On Nonhomogeneous Boundary Value Problem for the Stationary Navier-Stokes Equations in a Symmetric Cusp Domain

Kristina Kaulakytė and Neringa Klovienė

Vilnius University, Institute of Applied Mathematics
Naugarduko g. 24, LT-03225 Vilnius, Lithuania
E-mail (corresp.): kristina.kaulakyte@mif.vu.lt
E-mail: kloviene@gmail.com

Received February 26, 2020; revised October 22, 2020; accepted October 23, 2020

Abstract. The nonhomogeneous boundary value problem for the stationary Navier-Stokes equations in 2D symmetric multiply connected domain with a cusp point on the boundary is studied. It is assumed that there is a source or sink in the cusp point. A symmetric solenoidal extension of the boundary value satisfying the Leray-Hopf inequality is constructed. Using this extension, the nonhomogeneous boundary value problem is reduced to homogeneous one and the existence of at least one weak symmetric solution is proved. No restrictions are assumed on the size of fluxes of the boundary value.

Keywords: stationary Navier–Stokes equations, nonhomogeneous boundary condition, cusp point singularity, multiply connected domain, nonzero fluxes.

AMS Subject Classification: 35Q30; 76D03; 76D05.

1 Introduction

Mathematically a point source is a singularity from which flux or flow is emanating. Although such singularities do not exist in the observable universe, mathematical point sources/sinks are often used as approximations to reality in physics and other fields. Point sources/sinks are often used as simple models for driving flow through a gap in a wall. In oceanography, point sources are used to model the influx of fluid from channels and holes. Another example: a nuclear explosion can be treated as a thermal point source in large-scale atmospheric simulations.
This paper is devoted to the famous problem for stationary Navier-Stokes equations in the domain with multiply connected boundary. In fact, this problem arose in the pioneering Leray work (1933). Up to now, this problem is not solved for the general three dimensional case. But it has the positive solution for two dimensional (plane and axially symmetric) flows (see [7] and references there).

In this paper we consider the stationary Navier-Stokes equations with the nonhomogeneous boundary condition

\[
\begin{cases}
-\nu \Delta u + (u \cdot \nabla)u + \nabla p = 0 & \text{in } \Omega, \\
\text{div } u = 0 & \text{in } \Omega, \\
u u = a & \text{on } \partial \Omega \setminus \{O\}
\end{cases}
\]

(1.1)

in a two-dimensional multiply connected symmetric\(^1\) cusp domain \(\Omega = \Omega_0 \cup G\), where \(O = (0,0)\) is a cusp point, \(\Omega_0 = \{x \in \Omega : x_2 > H\}\) and \(G = \{x \in \mathbb{R}^2 : |x_1| \leq \varphi(x_2), 0 < x_2 \leq H\}\) with the function \(\varphi = \varphi(x_2)\) satisfying the Lipschitz condition

\[|\varphi(t_1) - \varphi(t_2)| \leq L|t_1 - t_2|, \quad t_1, t_2 \leq H, \quad L - \text{Lipschitz constant.}\]

Moreover, \(\varphi(t) > 0\) for \(t > 0\) and \(\varphi(t) \rightarrow 0, \varphi'(t) \rightarrow 0\) as \(t \rightarrow 0\). The domain \(\Omega_0\) has the form \(\Omega_0 = G_0 \setminus \bigcup_{i=1}^N G_i\), where \(G_0\) and \(G_i, i = 1, \ldots, N\), are bounded simply connected domains such that \(\overline{G}_i \subset G_0\) and \(\overline{G}_{i1} \cap \overline{G}_{i2} = \emptyset\). Each boundary \(\Gamma_i = \partial G_i, i = 1, \ldots, N\), intersects the \(x_2\)-axis at two points. The boundary \(\partial \Omega\) is composed of the inner boundaries \(\Gamma_1, \ldots, \Gamma_N\) and the outer boundary \(\partial \Omega \setminus \bigcup_{i=1}^N \Gamma_i = \Gamma\), i.e., the outer boundary \(\Gamma\) encloses the inner boundaries \(\Gamma_1, \ldots, \Gamma_N\) (see Figure 1).

In (1.1) the vector-valued function \(u = u(x)\) is the unknown velocity field, the scalar function \(p = p(x)\) is the pressure of the fluid, \(\nu > 0\) is the constant viscosity of the fluid, while the vector-valued function \(a = a(x)\) denotes the given boundary value.

\(^1\) Domain \(\Omega\) is symmetric with respect to the \(x_2\)-axis (see (2.1)).
We assume that the support of the boundary value \(a \in W^{1/2,2}(\partial \Omega) \) is separated from the cusp point \(O = (0,0) \), i.e.,
\[
\text{supp} \ a \subset A \cup (\cup_{i=1}^N \Gamma_i),
\]
where \(A \subset \Gamma \cap \partial \Omega_0 \) is a connected set. Let
\[
F^{(out)} = \int_{A} a \cdot n \, dS, \quad F^{(inn)}_i = \int_{\Gamma_i} a \cdot n \, dS, \quad i = 1, \ldots, N,
\]
be the fluxes of the boundary value \(a \) over the outer and the inner boundaries, respectively. Here \(n \) is a unit vector of the outward normal to \(\partial \Omega \). Since the fluid is incompressible, the total flux has to be zero (the necessary compatibility condition) and we have:
\[
\int_{\sigma(R)} u \cdot n \, dS = -\left(F^{(inn)} + F^{(out)} \right), \quad 0 < R < H,
\]
where \(F^{(inn)} = \sum_{i=1}^N F^{(inn)}_i \) and \(\sigma(R) = (-\varphi(R), \varphi(R)) \) is a cross section of \(G \) by the straight line parallel to the \(x_1 \)-axis.

Since, the velocity \(u \) has a nonzero flux in the cusp point, it has to be singular: \(u(x) \sim 1/\text{meas(}\sigma(r)\text{)} = c/\varphi(r) \to +\infty \) as \(r \to 0 \). Moreover, the velocity \(u \) has infinite Dirichlet integral \(\int_{\Omega} |\nabla u|^2 \, dx = +\infty \) (infinite dissipation of energy). Therefore, it is necessary to look for the solution in a class of functions with infinite Dirichlet integral. Notice that the above formulated problem has similarities with boundary value problems for the Navier–Stokes equations in domains with paraboloidal outlets to infinity (the paraboloidal outlet to infinity in 2D has the form \(\{ x \in \mathbb{R}^2 : |x_1| \leq \varphi(x_2), x_2 \in (H, +\infty) \} \)), where \(\lim_{t \to +\infty} \varphi(t) = +\infty \). Thus, the structure of such outlet is similar to the structure of the cusp point with the difference that “singularity” is at infinity.

In multiply connected domains with outlets to infinity the solvability of non-homogeneous boundary value problem for the stationary Navier-Stokes equations is proved either assuming the smallness condition of the fluxes over the inner boundaries (see, for instance, [3,5,12,13]) or under the certain symmetry assumptions on the domain and the boundary value (see, for instance, [1,6,10,11]). In [9,14] O.A. Ladyzhenskaya and V.A. Solonnikov proposed a method (so called Saint-Venant’s estimates method) which allowed to prove the existence of solutions having infinite Dirichlet integral in domains with outlets to infinity. In the present paper we use these ideas in the case of a source or sink in the cusp point and prove the existence of a solution to problem (1.1) for arbitrarily large fluxes \(F^{(inn)} \) and \(F^{(out)} \). The most important part in this prove is to construct the vector field which satisfies so called Leray-Hopf’s inequalities (see (3.4)).

2 Main notation and auxiliary results

We will use the letter “\(c \)” for a generic constant which numerical value or dependence on parameters is unessential to our considerations; “\(c \)” may have
different values in a single computation. Vector valued functions are denoted by bold letters while function spaces for scalar and vector valued functions are denoted in the same way.

Let D be a domain in \mathbb{R}^n. $C^\infty(D)$ denotes the set of all infinitely differentiable functions defined on Ω and $C_0^\infty(D)$ is the subset of all functions from $C^\infty(D)$ with compact supports in D. For given non-negative integers k and $q > 1$, $L^q(D)$ and $W^{k,q}(D)$ denote the usual Lebesgue and Sobolev spaces; $W^{k-1/q,q}(\partial D)$ is the trace space on $\partial \Omega$ of functions from $W^{k,q}(D)$. $J_0^\infty(D)$ is the set of all solenoidal (div $u = 0$) vector fields u from $C_0^\infty(D)$.

We say that Ω is a symmetric domain with respect to the x_2-axis if the following condition is valid:

$$ (x_1, x_2) \in \Omega \Leftrightarrow (-x_1, x_2) \in \Omega. \quad (2.1) $$

The vector function $\mathbf{u} = (u_1, u_2)$ defined in Ω is called symmetric with respect to the x_2-axis if u_1 is an odd function in x_1 and u_2 is an even function in x_1, i.e.,

$$ u_1(x_1, x_2) = -u_1(-x_1, x_2), \quad u_2(x_1, x_2) = u_2(-x_1, x_2). \quad (2.2) $$

For any set $V(\Omega)$ consisting of functions defined in the symmetric domain Ω (satisfying (2.1)), we denote by $V_S(\Omega)$ the subspace of symmetric functions (satisfying (2.2)) from $V(\Omega)$.

Let Ω be a domain with a cusp point defined in Introduction. Let us introduce a family of domains Ω_k with Lipschitz boundaries:

$$ \Omega_k = \Omega_{k-1} \cup \{ x \in \mathbb{R}^2 : |x_1| \leq \varphi(x_2), x_2 \in (h_k, h_{k-1}) \} = \Omega_{k-1} \cup \omega_k, $$

where

$$ h_0 = H, \quad h_k = h_{k-1} - \frac{\varphi(h_{k-1})}{2L}, k = 1, 2, \ldots. $$

We write $u \in W_l^{1,q}(\overline{\Omega})$ if $u \in W_l^{1,q}(\Omega_k)$ for all k.

Let \mathcal{M} be a closed set in \mathbb{R}^2. By $\Delta_{\mathcal{M}}(x)$ we denote Stein’s regularized distance from the point x to the set \mathcal{M}. Notice that $\Delta_{\mathcal{M}}(x)$ is an infinitely differentiable function in $\mathbb{R}^2 \setminus \mathcal{M}$ and the following inequalities

$$ a_1 d_{\mathcal{M}}(x) \leq \Delta_{\mathcal{M}}(x) \leq a_2 d_{\mathcal{M}}(x), \quad |D^\alpha \Delta_{\mathcal{M}}(x)| \leq a_3 d_{\mathcal{M}}^{1-|\alpha|}(x), $$

hold, where $d_{\mathcal{M}}(x) = \text{dist}(x, \mathcal{M})$ is the distance from x to \mathcal{M}. The positive constants a_1, a_2 and a_3 are independent of \mathcal{M} (see [16], Chapter VI, Sections 1 and 2, 167-171, Theorem 2).

We shall use the well known results which are formulated in the lemmas below.

Lemma 1. Let $D \subset \mathbb{R}^2$ be a bounded domain with Lipschitz boundary ∂D, $L \subset \partial D$, $\text{meas}(L) > 0$. Then for any $\mathbf{w} \in W^{1,2}(D)$ with $\mathbf{w}|_L = 0$ the following inequality

$$ \int_D |\mathbf{w}(x)|^2 dx \leq c \int_D |
abla \mathbf{w}|^2 dx $$

holds (see [8], Chapter V, Section 4, 129-130).
Lemma 2. Let $D \subset \mathbb{R}^2$ be a bounded domain with Lipschitz boundary ∂D, $L \subseteq \partial D$, $\text{meas}(L) > 0$. Assume that the vector field $\mathbf{h} \in W^{1/2,2}(\partial D)$ satisfies the conditions $\int_L \mathbf{h} \cdot \mathbf{n} dS = 0$, $\text{supp} \mathbf{h} \subseteq L$. Then \mathbf{h} can be extended inside D in the form

$$A(x,\varepsilon) = \left(\frac{\partial (\chi(x,\varepsilon)\mathbf{E}(x))}{\partial x_2}, -\frac{\partial (\chi(x,\varepsilon)\mathbf{E}(x))}{\partial x_1}\right),$$

where $\mathbf{E} \in W^{2,2}(D)$, $(\frac{\partial \mathbf{E}(x)}{\partial x_2}, -\frac{\partial \mathbf{E}(x)}{\partial x_1})|_{\partial D} = \mathbf{h}$ and $\chi = \chi(x,\varepsilon)$ is Hopf’s type cut-off function, i.e., χ is smooth, $\chi(x,\varepsilon) = 1$ on L, $\text{supp} \chi$ is contained in a small neighborhood of L and

$$|\nabla \chi(x,\varepsilon)| \leq \frac{\varepsilon c}{d_L(x)}.$$

The constant c is independent of $\varepsilon > 0$ (see [8], Chapter V, Section 4, 127-128).

3 Solvability of problem (1.1)

Definition 1. A symmetric weak solution of problem (1.1) is a solenoidal vector field $\mathbf{u} \in W^{1,2}_{\text{loc},S}(\Omega)$ satisfying the nonhomogenous boundary condition $\mathbf{u}|_{\partial \Omega \setminus \{O\}} = \mathbf{a}$ and the integral identity

$$\nu \int_{\Omega} \nabla \mathbf{u} : \nabla \eta dx - \int_{\Omega} (\mathbf{u} \cdot \nabla) \eta \cdot \mathbf{u} dx = 0, \quad \forall \eta \in J_0^\infty(\Omega). \quad (3.1)$$

Let us reduce the nonhomogeneous boundary conditions to homogeneous ones. To do this, we need to construct a suitable extension A of the boundary value \mathbf{a}. Since we are looking for the symmetric solution, A has to be symmetric. Moreover, it has to be solenoidal and to satisfy the condition $A|_{\partial \Omega} = \mathbf{a}$. When A is constructed we can look for the solution \mathbf{u} of problem (1.1) in the form

$$\mathbf{u}(x) = A(x,\varepsilon) + \mathbf{v}(x), \quad (3.2)$$

where $\mathbf{v} \in W^{1,2}_{\text{loc},S}(\Omega)$ is a new unknown solenoidal velocity field which satisfies the homogeneous boundary condition $\mathbf{v} = 0$ on $\partial \Omega \setminus \{O\}$.

Putting (3.2) into (3.1) we get the integral identity for \mathbf{v}:

$$\nu \int_{\Omega} \nabla \mathbf{v} : \nabla \eta dx - \int_{\Omega} ((A + \mathbf{v}) \cdot \nabla) \eta \cdot \mathbf{v} dx - \int_{\Omega} (\mathbf{v} \cdot \nabla) \eta \cdot A dx$$

$$= \int_{\Omega} (A \cdot \nabla) \eta \cdot A dx - \nu \int_{\Omega} \nabla A : \nabla \eta dx, \quad \forall \eta \in J_0^\infty(\Omega). \quad (3.3)$$

The existence of \mathbf{v} satisfying (3.3) could be proved using the ideas proposed by O.A. Ladyzenskaya and V.A Solonnikov ([9,14]). Actually, in order to get the desirable a priori estimates, the important step is to construct the extension A satisfying so called Leray-Hopf’s inequalities:

$$\left|\int_{\Omega_k} (\mathbf{w} \cdot \nabla) \mathbf{w} \cdot A dx\right| \leq \varepsilon \int_{\Omega_k} |\nabla \mathbf{w}|^2 dx,$$

$$\left|\int_{\omega_k} (\mathbf{w} \cdot \nabla) \mathbf{w} \cdot A dx\right| \leq \varepsilon \int_{\omega_k} |\nabla \mathbf{w}|^2 dx.$$

for any solenoidal \(w \in W^{1,2}_{loc, S}(\Omega) \), \(w = 0 \) on \(\partial \Omega \setminus \{O\} \).

As soon as we have a suitable extension \(A \) of the boundary value \(a \), the method of Saint-Venant’s estimates can be applied and the existence of the solution can be proved. The detailed existence proof for a simply connected cusp domain can be found in [4]. This proof remains valid for the problem considering in this paper. Therefore, we just formulate the existence theorem.

Theorem 1. Suppose that \(\Omega \subset \mathbb{R}^2 \) is a multiply connected symmetric with respect to the \(x_2 \)-axis cusp domain and each \(\Gamma_i, i = 1, \ldots, N \), and \(\Gamma \) intersect the \(x_2 \)-axis (see Figure 1). Assume that the boundary value \(a \) is a symmetric vector field in \(W^{1/2, 2}(\partial \Omega) \) such that the support of \(a \) is separated from the cusp point \(O \). Then problem (1.1) admits at least one weak solution \(u = A + v \) which satisfies the following estimate

\[
\int_{\Omega_k} |\nabla u|^2 dx \leq c \left(\|a\|^4_{W^{1/2, 2}(\partial \Omega)} + \|a\|_{W^{1/2, 2}(\partial \Omega)}^4 \right) \int_{h_k}^{H} \frac{dx_2}{\varphi^3(x_2)},
\]

where the constant \(c \) is independent of \(k \).

4 Construction of the extension

The extension \(A \) of the boundary value \(a \) will be constructed as the sum

\[A = B^{(inn)} + B^{(out)}, \]

where \(B^{(inn)} \) extends the boundary value \(a \) from the inner boundaries \(\bigcup_{i=1}^{N} \Gamma_i \) and \(B^{(out)} \) extends the modified boundary value from the outer boundary \(\Gamma \).

Indeed, in order to construct \(B^{(inn)} \), we “remove” the fluxes \(F_i^{(inn)}, i = 1, \ldots, N \), to the outer boundary \(\Gamma \). After this step we have the flux \(\sum_{i=1}^{N} F_i^{(inn)} + F^{(out)} \) on \(\Gamma \). Then by “removing” it to the cusp point and extending the modified boundary value from \(\Gamma \) into \(\Omega \) we construct the extension \(B^{(out)} \). The vector fields \(B^{(inn)} \) and \(B^{(out)} \) are constructed to satisfy Leray-Hopf’s inequalities which allow to obtain a priori estimates of the solutions for arbitrarily large fluxes \(F_i^{(inn)}, i = 1, \ldots, N \), and \(F^{(out)} \).

Notice that the symmetry assumption is crucial for the construction of \(B^{(inn)} \), satisfying Leray-Hopf’s inequalities. In general case Leray-Hopf’s inequalities cannot be true for the vector field \(B^{(inn)} \). Indeed, if the fluxes over connected components of the boundary do not vanish, there is a counterexample (see [17]) showing that in general bounded domains Leray-Hopf’s inequalities can be false whatever the choice of the solenoidal extension is taken. However, such extension is possible for symmetric bounded domains (see [2]).

4.1 Construction of the extension \(B^{(inn)} \)

In order to construct \(B^{(inn)} \) satisfying the Leray-Hopf inequalities, we follow the idea of Fujita [2] for bounded symmetric domain.

We start with the construction of some auxiliary functions. Let \(0 < \kappa < 1/2 \) be a parameter. Then we introduce non-negative functions \(\beta_\kappa(t) : \mathbb{R} \to \mathbb{R} \) with
the following properties:

\[
\beta_\kappa(t) \in C_0^\infty(-\infty,+\infty), \quad \beta_\kappa(-t) = \beta_\kappa(t), \quad \forall t \in \mathbb{R}, \quad \beta_\kappa(t) \leq \frac{1}{t} \text{ for } 0 < t < +\infty,
\]

\[
\beta_\kappa(t) = \begin{cases}
0, & |t| \geq 1, \\
\frac{1}{t}, & \kappa \leq |t| \leq 1/2.
\end{cases}
\]

Define \(y_\kappa = \int_{-\infty}^{+\infty} \beta_\kappa(t) dt \). Due to the properties of \(\beta_\kappa(t) \), we see that

\[
y_\kappa = \int_{-\infty}^{+\infty} \beta_\kappa(t) dt = \int_{-1}^{1} \beta_\kappa(t) dt \geq 2 \int_{-1}^{1} \frac{1}{t} dt \to +\infty \text{ as } \kappa \to +0.
\]

Let \(\delta \) be a small positive number. Define a smooth non-negative function

\[
s(t) = s(t, \delta, \kappa) = \frac{1}{y_\kappa \delta} \beta_\kappa\left(\frac{t}{\delta}\right).
\]

Obviously, \(s(t) \in C_0^\infty(-\infty,+\infty) \) and \(\text{supp } s \subseteq [-\delta, \delta] \).

Moreover,

\[
\int_{-\infty}^{+\infty} s(t) dt = \int_{-\delta}^{\delta} s(t) dt = 1.
\]

Indeed,

\[
\int_{-\infty}^{+\infty} s(t) dt = \int_{-\infty}^{+\infty} \frac{1}{y_\kappa \delta} \beta_\kappa\left(\frac{t}{\delta}\right) dt = \frac{1}{y_\kappa \delta} \int_{-\infty}^{+\infty} \beta_\kappa\left(\frac{t}{\delta}\right) d\left(\frac{t}{\delta}\right) = \frac{1}{y_\kappa} y_\kappa = 1.
\]

Furthermore,

\[
0 \leq s(t) \leq \frac{1}{y_\kappa \delta} \frac{\delta}{|t|} = \frac{1}{y_\kappa |t|}, \text{ for } t \neq 0.
\]

Therefore, we have that

\[
\lim_{\kappa \to +0} \sup_t |t| s(t, \delta, \kappa) = 0.
\]

Let us choose a small number \(\delta \) so that the straight line \(x_1 = \delta \) cuts each of \(\Gamma_i, \ i = 1, \ldots, N \) at only two points. For each \(\Gamma_i, \ i = 1, \ldots, N \), the \(x_2 \)-axis intersects \(\Gamma_i \) at the point \((0, X_i) \) and \((0, X_i^*) \), where \(X_i > X_i^* \). For \(i = 1, \ldots, N \) we define the thin strips: \(\Upsilon_i = [-\delta, \delta] \times [X_i - \mu_i, X_0 + \mu_0] \), where \(\mu_i \) and \(\mu_0 \) are small positive numbers and \((0, X_0) \) is the point where the outer boundary \(\Gamma \) intersects the \(x_2 \)-axis. Notice that the points \((0, X_i - \mu_i) \) and \((0, X_0 + \mu_0) \) are outside the domain \(\Omega \) and \((0, X_i - \mu_i) \) lies in \(G_i, \ i = 1, \ldots, N \) (see Figure 2).

In every strip \(\Upsilon_i \cap \Omega, \ i = 1, \ldots, N \), we define the vector field \(b^{(\text{inn})}_i \) by the formula

\[
b^{(\text{inn})}_i(x) = (0, -F_i^{(\text{inn})} s(x_1)).
\]

Notice that \(b^{(\text{inn})}_i \) defined on \(\Upsilon_i \cap \Omega \) can be extended by zero into the whole domain \(\Omega \). It is possible because the bottom of each \(\Upsilon_i \) is outside the domain.
Figure 2. The strip \mathcal{Y}_i.

Ω (inside G_i). For the sake of simplicity we keep the same notation b_i^{inn} for the extension and set

$$b_i^{\text{inn}}(x) = \begin{cases} (0, -F_i^{\text{inn}}(s(x_1))) & \text{in } \mathcal{Y}_i \cap \Omega, \\ (0, 0) & \text{in } \overline{\Omega} \setminus \mathcal{Y}_i. \end{cases}$$

Let us take a part of $\mathcal{Y}_i \cap \Omega$ which we denote by $\tilde{\mathcal{Y}}_i$, i.e., the boundary of $\tilde{\mathcal{Y}}_i$ is the union of $\Gamma_i \cap \mathcal{Y}_i$, $[-\delta, \delta] \times (X_i + \mu)$ and the lines $x_1 = \delta$, $x_1 = -\delta$. Here μ is a small positive number. Then since the vector field b_i^{inn} is solenoidal, we obtain

$$0 = \int_{\tilde{\mathcal{Y}}_i} \text{div } b_i^{\text{inn}} \, dx = \int_{\partial \tilde{\mathcal{Y}}_i} b_i^{\text{inn}} \cdot n \, dS$$

$$= \int_{\Gamma_i \cap \mathcal{Y}_i} b_i^{\text{inn}} \cdot n \, dS + \int_{[-\delta, \delta] \times (X_i + \mu)} b_i^{\text{inn}} \cdot e_1 \, dS$$

$$= \int_{\Gamma_i} b_i^{\text{inn}} \cdot n \, dS + \int_{-\delta}^{\delta} (0, -F_i^{\text{inn}}(s(x_1))) \cdot (0, 1)^T \, dx_1$$

$$= \int_{\Gamma_i} b_i^{\text{inn}} \cdot n \, dS - F_i^{\text{inn}} \int_{-\delta}^{\delta} s(x_1) \, dx_1 = \int_{\Gamma_i} b_i^{\text{inn}} \cdot n \, dS - F_i^{\text{inn}}.$$

Notice that the vector n denotes the unit outward normal to $\partial \Omega$ on Γ_i, while the vector e_1 denotes the unit normal to $\partial \mathcal{Y}_i$ on $[-\delta, \delta] \times (X_i + \mu)$, vectors n and e_1 have opposite directions. Therefore,

$$\int_{\Gamma_i} b_i^{\text{inn}} \cdot n \, dS = F_i^{\text{inn}}.$$

Moreover,

$$\int_{\Gamma_j} b_i^{\text{inn}} \cdot n \, dS = \begin{cases} F_i^{\text{inn}}, & j = i, \\ 0, & j \neq i, \ j = 1, \ldots, N. \end{cases}$$
Notice that for \(j > i \) vector field \(b_i^{(inn)} \) vanishes on \(\Gamma_j \) (by construction) and for \(j < i \) the flux of \(b_i^{(inn)} \) across \(\Gamma_j \) cancel each other. Let us set
\[
b^{(inn)}(x) = \sum_{i=1}^N b_i^{(inn)}(x).
\]
The vector field \(b^{(inn)} \) is symmetric and solenoidal. Moreover, for \(i = 1, \ldots, N \) we have
\[
\int_{\Gamma_i} (a - b^{(inn)}) \cdot ndS = \int_{\Gamma_i} (a - b_i^{(inn)}) \cdot ndS = F_i^{(inn)} - F_i^{(inn)} = 0. \tag{4.1}
\]
Here we have used that \(b_i^{(inn)} \) vanishes on \(\Gamma_j \) for \(i \neq j \).
Since condition (4.1) is valid, according to Lemma 2, there exists a solenoidal extension \(b_0^{(inn)} \) of \((a - b^{(inn)})|_{\cup_{i=1}^N \Gamma_i} \) such that the support of \(b_0^{(inn)} \) is contained in a small neighborhood of \(\cup_{i=1}^N \Gamma_i \), \(b_0^{(inn)}|_{\cup_{i=1}^N \Gamma_i} = (a - b^{(inn)})|_{\cup_{i=1}^N \Gamma_i} \) and \(b_0^{(inn)} \) satisfies the Leray-Hopf inequality:
\[
\left| \int_{\Omega_k} (w \cdot \nabla)w \cdot b_0^{(inn)} \, dx \right| \leq c \varepsilon \int_{\Omega_k} |\nabla w|^2 \, dx,
\]
where \(w \in W^{1,2}_{loc,S}(\Omega) \) is a solenoidal function with \(w|_{\partial \Omega} = 0 \).
Notice that \(b_0^{(inn)} \) is not necessary symmetric. However, since the boundary value \((a - b^{(inn)})|_{\cup_{i=1}^N \Gamma_i} \) is symmetric, \(b_0^{(inn)} = (\tilde{b}_{0,1}^{(inn)}, \tilde{b}_{0,2}^{(inn)}) \) can be symmetrized. We define \(\tilde{b}_0^{(inn)} = (\tilde{b}_{0,1}^{(inn)}, \tilde{b}_{0,2}^{(inn)}) \) by the formula
\[
\begin{align*}
\tilde{b}_{0,1}^{(inn)}(x) &= \frac{1}{2} \left(b_{0,1}^{(inn)}(x_1, x_2) - b_{0,1}^{(inn)}(-x_1, x_2) \right), \ x \in \Omega, \\
\tilde{b}_{0,2}^{(inn)}(x) &= \frac{1}{2} \left(b_{0,2}^{(inn)}(x_1, x_2) + b_{0,2}^{(inn)}(-x_1, x_2) \right), \ x \in \Omega. \tag{4.2}
\end{align*}
\]
Finally we define
\[
B^{(inn)} = b^{(inn)} + \tilde{b}_0^{(inn)}.
\]
\(B^{(inn)} \) is a symmetric extension of the boundary value \(a \) from \(\cup_{i=1}^N \Gamma_i \).
It remains to prove that \(B^{(inn)} \) satisfies the Leray-Hopf inequalities.

Lemma 3. Let \(a \in W^{1/2,2}(\partial \Omega) \) be a symmetric vector-valued function. Then for \(\forall \varepsilon > 0 \) there exists a symmetric solenoidal extension \(B^{(inn)} \) in \(\Omega \) satisfying the Leray-Hopf inequality, i.e., for every symmetric solenoidal \(w \in W^{1,2}_{loc}(\Omega) \) with \(w|_{\partial \Omega} = 0 \) the following estimate
\[
\left| \int_{\Omega_k} (w \cdot \nabla)w \cdot B^{(inn)} \, dx \right| \leq c \varepsilon \int_{\Omega_k} |\nabla w|^2 \, dx \tag{4.3}
\]
holds.

Proof. Indeed, it is enough to prove that each \(b_i^{(inn)} \), \(i = 1, \ldots, N \), satisfies (4.3). To do this we use the identity
\[
(u \cdot \nabla)u = \frac{1}{2} \nabla |u|^2 + \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) (-u_2, u_1).
\]

Let \(w = (w_1, w_2) \in W_{loc}^{1,2}(\Omega) \), \(w|_{\partial \Omega} = 0 \), be a symmetric and solenoidal vector field. Then due to (4.4) we obtain:
\[
\int_{\Omega_k} (w \cdot \nabla)w \cdot b_i^{(inn)} \, dx = |F_i^{(inn)}| \int_{\mathcal{T} \cap \Omega} \left| \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} \right| w_1 |s(x_1)| \, dx
\]
\[
= |F_i^{(inn)}| \int_{\mathcal{T} \cap \Omega} \left| \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} \right| w_1 \frac{1}{|x_1|} |s(x_1)| \, dx
\]
\[
\leq |F_i^{(inn)}| \sup_{x_1} \left(|x_1| s(x_1) \right) \int_{\mathcal{T} \cap \Omega} \left| \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} \right| \frac{|w_1|}{|x_1|} \, dx
\]
\[
\leq |F_i^{(inn)}| \sup_{x_1} \left(|x_1| s(x_1) \right) \left(\int_{\mathcal{T} \cap \Omega} \left| \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} \right|^2 \, dx \right)^{1/2} \left(\int_{\mathcal{T} \cap \Omega} \frac{|w_1|^2}{|x_1|^2} \, dx \right)^{1/2}.
\]

Notice that
\[
\int_{\mathcal{T} \cap \Omega} \left| \frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} \right|^2 \, dx \leq 2 \int_{\Omega_k} |\nabla w|^2 \, dx.
\]

By Hardy’s type inequality, since the component \(w_1 \) vanishes on \(x_1 = 0 \) (due to the symmetry), we get
\[
\int_{\mathcal{T} \cap \Omega} \frac{|w_1|^2}{|x_1|^2} \, dx \leq c \int_{\mathcal{T} \cap \Omega} |\nabla w|^2 \, dx \leq c \int_{\Omega_k} |\nabla w|^2 \, dx.
\]

Therefore,
\[
\int_{\Omega_k} (w \cdot \nabla)w \cdot b_i^{(inn)} \, dx \leq c |F_i^{(inn)}| \sup_{x_1} \left(|x_1| s(x_1) \right) \int_{\Omega_k} |\nabla w|^2 \, dx.
\]

Since \(\sup_{x_1} \left(|x_1| s(x_1, \delta, \kappa) \right) \to 0 \) as \(\kappa \to +0 \), we can choose \(\kappa \) so small that \(\sup_{x_1} \left(|x_1| s(x_1, \delta, \kappa) \right) \) is less than the given \(\varepsilon \). Therefore,
\[
\int_{\Omega_k} (w \cdot \nabla)w \cdot b_i^{(inn)} \, dx \leq c \varepsilon |F_i^{(inn)}| \int_{\Omega_k} |\nabla w|^2 \, dx.
\]

Notice that the integral over \(\omega_k \) is equal to zero since \(b_i^{(inn)} = 0 \) in \(\omega_k \). \(\square \)

4.2 Construction of the extension \(B^{(out)} \)

After the construction of the extension \(B^{(inn)} \) of the boundary value \(a \) from the inner boundaries \(\Gamma_1, \ldots, \Gamma_N \), we need to construct an extension \(B^{(out)} \) which extends the modified boundary value \(a - b^{(inn)} \) from \(\Gamma \).

2 Since \(b_i^{(inn)} \) is solenoidal, it is \(L^2 \) - orthogonal to the first term of the right hand side of (4.4).
Let us define $\Omega^+ = \{ x \in \Omega : x_1 > 0 \}$, $\Gamma^+ = \{ x \in \Gamma : x_1 > 0 \}$, $\Lambda^+ = \{ x \in \Lambda : x_1 > 0 \}$, $G^+ = \{ x \in G : x_1 > 0 \}$, $\Omega_0^+ = \{ x \in \Omega_0 : x_1 > 0 \}$.

We start with the construction of the vector field $b^{(\text{out})}_+$ in the domain Ω^+. Take any point $x^+ \in \Lambda^+$ and introduce a smooth simple curve $\gamma^+ = l^+ \cup \gamma_0^+$, where $l^+ = \{ x_1 = 0 : 0 \leq x_2 \leq H \}$ and $\gamma_0^+ \subset \Omega_0^+$ connects the line l^+ with the point x^+. The curve γ^+ does not intersect any inner boundary $\Gamma_1, \ldots, \Gamma_N$ (see Fig.3).

We define a cut-off function ξ^+ by the formula:

$$\xi^+(x, \varepsilon) = \Psi \left(\varepsilon \ln \frac{\Delta_{\gamma^+}(x)}{\Delta_{\partial \Omega^+ \setminus \Lambda^+}(x)} \right),$$

where Ψ is a smooth function:

$$\Psi(t) = \begin{cases} 0, & t \leq 0, \\ 1, & t \geq 1. \end{cases}$$

Lemma 4. The function $\xi^+(x, \varepsilon)$ vanishes at those points $x \in \overline{\Omega^+ \setminus \{O\}}$ where $\Delta_{\gamma^+}(x) \leq \Delta_{\partial \Omega^+ \setminus \Lambda^+}(x)$, while the curve $\gamma^+ \setminus \{O\}$ is contained in this set. The function $\xi^+(x, \varepsilon) = 1$ at points $x \in \overline{\Omega^+ \setminus \{O\}}$ where $\Delta_{\partial \Omega^+ \setminus \Lambda^+}(x) \leq e^{-1/\varepsilon} \Delta_{\gamma^+}(x)$. Moreover, the following inequalities

$$\left| \frac{\partial \xi^+(x, \varepsilon)}{\partial x_k} \right| \leq \frac{c \varepsilon}{\Delta_{\partial \Omega^+ \setminus \Lambda^+}(x)}, \quad \left| \frac{\partial^2 \xi^+(x, \varepsilon)}{\partial x_k \partial x_l} \right| \leq \frac{c \varepsilon}{\Delta_{\partial \Omega^+ \setminus \Lambda^+}(x)} \quad (4.5)$$

hold with the constant c independent of ε.

Proof. The first statement follows directly from the definition of the function \(\Psi(t) \). Estimates (4.5) follow by direct computations using the properties of the regularized distance and the fact that \(\text{supp} \xi^+ \) is contained in the set where \(\Delta_{\partial \Omega^+ \setminus A^+}(x) \leq \Delta_{\gamma^+}(x) \) (see for details the proof of Lemma 2 in [15]). □

Since the curve \(\gamma^+ \) divides \(\Omega^+ \) into two parts, we define \(\tilde{\xi}^+(x, \varepsilon) = \xi^+(x, \varepsilon) \) for points laying on the right hand side of the curve \(\gamma^+ \) and \(\xi^+(x, \varepsilon) = 0 \) for points laying on the left hand side of the curve \(\gamma^+ \). Then we introduce the vector field \(b_{+}^{(\text{out})} \) in the domain \(\Omega^+ \):

\[
b_{+}^{(\text{out})}(x, \varepsilon) = -\frac{F^{(\text{inn})} + F^{(\text{out})}}{2} \left(\frac{\partial \tilde{\xi}^+(x, \varepsilon)}{\partial x_2}, -\frac{\partial \tilde{\xi}^+(x, \varepsilon)}{\partial x_1} \right),
\]

(4.6)

Lemma 5. The vector field \(b_{+}^{(\text{out})} \) is solenoidal, infinitely differentiable in \(\Omega^+ \), vanishes near \(\partial \Omega^+ \setminus \{A^+ \cup \{O\} \} \) and on the curve \(\gamma^+ \setminus \{O\} \). Moreover,

\[
\int_{A^+} b_{+}^{(\text{out})} \cdot \mathbf{n} \, dS = \frac{F^{(\text{inn})} + F^{(\text{out})}}{2}
\]

and the following estimates

\[
|b_{+}^{(\text{out})}(x, \varepsilon)| \leq \frac{c\varepsilon|F^{(\text{inn})} + F^{(\text{out})}|}{d_{\partial \Omega^+ \setminus A^+}(x)}, \quad x \in \Omega^+ \setminus \{O\},
\]

(4.7)

\[
|b_{+}^{(\text{out})}(x, \varepsilon)| \leq \frac{c(\varepsilon)|F^{(\text{inn})} + F^{(\text{out})}|}{\varphi(x_2)},
\]

(4.8)

\[
|\nabla b_{+}^{(\text{out})}(x, \varepsilon)| \leq \frac{c(\varepsilon)|F^{(\text{inn})} + F^{(\text{out})}|}{\varphi^2(x_2)}, \quad x \in \Omega^+ \setminus \{O\},
\]

\[
|b_{+}^{(\text{out})}(x, \varepsilon)| + |\nabla b_{+}^{(\text{out})}(x, \varepsilon)| \leq c(\varepsilon)|F^{(\text{inn})} + F^{(\text{out})}|, \quad x \in \Omega^+_0
\]

(4.9)

hold with the constant \(c \) in (4.7) independent of \(\varepsilon \).

Proof. The first statement follows directly from the definition of the vector field \(b_{+}^{(\text{out})} \) and Lemma 4. Since \(\text{div} b_{+}^{(\text{out})} = 0 \) and due to properties of \(\tilde{\xi}^+ \), we have

\[
\int_{A^+} b_{+}^{(\text{out})} \cdot \mathbf{n} \, dS = -\int_{\sigma^+(R)} b_{+}^{(\text{out})} \cdot \mathbf{n} \, dS
\]

\[
= -\int_0^{\varphi(R)} \left(-\frac{F^{(\text{inn})} + F^{(\text{out})}}{2} \right) \left(\frac{\partial \tilde{\xi}^+(x, \varepsilon)}{\partial x_2}, -\frac{\partial \tilde{\xi}^+(x, \varepsilon)}{\partial x_1} \right) \cdot \left(\begin{array}{c} 0 \\ -1 \end{array} \right) \, dx
\]

\[
= \frac{F^{(\text{inn})} + F^{(\text{out})}}{2} \int_0^{\varphi(R)} \frac{\partial \tilde{\xi}^+(x, \varepsilon)}{\partial x_1} \, dx_1
\]

\[
= \frac{F^{(\text{inn})} + F^{(\text{out})}}{2} \left(\tilde{\xi}^+(\varphi(R), R, \varepsilon) - \tilde{\xi}^+(0, R, \varepsilon) \right) = \frac{F^{(\text{inn})} + F^{(\text{out})}}{2}.
\]
Using estimates (4.5) and definition (4.6), we derive

\[
|b_+^{(\text{out})}(x, \varepsilon)| \leq |F^{(\text{inn})} + F^{(\text{out})}| \left(\left(\frac{\partial \xi^+}{\partial x_2} \right)^2 + \left(\frac{\partial \xi^+}{\partial x_1} \right)^2 \right)^{1/2} \\
\leq c\varepsilon |F^{(\text{inn})} + F^{(\text{out})}| \Delta_{\partial \Omega^+ \setminus A^+}(x) \leq \frac{c\varepsilon |F^{(\text{inn})} + F^{(\text{out})}|}{d_{\partial \Omega^+ \setminus A^+}(x)} \tag{4.10}
\]

and

\[
|\nabla b_+^{(\text{out})}(x, \varepsilon)| \leq |F^{(\text{inn})} + F^{(\text{out})}| \left(\left(\frac{\partial^2 \xi^+}{\partial x_1 \partial x_2} \right)^2 + \left(- \frac{\partial^2 \xi^+}{\partial x_2 \partial x_1} \right)^2 \right)^{1/2} \\
\leq \frac{c\varepsilon |F^{(\text{inn})} + F^{(\text{out})}|}{\Delta_{\partial \Omega^+ \setminus A^+}(x)} \leq \frac{c\varepsilon |F^{(\text{inn})} + F^{(\text{out})}|}{d_{\partial \Omega^+ \setminus A^+}(x)} \tag{4.11}
\]

Since for points \(x \in \text{supp} \ b_+^{(\text{out})} \) we have \(e^{-1/\varepsilon} \Delta_{\gamma^+}(x) \leq \Delta_{\partial \Omega^+ \setminus A^+}(x) \leq \Delta_{\gamma^+}(x) \), we obtain (using the properties of the regularized distance)

\[
c_1 \varphi(x_2) \leq d_{\partial \Omega^+ \setminus A^+}(x) \leq c_2 \varphi(x_2), \tag{4.12}
\]

where \(c_1 \) and \(c_2 \) are positive constants. Finally, the estimates (4.8) and (4.9) follow from (4.10), (4.11) and (4.12) (see [4] for details). \(\square \)

Lemma 6. For any solenoidal \(w \in W^{1,2}_{\text{loc}}(\Omega^+) \) with \(w|_{\partial \Omega^+ \setminus \{0\}} = 0 \) the following inequalities

\[
\left| \int_{\Omega^+_k} (w \cdot \nabla)w \cdot b_+^{(\text{out})} \, dx \right| \leq c \varepsilon |F^{(\text{inn})} + F^{(\text{out})}| \int_{\Omega^+_k} |\nabla w|^2 \, dx,
\]

\[
\left| \int_{\omega^+_k} (w \cdot \nabla)w \cdot b_+^{(\text{out})} \, dx \right| \leq c \varepsilon |F^{(\text{inn})} + F^{(\text{out})}| \int_{\omega^+_k} |\nabla w|^2 \, dx,
\]

hold, where \(\Omega^+_k = \{ x \in \Omega_k : x_1 > 0 \} \), \(\omega^+_k = \{ x \in \omega_k : x_1 > 0 \} \). The constant \(c \) is independent of \(\varepsilon \) and \(k \).

Proof. Applying the Hölder inequality and estimates (4.7), (2.3) we obtain

\[
\left| \int_{\Omega^+_k} (w \cdot \nabla)w \cdot b_+^{(\text{out})} \, dx \right| \leq \left(\int_{\Omega^+_k} |\nabla w|^2 \, dx \right)^{1/2} \left(\int_{\Omega^+_k} |w \cdot b_+^{(\text{out})}|^2 \, dx \right)^{1/2} \\
\leq \left(\int_{\Omega^+_k} |\nabla w|^2 \, dx \right)^{1/2} \left(\int_{\Omega^+_k} |w|^2 \left(\frac{c\varepsilon |F^{(\text{inn})} + F^{(\text{out})}|}{d_{\partial \Omega^+ \setminus A^+}(x)} \right)^2 \, dx \right)^{1/2} \\
\leq c\varepsilon |F^{(\text{inn})} + F^{(\text{out})}| \int_{\Omega^+_k} |\nabla w|^2 \, dx.
\]

The same argument proves the Leray-Hopf inequality in \(\omega^+_k \). \(\square \)
Notice that Lemma 6 is also valid for the domains Ω_k and ω_k, where $\Omega_k = \{x \in \Omega : x_1 < 0\}$, $\omega_k = \{x \in \Omega : x_1 > 0\}$.

Let us extend the vector field $b^{(out)}_+ = (b^{(out)}_{+1}, b^{(out)}_{+2})$ into the domain $\Omega^- = \{x \in \Omega : x_1 < 0\}$ and define:

$$b^{(out)}(x, \varepsilon) = \begin{cases} (b^{(out)}_{+1}(x_1, x_2, \varepsilon), b^{(out)}_{+2}(x_1, x_2, \varepsilon)) & x \in \Omega^+, \\ -b^{(out)}_{+1}(-x_1, x_2, \varepsilon), b^{(out)}_{+2}(-x_1, x_2, \varepsilon) & x \in \Omega^- \end{cases}.$$

Then $b^{(out)}$ is symmetric, solenoidal, satisfies the Leray-Hopf inequalities and

$$\int_A b^{(out)} \cdot n \, dS = F^{(inn)} + F^{(out)}.$$

On $\partial \Omega$ we define a vector field

$$h(x, \varepsilon) = \left(a(x) - b^{(inn)} - b^{(out)} \right) \big|_A, \quad h(x, \varepsilon) \big|_{\partial \Omega \setminus A} = 0.$$

Then, by construction,

$$\int_A h \cdot n \, dS = \int_A a \cdot n \, dS - \int_A b^{(inn)} \cdot n \, dS - \int_A b^{(out)} \cdot n \, dS = F^{(out)} - \int_A b^{(inn)} \cdot n \, dS - (F^{(inn)} + F^{(out)}) = - \int_A b^{(inn)} \cdot n \, dS - F^{(inn)}. \quad (4.13)$$

Since $b^{(inn)}$ is solenoidal, we obtain

$$0 = \int_{\tilde{\Gamma}} \text{div} \ b^{(inn)} \, dx = \int_{\partial \tilde{\Gamma}} b^{(inn)} \cdot n \, dS$$

$$= \int_{\Gamma \cap \tilde{\Gamma}_i} b^{(inn)} \cdot n \, dS + \int_{[-\delta, \delta] \times (X_0 - \mu)} b^{(inn)} \cdot e_1 \, dS$$

$$= \int_A b^{(inn)} \cdot n \, dS + \int_{-\delta}^\delta (0, -F^{(inn)} s(x_1)) \cdot (0, -1)^T \, dx_1$$

$$= \int_A b^{(inn)} \cdot n \, dS + F^{(inn)} \int_{-\delta}^\delta s(x_1) \, dx_1 = \int_A b^{(inn)} \cdot n \, dS + F^{(inn)},$$

where $\tilde{\Gamma}$ is a part of $\tilde{\Gamma}_i \cap \Omega$, i.e., the boundary of $\tilde{\Gamma}$ is the union of $\Gamma \cap \tilde{\Gamma}_i$, $[-\delta, \delta] \times (X_0 - \mu)$ and the lines $x_1 = \delta$, $x_1 = -\delta$.

Notice that the vector n denotes the unit outward normal to $\partial \Omega$ on Γ, while the vector e_1 denotes the unit normal to $\partial \tilde{\Gamma}$ on $[-\delta, \delta] \times (X_0 - \mu)$, vectors n and e_1 have the opposite directions. Therefore,

$$\int_A b^{(inn)} \cdot n \, dS = -F^{(inn)}. \quad (4.14)$$

From (4.13) and (4.14) we have that

$$\int_A h \cdot n \, dS = - \int_A b^{(inn)} \cdot n \, dS - F^{(inn)} = 0.$$
Because of $\int_{\Lambda} h \cdot n \, dS = 0$, according to Lemma 2, there exists an extension $b_0^{(out)}$ of h such that supp$b_0^{(out)}(x, \varepsilon)$ is contained in a small neighborhood of Λ, div$b_0^{(out)} = 0$ and $b_0^{(out)}(x, \varepsilon)|_\Lambda = h(x, \varepsilon)$. Moreover, $b_0^{(out)}$ satisfies the Leray-Hopf inequality
\begin{equation}
|\int_{\Omega_0} (w \cdot \nabla)w \cdot b_0^{(out)} \, dx| \leq \varepsilon c |F^{(inn)} + F^{(out)}| \int_{\Omega_0} |\nabla w|^2 \, dx. \tag{4.15}
\end{equation}

However, $b_0^{(out)}$ is not necessary symmetric, but since the boundary value h is symmetric, vector field $b_0^{(out)}$ can be symmetrized as in (4.2). Denote the symmetrized vector field by $\tilde{b}_0^{(out)} = (\tilde{b}_{0,1}, \tilde{b}_{0,2})$. Finally, we put
\begin{equation}
B^{(out)}(x, \varepsilon) = b^{(out)}(x, \varepsilon) + \tilde{b}_0^{(out)}(x, \varepsilon).
\end{equation}

Lemma 7. The vector field $B^{(out)} \in W^{1,2}_{loc}(\Omega)$ is symmetric and solenoidal in $\Omega \setminus \{O\}$, $B^{(out)}|_{\Lambda} = a|_{\Lambda} - b^{(inn)}|_{\Lambda}$, $B^{(out)}|_{\partial \Omega \setminus (\Lambda \cup \{O\})} = 0$. For any solenoidal symmetric vector field $w \in W^{1,2}_{loc}(\Omega)$ with $w|_{\partial \Omega} = 0$ the following inequalities
\begin{equation}
\left| \int_{\Omega_k} (w \cdot \nabla)w \cdot B^{(out)} \, dx \right| \leq \varepsilon c |F^{(inn)} + F^{(out)}| \int_{\Omega_k} |\nabla w|^2 \, dx, \tag{4.16}
\end{equation}
\begin{equation}
\left| \int_{\omega_k} (w \cdot \nabla)w \cdot B^{(out)} \, dx \right| \leq \varepsilon c |F^{(inn)} + F^{(out)}| \int_{\omega_k} |\nabla w|^2 \, dx \tag{4.17}
\end{equation}
hold with the constant c independent of ε and k. Moreover,
\begin{align*}
|B^{(out)}(x, \varepsilon)| + |\nabla B^{(out)}(x, \varepsilon)| &\leq c(\varepsilon)|F^{(inn)} + F^{(out)}|, \quad x \in \Omega_0, \tag{4.18} \\
|B^{(out)}(x, \varepsilon)| &\leq \frac{c(\varepsilon)|F^{(inn)} + F^{(out)}|}{\varphi^2(x_2)}, \quad x \in \Omega_0, \\
|\nabla B^{(out)}(x, \varepsilon)| &\leq \frac{c(\varepsilon)|F^{(inn)} + F^{(out)}|}{\varphi^2(x_2)}, \quad x \in \Omega_0 \\
|\nabla B^{(out)}_{L^2(\Omega_k)}| &\leq c\|a\|^2_{W^{1,2}(\partial \Omega)} \int_{h_k}^H \frac{dx_2}{\varphi^3(x_2)}, \tag{4.20} \\
|B^{(out)}|_{L^4(\Omega_k)} &\leq c\|a\|^4_{W^{1,2}(\partial \Omega)} \int_{h_k}^H \frac{dx_2}{\varphi^3(x_2)}, \tag{4.21}
\end{align*}

where the constants in (4.20) and (4.21) are independent of k.

Proof. Estimates (4.18), (4.19), (4.16), (4.17) follow from Lemma 5, Lemma 6 and the inequality (4.15). According to the fact that
\begin{equation}
|F^{(inn)} + F^{(out)}| \leq c \|a\|^2_{W^{1,2}(\partial \Omega)},
\end{equation}
we derive estimate (4.20):
\begin{align*}
|\nabla B^{(out)}_{L^2(\Omega_k)}| &\leq \int_{\Omega_0} |\nabla B^{(out)}|^2 \, dx + \int_{\Omega_k \setminus \Omega_0} |\nabla B^{(out)}|^2 \, dx \\
&\leq \int_{\Omega_0} c |F^{(inn)} + F^{(out)}|^2 \, dx + \int_{\Omega_k \setminus \Omega_0} \frac{c |F^{(inn)} + F^{(out)}|^2 \, dx}{\varphi^4(x_2)}
\end{align*}
\[c|F^{(inn)} + F^{(out)}|^2 \left(\text{meas}(\Omega_0) + \int_{h_k}^H \frac{dx_2}{\varphi^4(x_2)} \int_{-\varphi(x_2)}^{\varphi(x_2)} dx_1 \right) \]

\[\leq c|F^{(inn)} + F^{(out)}|^2 \left(1 + \int_{h_k}^H \frac{dx_2}{\varphi^3(x_2)} \right) \]

\[\leq c ||a||_{W^{1/2,2}(\partial\Omega)}^2 \int_{h_k}^H \frac{dx_2}{\varphi^3(x_2)}. \]

Analogously we get the estimate (4.21). \(\square \)

According to Lemma 3 and Lemma 7, the constructed vector field

\[A = B^{(inn)} + B^{(out)} \]

has all the necessary properties that insure the validity of Theorem 1 formulated in Section 3.

Acknowledgements

The research was funded by a grant No. S-MIP-17-68 from the Research Council of Lithuania.

References

