,n(x, t) =

ṅ∑
`=1

%`,ṅ,nϕ`(x, t), ÿn̈,n(x, t) =

n̈∑
`=1

%`,n̈,nϕ`(x, t),

where we obtain coefficients %`,ṅ,n and %`,n̈,n by solving following system of
algebraic equations

ṅ∑
`=1

%`,ṅ,nLϕ`(x, t)|(x,t)=(xi,tj) =N (ẏṅ,n−1(x, t))|(x,t)=(xi,tj) + f(xi, tj),

n̈∑
`=1

%`,n̈,nLϕ`(x, t)|(x,t)=(xi,tj) =N (ÿn̈,n−1(x, t))|(x,t)=(xi,tj) + f(xi, tj),

where n = 2, 3, . . . is number of iterative for nonlinear term N (ẏṅ,n−1(x, t))
and N (ÿn̈,n−1(x, t)) with initial functions ẏṅ,0(x, t) and ÿn̈,0(x, t) for n = 1
respectively.

Remark 7. According to Corollary 3 and Remark 3 we compared maximum
absolute errors for derivative of the approximate solutions relative to t
(E∂tYN,n(x,t) = Max |∂tYN,n(x, t)− ∂ty(x, t)|) and x
(E∂xYN,n(x,t) = Max |∂xYN,n(x, t) − ∂xy(x, t)|) throughout D. We presented
results in Table 3.

Remark 8. According to error analysis Theorems errors ratio for approximate
solution YN,n(x, t) throughout D must be about 0.5. We showed errors ratio
in Tables 1 and 2 for all numerical examples.

5 Conclusions

Hereby, a technique is introduced based on RKM to solve SPCDPPs. One of
the advantages of this technique is that it could be used to solve SPCDPPs,
so that SPCDPPs would not be easily solved employing common numerical
methods or numerical commands in mathematical softwares that are available
for free. Numerical examples demonstrated that the present method has higher
precision compared to other methods. That is in account of the fact that the
Gram-Schmidt process is removed.
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Appendix: tables and figures

Table 1. Max point-wise error (EYN,n(x,t) = Max |Y2N,n(x, t) − YN,n(x, t)|, (x, t) ∈ D)

and error ratio EY2N,n/EYN,n for Example 4.

PM [17]
N 200 400 800 512× 160 1024× 320

ε
100 7.00× 10−5 1.80× 10−5 8.50× 10−6 6.21× 10−5 3.13× 10−5

0.257143 0.472222
10−2 2.80× 10−3 7.00× 10−4 3.00× 10−4 6.07× 10−4 3.10× 10−4

0.250 0.428571
10−4 3.20× 10−3 1.60× 10−3 3.40× 10−4 8.70× 10−4 4.39× 10−4

0.50 0.2125
10−6 3.20× 10−3 1.70× 10−3 3.60× 10−4 8.93× 10−4 4.48× 10−4

0.53125 0.211765
10−8 3.40× 10−3 1.70× 10−3 3.60× 10−4 8.94× 10−4 4.49× 10−4

0.50 0.211765
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Figure 1. Max absolute error with ε = 10−8 (Left: N = 200; Middle: N = 400; Right:
N = 800) for Example 1.

Figure 2. Max absolute error with ε = 10−6 and n = 10 (Left: N = 200; Middle:
N = 400; Right: N = 800) for Example 2.

Figure 3. Max absolute error with ε = 10−8 and n = 10 (Left: N = 200; Middle:
N = 400; Right: N = 800) for Example 3.

Figure 4. Max error with ε = 10−6 (Left: N = 200; Middle: N = 400; Right: N = 800)
for Example 4.
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Table 2. Max absolute error (EYN,n(x,t) = Max |YN,n(x, t) − y(x, t)|, (x, t) ∈ D) with

n = 10 and error ratio EY2N,n/EYN,n.

PM [17]
N 200 400 800 512× 160 1024× 320

ε

Ex.1

100 1.50× 10−4 5.50× 10−5 2.30× 10−5 5.41× 10−5 2.67× 10−5

0.366667 0.418182
10−2 3.20× 10−3 1.30× 10−3 5.50× 10−4 4.55× 10−3 2.52× 10−3

0.40625 0.423077
10−4 1.60× 10−3 8.00× 10−4 4.00× 10−4 5.42× 10−3 2.74× 10−3

0.50 0.50
10−6 1.60× 10−3 8.00× 10−4 4.00× 10−4 5.52× 10−3 2.76× 10−3

0.50 0.50
10−8 2.00× 10−3 8.50× 10−4 4.40× 10−4 5.55× 10−3 2.77× 10−3

0.425 0.517647

Ex.2

100 1.50× 10−4 5.00× 10−5 2.20× 10−5 4.53× 10−5 2.28× 10−5

0.333333 0.440
10−2 2.60× 10−3 1.10× 10−3 4.60× 10−4 2.83× 10−3 1.42× 10−3

0.423077 0.418182
10−4 1.60× 10−3 7.50× 10−4 4.00× 10−4 3.84× 10−3 1.93× 10−3

0.46875 0.533333
10−6 1.60× 10−3 7.50× 10−4 4.00× 10−4 3.92× 10−3 1.96× 10−3

0.46875 0.533333
10−8 1.80× 10−3 8.50× 10−4 4.40× 10−4 3.95× 10−3 1.96× 10−3

0.472222 0.517647

Ex.3
N=256×80 N=512×160

100 1.50× 10−4 5.50× 10−5 2.20× 10−5 2.83× 10−5 1.42× 10−5

0.366667 0.40
10−2 2.60× 10−3 1.10× 10−3 4.60× 10−4 5.21× 10−3 2.70× 10−3

0.423077 0.418182
10−4 1.60× 10−3 7.50× 10−4 4.00× 10−4 8.28× 10−3 4.17× 10−3

0.46875 0.533333
10−6 1.60× 10−3 7.50× 10−4 3.80× 10−4 8.85× 10−3 4.28× 10−3

0.46875 0.506667
10−8 1.70× 10−3 8.00× 10−4 4.20× 10−4 8.65× 10−3 4.30× 10−3

0.470588 0.525
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Table 3. Max absolute errors for derivative of the approximate solutions in Example 3.

Present Method
N = 200 N = 400 N = 800

ε = 10−6

E∂tYN,n(x,t) 1.90× 10−2 1.20× 10−2 8.50× 10−3

E∂xYN,n(x,t) 2.00× 1013 2.00× 1014 6.00× 1013

ε = 10−8

E∂tYN,n(x,t) 3.40× 10−2 2.30× 10−2 1.60× 10−2

E∂xYN,n(x,t) 8.00× 1022 8.50× 1022 2.00× 1023

Figure 5. Approximate solution with N = 200 and n = 10 (Left: ε = 1; Middle:
ε = 10−2; Right: ε = 10−6) for Examples 1, 2, 3.

Figure 6. Approximate solution with N = 200 (Left: ε = 1; Middle: ε = 10−2; Right:
ε = 10−6) for Example 4.

Figure 7. Derivative of the solution relative to x (∂xy(x, t)) throughout region D for
Examples 1, 2, 3, with ε = 10−6 (Left: derivative of the solution; Right: boundary layer

behavior).
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