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Abstract. In this paper, we consider a subgrid stabilized Oseen iterative method
for the Navier-Stokes equations with nonlinear slip boundary conditions and high
Reynolds number. We provide one-level and two-level schemes based on this stability
algorithm. The two-level schemes involve solving a subgrid stabilized nonlinear coarse
mesh inequality system by applying m Oseen iterations, and a standard one-step
Newton linearization problems without stabilization on the fine mesh. We analyze
the stability of the proposed algorithm and provide error estimates and parameter
scalings. Numerical examples are given to confirm our theoretical findings.
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1 Introduction

We consider the approximations for steady, incompressible Navier-Stokes equa-
tions:

−ν∆u+ (u · ∇)u+∇p = f in Ω,
divu = 0 in Ω,

(1.1)

where u is the velocity, p is the pressure, f is the given body force, Ω ⊂ R2 is
an open bounded domain with sufficiently smooth boundary ∂Ω, and ν is the
viscosity of the fluid. The Reynolds number for this problem can be defined
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as Re := UL/ν, where U is a characteristic velocity and L is a characteristic
length.

The equations (1.1) are completely specified with an appropriate boundary
condition for the velocity u. In this paper, we consider the following nonlinear
slip boundary conditions:

u = 0 on Γ0, un = 0, |στ (u)| ≤ g on Γ1, (1.2)

where ∂Ω = Γ0 ∪ Γ1. We set the usual Dirichlet boundary condition on Γ0

and slip, non-leak boundary condition on Γ1, respectively. For simplicity, we
suppose meas(Γ0) 6= 0, meas(Γ1) 6= 0 and Γ0 ∩ Γ1 = ∅. Here and what
follows, the unit outer normal of the boundary is expressed by n. If a is a
vector defined on the boundary, then an = a · n is the normal component
of a, and aτ = a · τ is the tangential component of a; στ (u) = ν ∂uτ∂n is the
tangential component of stress vector σ; g is a given positive function on Γ1.
These boundary conditions can be found in [8, 9, 10] where some problems in
hydrodynamics are investigated.

We notice that the velocity-pressure variational formulation (1.1)–(1.2) is
the variational inequality of the second kind. Some numerical results have been
obtained for these variational inequalities [12, 13, 19, 20, 21, 28]. There are two
main challenges in solving this problem. First, the velocity u and pressure p are
coupled by the incompressible constraint divu = 0, which brings a saddle prob-
lem [2, 5, 6]. A popular approach to solve this situation is to relax the incom-
pressible constraint to obtain a pseudo-compressible system. There are many
ways of implementing this technique, such as penalty method [4, 17], pressure
stabilization method [14] and the projection method [11]. Second, the problem
involves nonlinear terms, including (u · ∇)u and slip boundary conditions. For
(u · ∇)u, we usually use linearization method such as Newton method [3], two-
level method [16,20] and other methods. In [18], the Uzawa iteration is used to
handle the slip boundary conditions, which is also transformed into the saddle
point problem by using the augmented Lagrangian approach [5].

The main idea of the two-level method is first to solve the fully nonlinear
problem on a coarse grid, and then solve a linear problem on fine grid to correct
the solution. Both theoretical analysis and numerical examples show that this
method is very efficient [16, 20]. However, the nonlinear system may fail to
converge on the coarse mesh when we use standard two-level method to solve
high Reynolds number problems [7, 22]. Therefore, the stabilization strategies
need to be combined.

There are many stabilization methods for solving high Reynolds number
problems, including the subgrid stabilization methods, the defect-correct meth-
ods, the variational multiscale methods and so on. The subgrid method first
divides the approximation space into resolved scales and subgrid scales and
then modifies the Galerkin approximation, using an asymptotically consistent
artificial diffusion term on the subgrid scales [15, 22, 26]. The defect-correct
method achieves stabilization by several correction steps after the initial defect
step [20,21,25]. The key idea of the variational multiscale method is to decom-
pose the flow scale and design the large scale by projection into approximate
subspaces [27]. Shang [22] proposed a two-level subgrid stabilized Oseen iter-
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ative method for steady Naiver-Stokes. In this method, a subgrid scale model
based on an elliptic projection of the velocity is utilized to stabilize the nu-
merical form of the incompressible Navier-Stokes equations on a coarse grid,
and then a linear problem that the convection term is fixed by the coarse grid
solution which is solved on the fine grid. Both theoretical analysis and numer-
ical examples show that the method can efficiently simulate the high Reynolds
number flows.

In this paper, based on the one-level scheme we develop a two-level sub-
grid stabilized Oseen iterative method for the Navier-Stokes equations with
nonlinear slip boundary conditions. The first step solves a small variational
inequality based on an elliptic projection of the velocity on the coarse mesh.
The second step solves a large linearization correction problem with nonlinear
slip boundary conditions on the fine mesh in term of Newton iteration. We
obtain the following error estimate for two-level solution (uh, ph):

|u− uh|1 + ‖p− ph‖0 ≤ c(h+H2 + θ2 + ‖u− vh‖
1
2

L2(Γ1)
),

where H is the coarse grid, h is the fine grid, and θ is the stabilization parame-
ter. Compared to the well-known two-level methods, our method can simulate
high Reynolds number flows with nonlinear slip boundary conditions. Com-
pared to the two-level defect-correction stabilization method [20], there are two
main differences between them. Firstly, our method only applies the subgrid
stabilization method on coarse grid, while the method [20] applies the artifi-
cial viscosity stabilized method on both coarse and fine grids. Secondly, our
method uses an elliptic projection to establish the subgrid stabilization model,
while the method [20] adopts L2-projection and an artificial viscosity term to
achieve stabilization. Compared to the two-level subgrid stabilized Oseen iter-
ative method for steady Naiver-Stokes [22], our method can work well for flows
with nonlinear slip boundary conditions.

The rest of the paper is organized as follows. In Section 2, we will introduce
some notations and recall some results for Navier-Stokes equations with non-
linear slip boundary conditions. In Section 3, we give the concrete schemes of
one-level subgrid stabilized Oseen iterative method based on an elliptic projec-
tion of the velocity for Navier-Stokes equations and obtain the stability and er-
ror estimates. Two-level subgrid stabilized Oseen iterative method is presented
and analyzed in Section 4. The numerical results are presented in Section 5.
Finally, we give some conclusions in the last section.

2 Preliminaries

We first introduce some notations in this section. Let H1
0 (Ω) be the standard

Sobolev space (see [1]) equipped with the usual norm ‖ · ‖1. We use | · |1 for
its semi-norm. Let V , Q and V0 be defined by

V = {v ∈ H1(Ω)2, v|Γ0 = 0, v · n|Γ1 = 0},

Q = {q ∈ L2(Ω),

∫
Ω

qdx = 0}, V0 = H1
0 (Ω)2.
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The scalar product and norm in Q are denoted by the usual L2(Ω) inner prod-
uct and ‖ · ‖ respectively. Next we introduce the bilinear forms:

a(u, v) = ν

∫
Ω

∇u · ∇vdx, ∀ u, v ∈ V,

d(v, q) = −
∫
Ω

divvqdx, ∀ v ∈ V, q ∈ Q

and for the treatment of the convective term in Equation (1.1), the following
trilinear form is also considered:

b(u, v, w) =

∫
Ω

(u · ∇)v · wdx, ∀ u, v, w ∈ V.

This form is well defined and continuous on these spaces(see [24]). The following
estimates will be used repeatedly in the sequel, see [23, 24] and the references
therein:

b(u, v, w) = −b(u,w, v), ∀u, v, w ∈ V, (2.1)

b(u, v, w) ≤ N |u|1|v|1|w|1, ∀u, v, w ∈ V, (2.2)

where

N = sup
u,v,w∈V

b(u, v, w)

|u|1|v|1|w|1
.

Based on the above expression, the velocity-pressure variational formulation
for (1.1)–(1.2) can be converted to the variational inequality of the second kind: a(u, v − u) + b(u, u, v − u) + d(v − u, p) + j(vτ )

−j(uτ ) ≥ (f, v − u),∀v ∈ V,
−d(u, q) = 0,∀q ∈ Q,

(2.3)

where j(v) =
∫
Γ1
g|v|ds. In order to guarantee the well-posedness of the prob-

lems (2.3), we should assume the LBB condition holds:

β‖q‖ ≤ sup
06=v∈V

d(v, q)

|v|1
.

Then the existence and uniqueness theorem of the solution to the problem (2.3)
is as follows(see [17]):

Theorem 1. Let the condition hold

4κN(‖f‖+ ‖g‖L2(Γ1))

ν2
< 1,

where κ > 0 satisfies

|(f, v)− j(vτ )| ≤ κ(‖f‖+ ‖g‖L2(Γ1))|v|1,

then the problem (2.3) admits a unique solution u such that

|u|1 ≤
2κ

ν
(‖f‖+ ‖g‖L2(Γ1)), (2.4)
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Remark 1. From the condition of Theorem 1, we can see that when the Reynolds
number is high, i.e. ν is very small, it will bring some difficulties to the solu-
tion. However, as long as the body force f , the function g and boundary Γ1 are
properly adjusted, the existence of the solution can be guaranteed. In our last
numerical example, when the Reynolds number is high, we indeed encounter
non-convergence. This non-convergence may be due to the need for stabiliza-
tion, but the other may be caused by the nonexistence of the solution. However,
we adjust the function g and Γ1 , and finally solve the problem successfully.

To present the subgrid stabilization method, we first consider the usual
finite element approximation to (1.1)–(1.2), which can be described as follows.
Assume that Vµ and Qµ (here µ = H,h with H > h) are the finite element
subspaces of V and Q. We make some assumptions. For each (u, p) ∈ V ×Q,
there exists an approximation (πµu, ρµp) ∈ Vµ ×Qµ such that

|u− πµu|1 ≤ cµ‖u‖2, ‖p− ρµp‖ ≤ cµ‖p‖1. (2.5)

We shall always assume that the following discrete LBB condition holds:

β0‖qµ‖ ≤ sup
06=vµ∈Vµ

d(vµ, qµ)

|vµ|1
. (2.6)

Then the usual finite element approximation (uµ, pµ) is calculated by solving
the nonlinear system: find (uµ, pµ) ∈ Vµ ×Qµ such that a(uµ, vµ − uµ) + b(uµ, uµ, vµ − uµ) + d(vµ − uµ, pµ)

+j(vτµ)− j(uτµ) ≥ (f, vµ − uµ), ∀vµ ∈ Vµ,
−d(uµ, qµ) = 0, ∀qµ ∈ Qµ.

3 One-level subgrid stabilization method

In this section, we give the concrete schemes of one-level subgrid stabilized
Oseen iterative method based on an elliptic projection of the velocity for Navier-
Stokes equations with nonlinear slip boundary. We assume that Tµ(Ω) =
{K} is a shape-regular triangulation of Ω with the mesh size µ. Then we
introduce the elliptic projection operator Πµ : V → R1 = {v ∈ H1

0 (Ω)d : v|K ∈
(P1)d,∀K ∈ Tµ(Ω)} which is defined as [26]:

(∇Πµu,∇v) = (∇u,∇v),∀u ∈ V, v ∈ R1,

and has the following property

|Πµv|1 ≤ |v|1, (3.1)

here P1 is the space of polynomials of degree less than or equal to one.
Based on this projection operator, we can define the subgrid stabilization

term as

G(u, v) = θ(∇(I −Πµ)u,∇(I −Πµ)v) (3.2)

= θ(∇u,∇v)− θ(∇Πµu,∇v),∀u, v ∈ V,
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where θ > 0 is a user-defined stabilization parameter whose value will be men-
tioned in the following.

By combining the stabilization term (3.2) and applying the Oseen iterative
method to deal with nonlinear term, we give the following one-level subgrid
stabilization method for Navier-Stokes equations with nonlinear slip boundary:
find an iterative solution (unµ, p

n
µ) ∈ Vµ ×Qµ such that

a(unµ, vµ − unµ) + b(un−1µ , unµ, vµ − unµ) + d(vµ − unµ, pnµ)
+θ(∇unµ,∇(vµ − unµ)) + j(vτµ)− j(unτµ)
≥ (f, vµ − unµ) + θ(∇Πµu

n−1
µ ,∇(vµ − unµ)), ∀vµ ∈ Vµ,

−d(unµ, qµ) = 0, ∀qµ ∈ Qµ

(3.3)

for n = 1, 2, · · · , and u0µ = 0.
Next we give the stability of one-level subgrid method (3.3).

Theorem 2. The solution unµ defined by one-level subgrid stabilization method
(3.3) admits

|unµ|1 ≤
κ

ν
(‖f‖+ ‖g‖L2(Γ1)), n ≥ 1. (3.4)

Proof. Setting vµ = 0, qµ = p1µ in (3.3) when n = 1, and using the fact
b(u, v, v) = 0 that is the direct result of (2.1), it yields

(ν + θ)|u1µ|21 ≤ (f, u1µ)− j(u1τµ) ≤ κ(‖f‖+ ‖g‖L2(Γ1))|u
1
µ|1,

then, we get

|u1µ|1 ≤
κ

(ν + θ)
(‖f‖+ ‖g‖L2(Γ1)).

Setting vµ = 0, qµ = pnµ in (3.3), using the

(ν + θ)|unµ|1 ≤ κ(‖f‖+ ‖g‖L2(Γ1)) + θ|un−1µ |1

≤ κ(‖f‖+ ‖g‖L2(Γ1)) +
θ

ν + θ
(κ(‖f‖+ ‖g‖L2(Γ1) + θ|un−2µ |1)

≤ · · · ≤ κ((ν + θ)n − θn)

ν(ν + θ)n−1
(‖f‖+ ‖g‖L2(Γ1)),

so we have

|unµ|1 ≤
κ((ν + θ)n − θn)

ν(ν + θ)n
(‖f‖+ ‖g‖L2(Γ1)) ≤

κ

ν
(‖f‖+ ‖g‖L2(Γ1)).

ut

In what follows, c denotes a generic constant, possibly different at different
occurrences, which may depend on the data f, g, ν, the domain Ω and the
continuous solution u, but is independent of the mesh size µ (µ = H,h) and
stabilization parameters θ. The next theorem provides the error estimate for
the solution produced by one-level subgrid stabilized Oseen iterative method.
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Theorem 3. Let (u, p) ∈ V × Q and (unµ, p
n
µ) ∈ Vµ × Qµ be the solutions of

(2.3) and (3.3), and let the LBB condition (2.6) hold, then

|u− unµ|1 + ‖p− pnµ‖0 ≤ c( inf
vµ∈Vµ

|u− vµ|1 + inf
qµ∈Qµ

‖p− qµ‖

+ θ + |unµ − un−1µ |1 + ‖u− vµ‖
1
2

L2(Γ1)
), (3.5)

where c > 0 is independent of θ and µ.

Proof. Set v = unµ and v = 2u− vµ in the first equation of (2.3), respectively.
We have

a(u, unµ − u) + b(u, u, unµ − u) + d(unµ − u, p) + j(unτµ)− j(uτ ) ≥ (f, unµ − u),

a(u, u−vµ)+b(u, u, u−vµ)+d(u−vµ, p) + j(2uτ − vτµ)− j(uτ ) ≥ (f, u− vµ).

Summing of the two aforementioned inequalities, we get

a(u, unµ − vµ) + b(u, u, unµ − vµ) + d(unµ − vµ, p)
+ j(unτµ) + j(2uτ − vτµ)− 2j(uτ ) ≥ (f, unµ − vµ). (3.6)

Setting (en, ηn) = (u − unµ, p − pnµ) and from (2.3), (3.3) and (3.6), we obtain
the following relation:

(ν + θ)(∇en,∇(unµ − vµ)) + b(u, u, unµ − vµ)− b(un−1µ , unµ, u
n
µ − vµ)

+d(unµ − vµ, ηn) + j(vτµ) + j(2uτ − vτµ)− 2j(uτ )
≥ θ(∇u,∇(unµ − vµ))− θ(∇Πµu

n−1
µ ,∇(unµ − vµ)),∀vµ ∈ Vµ,

d(en, qµ) = 0, ∀qµ ∈ Qµ.

Denote the uI , pI as the projections onto space Vµ, Qµ, respectively. Then, we
get

(ν + θ)|uI − unµ|21 = (ν + θ)(∇(uI − unµ),∇(uI − unµ))

= (ν + θ)(∇(uI − u),∇(uI − unµ)) + (ν + θ)(∇en,∇(uI − unµ))

≤ (ν + θ)(∇(uI − u),∇(uI − unµ)) + b(u, u, unµ − uI)
− b(un−1µ , unµ, u

n
µ − uI) + d(unµ − uI , ηn) + j(uIτµ) + j(2uτ − uIτµ)

− 2j(uτ )− θ(∇u,∇(unµ − uI)) + θ(∇Πµu
n−1
µ ,∇(unµ − uI)).

Taking into account the property of trilinear form (2.2) and the boundedness
of u (2.4)and unµ (3.4), we obtain

b(u, u, unµ − uI)− b(un−1µ , unµ, u
n
µ − uI)

= b(en, u, unµ − uI) + b(un−1µ , en, unµ − uI) + b(unµ − un−1µ , u, unµ − uI)
≤ c(|en|1 + |unµ − un−1µ |1)|unµ − uI |1.

For the stabilization term, considering the (3.1) we have

θ(∇Πµu
n−1
µ ,∇(unµ − uI))− θ(∇u,∇(unµ − uI)) ≤ cθ|(unµ − uI)|1.
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In addition, we have

d(unµ − uI , ηn) = d(unµ − uI , p− pI) + d(u− uI , pI − pnµ)

≤ c(|unµ − uI |1‖p− pI‖+ |u− uI |1‖pI − pnµ‖).

Then, considering

|j(uIτµ) + j(2uτ − uIτµ)− 2j(uτ )| ≤ c‖u− uI‖L2(Γ1),

we can easily get

(ν + θ)|uI − unµ|21 ≤ c
(

(|u− uI |1 + ‖p− pI‖+ |en|1|+ |unµ − un−1µ |1)

× |uI − unµ|1 + ‖u− uI‖L2(Γ1) + θ|(unµ − uI)|1 + |u− uI |1‖pI − pnµ‖
)
. (3.7)

Let Ṽµ be the finite element subset of V0. Set v = u+ wµ in the first equation

of (2.3), where wµ ∈ Ṽµ, which yields

a(u,wµ) + b(u, u, wµ) + d(wµ, p) ≥ (f, wµ),

since j(u+ wµ) = j(u). Again setting v = u− wµ yields

a(u,wµ) + b(u, u, wµ) + d(wµ, p) ≤ (f, wµ),

then we conclude

a(u,wµ) + b(u, u, wµ) + d(wµ, p) = (f, wµ).

Similarly, from the first equation of (3.3), we can obtain

(ν+θ)(∇unµ,∇wµ)+b(un−1µ , unµ, wµ)+d(wµ, p
n
µ)=(f, wµ) + θ(∇Πµu

n−1
µ ,∇wµ).

Therefore, we get

(ν + θ)(∇en,∇wµ) + b(u, u, wµ)− b(un−1µ , unµ, wµ) + d(wµ, η
n
µ)

= θ(∇u,∇wh)− θ(∇Πµu
n−1
µ ,∇wµ).

Taking into account the establishment of LBB condition (2.6) and inequality
(2.2), we get the following inequalities:

‖pI − pnµ‖ ≤
1

β0
sup
wµ∈Ṽµ

|d(wµ, p
I − pnµ)|

|wµ|1
=

1

β0
sup
wµ∈Ṽµ

|d(wµ, p
I − p) + d(wµ, η

n)|
|wµ|1

=
1

β0
sup
wµ∈Ṽµ

|d(wµ, p
I − p)− (ν + θ)(∇en,∇wµ) + J |

|wµ|1

≤ c

β0
(‖p− pI‖+ (ν + θ)|en|1 + |unµ − un−1µ |1 + θ), (3.8)

where J = b(un−1µ , unµ, wµ)− b(u, u, wh) + θ(∇u,∇wµ)− θ(∇Πµu
n−1
µ ,∇wh).

Math. Model. Anal., 26(4):528–547, 2021.
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Taking (3.8) into (3.7) gives

ν|uI − unµ|21 ≤ c
(

(|u− uI |1 + ‖p− pI‖+ |en|1|+ |unµ − un−1µ |1)|uI − unµ|1

+ ‖u− uI‖L2(Γ1) + θ|(unµ − uI)|1 + |u− uI |1((ν + θ)|en|1

+ |unµ − un−1µ |1 + θ)
)
− θ|uI − unµ|21.

Then we estimate the right-hand side using the triangle and Young’s inequali-
ties:

(|u− uI |1 + ‖p− pI‖)|uI − unµ|1 ≤ c(|u− uI |21 + ‖p− pI‖2) +
ν

10
|uI − unµ|21,

θ|(unµ − uI)|1 + θ|u− uI |1 − θ|uI − unµ|21 ≤ c(|u− uI |21 + θ2 + |uI − unµ|41)

+
ν

10
|uI − unµ|21,

|unµ − un−1µ |1(|unµ − uI |1 + |u− uI |1) ≤ c(|unµ − un−1µ |21 + |u− uI |21)

+
ν

10
|uI − unµ|21,

|en|1(|unµ − uI |1 + |u− uI |1) ≤ c|u− uI |21 +
ν

10
|uI − unµ|21,

θ|en|1|u− uI |1 ≤ cθ2|u− uI |21 +
ν

10
|uI − unµ|21.

At last, using the inequality |u−unµ|1 ≤ |u−uI |1 + |uI −unµ|1 and omitting the
high-order term, we get the error estimate for velocity

|u−unµ|1 ≤c
(

inf
vµ∈Vµ

|u−vµ|1+ inf
qµ∈Qµ

‖p−qµ‖+‖u−vµ‖
1
2

L2(Γ1)
+|unµ−un−1µ |1+θ

)
.

For pressure term, it is easy to get the following formula when we take into
account the inequality ‖p− pnµ‖ ≤ ‖p− pI‖+ ‖pI − pnµ‖ and (3.8)

‖p− pnµ‖ ≤ c
(
‖p− pI‖+ |u− unµ|1 + |unµ − un−1µ |1 + θ

)
,

which concludes the proof of Theorem 3. ut

From the Theorem 3, we can see that one-level subgrid method can get opti-
mal solutions if the stabilization parameter θ is small enough and the iteration
number n tends to infinity. Of course, the stability parameters θ can not be
taken to be too small. Otherwise, it will not have a stabilization effect. In fact,
we can choose θ = O(µ) to get optimal solutions. As for the Oseen iteration
error, we only need to impose a certain stop condition to control the iteration
number n. From numerical examples in Section 5, we can see that the one-level
subgrid stabilized method solves the high Reynolds number problems very well.
But at the same time, we also see that the computing time increases rapidly
when mesh grid µ tends to zero. In Section 4, we try to improve computational
efficiency while maintaining the same level of accuracy.
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4 Two-level subgrid stabilization method

In order to improve computational efficiency, we combine two-grid discretiza-
tion strategy with the subgrid stabilized Oseen iterative method. We develop
our two-level subgrid stabilized Oseen iterative method as follows:

1. Find a coarse grid iterative solution (umH , p
m
H) ∈ VH ×QH such that

a(unH , vH − unH) + b(un−1H , unH , vH − unH) + d(vH − unH , pnH)
+j(vτH)− j(unτH) + θ(∇unH ,∇(vH − unH))
≥ (f, vH − unH) + θ(∇ΠHu

n−1
H ,∇(vH − unH)),∀vH ∈ VH ,

−d(unH , qH) = 0, ∀qH ∈ QH

for n = 1, 2, · · · ,m, and u0H = 0.

2. Find a find grid solution (uh, ph) ∈ Vh ×Qh such that
a(uh, vh − uh) + b(uh, umH , vh − uh) + b(umH , u

h, vh − uh) + j(vτh)
+d(vh − uh, ph)− j(uhτ )
≥ (f, vh − uh) + b(umH , u

m
H , vh − uh), ∀vh ∈ Vh,

−d(uh, qh) = 0, ∀qh ∈ Qh.
(4.1)

Stabilization measures are only used for the coarse grid in the first step,
while the fine grid linear problem is a standard one-step Newton linearization.
The second step can also be based on Oseen iteration. But Newton’s method is
more suitable as we have had a relatively accurate solution. The next Theorem
provides the error estimate of the solution produced by the two-level subgrid
stabilized Oseen iterative method.

Theorem 4. Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be the solutions of
(2.3) and (4.1), and let the LBB condition (2.6) hold, then

|u− uh|1 + ‖p− ph‖0 ≤c( inf
vh∈Vh

|u− vh|1 + inf
qh∈Qh

‖p− qh‖

+ |u− umH |21 + ‖u− vh‖
1
2

L2(Γ1)
), (4.2)

where c > 0 is independent of H,h and θ.

Proof. Set vµ = vh and unµ = uh in (3.6), added by (4.1), we obtain
a(eh, uh − vh) + b(u, u, uh − vh)− b(umH , uh, uh − vh) + j(vτh)
−2j(uτ )− b(uh, umH , uh − vh) + b(umH , u

m
H , u

h − vh)
+d(uh − vh, ηh) + j(2uτ − vτh) ≥ 0,∀vh ∈ Vh,
−d(eh, qh) = 0, ∀qh ∈ Qh,

where we set (eh, ηh) = (u− uh, p− ph).
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Denote the uIh, p
I
h as the projections onto space Vh, Qh, respectively. Then

we have

ν|uIh − uh|21 = a(uIh − uh, uIh − uh) = a(uIh − u, uIh − uh) + a(eh, uIh − uh)

≤ a(uIh − u, uIh − uh) + b(eh, umH , u
h − uIh) + b(umH , e

h, uh − uIh)

− 2j(uτ ) + b(u− umH , u− umH , uh − uIh) + d(uh − uIh, ηh)

+ j(uIτh) + j(2uτ − uIτh).

Similar to the proof of Theorem 3, we can get

ν|uIh − uh|21 ≤c
(

(|u− uIh|1 + ‖p− pIh‖+ |eh|1 + |u− umH |21

+ ‖pIh − ph‖)|uIh − uh|1 + ‖u− uIh‖L2(Γ1)

)
, (4.3)

‖pIh − ph‖ ≤
c

β0
(‖p− pIh‖+ |eh|1 + |u− umH |1), (4.4)

where we use the LBB condition (2.6). Considering the inequality |eh|1 ≤
|u− uIh|1 + |uIh − uh|1, taking (4.4) into (4.3) gives

|u− uh|1 ≤c( inf
vh∈Vh

|u− vh|1 + inf
qh∈Qh

‖p− qh‖+ |u− umH |21 + ‖u− vh‖
1
2

L2(Γ1)
).

For pressure terms, we can easily get the conclusion by using the triangle
inequality |ηh|1 ≤ |p− pIh|1 + |pIh − ph|1 and the formula (4.4). ut

A direct consequence of Theorem 4 is that

|u−uh|1 + ‖p−ph‖0 ≤ c(h+H2+θ2 + ‖u− vh‖
1
2

L2(Γ1)
+ |umH − um−1H |21). (4.5)

This follows by inserting the estimate (3.5) for the coarse grid solution and the
approximation assumption (2.5) of the finite element spaces into the right-hand
of estimate (4.2). The last term related to the Oseen iterations on the coarse
grid indicates the influence of the nonlinear term. It shows that the nonlin-
ear solver should be taken to be small enough to obtain a good approximate
solution. Moreover, (4.5) leads to the typical choices of parameters:

H = O(h1/2), θ = O(H),

which ensures the optimal order of the solution.

5 Numerical result

In this section, we present some numerical tests for the one-level and two-
level subgrid stabilized Oseen iterative methods for Navier-Stokes equations
with nonlinear slip boundary conditions. We use the Uzawa iteration algo-
rithm introduced by [4, 17] to solve this variational inequality problem, which
is equivalent to the following variational equations:

a(u, v) + b(u, u, v) + d(v, p) +
∫
Γ1
λgvτ = (f, v),∀v ∈ V,

−d(u, q) = 0,∀q ∈ Q,
λuτ = |uτ |, a.e.on Γ1,

(5.1)
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where λ ∈ Λ = {γ ∈ L2(Γ1)|γ(x)| ≤ 1 a.e.on Γ1 =}. Then the Uzawa can be
read as follows: First, if λ0 ∈ Λ, then λn is known. Second, we compute(un, pn)
and λn+1 by{

a(un, v) + b(un, un, v) + d(v, pn) = (f, v)−
∫
Γ1
λngvτ ,∀v ∈ V,

−d(un, q) = 0,∀q ∈ Q,

and
λn+1 = PΛ(λn + ρgunτ ),

where ρ is a position parameter, PΛ is the projection operator from L2(Γ1) to
Λ, which is defined by

PΛ(γ) = sup(−1, inf(1, γ)), ∀γ ∈ L2(Γ1).

The meshes which consist of triangular elements and the P2 − P1 finite
element pair are used for discretization. In all experiments, the projection
Πµu

n−1
µ (µ = H,h) is computed by solving Laplace equations with piecewise

linear finite element functions. The iterative tolerance for Oseen iterations is
10−6. The maximum number of Oseen iterations is 5000. When the number of
iterations exceeds 5000, we declare that the method is not convergent.

S
1

S
2

Γ
0

Γ
0

1

1
0

Figure 1. Domain Ω.

We first consider a simple problem with known analytical solutions. Let
Ω = (0, 1) × (0, 1), Γ1 = S1

⋃
S2 (see Figure 1) and exact solution (u, p) of

Navier-Stokes equations (5.1) be

u(x, y) = (−x2y(x− 1)(3y − 2), xy2(y − 1)(3x− 2)),

p(x, y) = (2x− 1)(2y − 1).

Then the body force f is given by (1.1). By simple calculation we can know
that

στ = 4νy2(1− y) on S1, στ = 4νx2(1− x) on S2.

Then the position function g can be chosen by g = στ . Let the initial value
λ0 = 1 and the parameter ρ = ν.

First, we investigate the effect of stabilization parameter θ on the errors of
one-level subgrid method. For the case 1, we fix H = 1/64, ν = 0.05 and take
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parameter θ for five different values. For the case 2, we fix H = 1/64, ν =
0.005 and take parameter θ for six different values. m is the Oseen iterations
count satisfying the stopping condition. Table 1 shows errors and numbers of
Oseen iterations, from which we can see that the error and number become
smaller when the parameter θ gets smaller. This means in order to improve
the accuracy and save time, the parameter values should be taken small. On
the other hand, we know that the parameters can’t be very small because of
the instability of the high Reynolds number problems. Therefore, combining
these two cases, we intend to take the value of the parameter as 0.01H in the
following examples.

Table 1. Errors and numbers of Oseen iterations by one-level subgrid stabilized method
with different stabilized parameters.

θ
|u−umh |1
|u|1

‖p−pmh ‖1
‖p‖ m

case 1: ν = 0.05

H 0.01113313 0.00019744 10
0.5H 0.00910431 0.000188015 8
0.1H 0.00829045 0.000183113 5
0.05H 0.00830550 0.000182733 5
0.01H 0.00834321 0.000182473 5

case 2: ν = 0.005

H 0.02739058 0.000135907 40
0.5H 0.02237010 0.000132206 25
0.1H 0.01139202 0.000130091 11
0.05H 0.00949560 0.000129946 10
0.01H 0.00881330 0.000129873 8
0.005H 0.00884174 0.000129868 8

Next we show the errors of one-level subgrid stabilized Oseen iterative
method with mesh size h = 1/49, 1/64, . . . , 1/144 and θ = 0.01h in Table 2,
from which we can see the convergence rates are consistent with the estimate
(3.5). Table 3 shows the errors of the two-level subgrid stabilized Oseen it-
erative method, where the fine mesh size is set as h = 1/49, 1/64, . . . , 1/144,
corresponding H satisfying H = h1/2 and the stabilization parameter is set as
θ = 0.01H. Comparing Table 2 and Table 3, we find that two-level subgrid
stabilized method takes much less computational time while accuracies of the
two methods are comparable to each other.

Then we study the necessity of the stabilization in our two-level method for
high Reynolds number problems. We set ν = 0.01, θ = 0.0005, H = 1/16, h =
1/256 and θ = 0.02h, and then we use our two-level subgrid stabilization
method and the standard two-level method based on Newton iteration to solve
the problem. The experimental results show that our two-level stabilization
method works well, but the standard two-level method can not obtain the
solution of equations since no convergence solution is obtained on the coarse
grid. Figure 2 shows the computed streamlines and pressure contours, which
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Table 2. Errors of one-level subgrid stabilized Oseen iterative method with θ = 0.01h.

h
|u−umh |1
|u|1

Order
‖p−pmh ‖1
‖p‖ Order m CPU(s)

case 1: ν = 0.05

1/49 0.01092123 - 0.00027757 - 5 3.042
1/64 0.00834321 1.008 0.00018247 1.571 5 5.464
1/81 0.00658538 1.004 0.00012978 1.446 5 9.018
1/100 0.00533142 1.002 0.00009783 1.341 5 14.588
1/121 0.00440497 1.001 0.00007697 1.258 5 24.680
1/144 0.00370089 1.001 0.00006253 1.194 5 40.097

case 2: ν = 0.005

1/49 0.01220851 - 0.00022110 - 8 5.065
1/64 0.00881328 1.220 0.00012987 1.992 8 8.880
1/81 0.00676950 1.120 0.00008132 1.987 8 13.936
1/100 0.00540640 1.067 0.00005357 1.980 8 23.169
1/121 0.00443535 1.038 0.00003680 1.971 8 37.105
1/144 0.00371218 1.023 0.00002616 1.959 8 61.452

confirms the necessity of subgrid stabilization.
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Figure 2. Computed streamlines(left) and pressure contours(right) for analytical solution
with θ = 0.0005 by our two-level subgrid stabilized method.

Second, we consider the 2D lid-driven cavity flow problem which is defined
in the unit square with nonlinear slip boundary conditions only in the boundary
{0 < x < 1, y = 1}. This is also investigated in [20]. The Reynolds number for
this problem can be defined as Re = UL/ν, where U is a characteristic velocity
and L is a characteristic length. We need to know the position function g in
this problem. Therefore, we consider the lid-driven cavity flow on a unit square
with no-slip conditions only in the boundary {0 < x < 1, y = 1} imposing the
velocity u = (1, 0). We solve this problem on the fairly finer mesh(h = 1/257)
to get a solution as the exact solution and we get g = στ . Then, the nonlinear
slip conditions g = στ is imposed on the top one while zero Dirichlet condition
is imposed on the rest of boundary.

We compute approximate solutions for the cases at Re=1000, 5000 and
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Table 3. Errors of two-level subgrid stabilized Oseen iterative method with θ = 0.01H.

H h
|u−uh|1
|u|1

Order
‖p−ph‖1
‖p‖ Order m CPU

case 1: ν = 0.05

1/7 1/49 0.01094947 - 0.00028207 - 5 1.260
1/8 1/64 0.00835940 1.011 0.00018529 1.573 5 1.883
1/9 1/81 0.00659541 1.006 0.00013161 1.452 5 3.071
1/10 1/100 0.005338013 1.004 0.00009906 1.348 5 4.233
1/11 1/121 0.00440949 1.0024 0.00007783 1.265 5 6.534
1/12 1/144 0.00370411 1.0014 0.00006313 1.202 5 9.827

case 2: ν = 0.005

1/7 1/49 0.01436030 - 0.00023594 - 11 1.417
1/8 1/64 0.00958131 1.515 0.00013586 2.067 10 2.138
1/9 1/81 0.00709544 1.275 0.00008416 2.0330 10 3.003
1/10 1/100 0.00556879 1.150 0.00005513 2.0070 10 4.475
1/11 1/121 0.00452638 1.087 0.00003774 1.9880 10 6.593
1/12 1/144 0.00376844 1.053 0.00002679 1.970 10 10.140

Table 4. Numbers of Oseen iterations by one-level subgrid stabilized method for lid-driven
cavity flow with different stabilized parameter.

H 0.5H 0.1H 0.05H 0.02H 0.01H

Re = 1000 202 115 40 32 31 36
Re = 5000 901 481 129 86 - -
Re = 10000 2819 1200 299 - - -

10000 for the lid-driven cavity flow. Table 4 shows the numbers of Oseen itera-
tions by one-level subgrid stabilized method with H = 1/64, θ = H, 0.5H, . . . ,
0.01H. We can see from Table 4 at Re=1000, the iterative method converges
for all values of stabilized parameter, while at Re=5000 and Re=10000, the
method fails to converge for small values. Figures 3–5 depict the numerical
streamlines and pressure contours computed by the two-level subgrid stabilized
method with H = 1/64, h = 1/128 and θ = 0.1H. For this problem, we also
tested two other larger Reynolds numbers, Re=30000 and Re=50000. Here,
we calculate g = στ at grid h = 1/513. As mentioned above, the small size
of the coarse mesh will lead to non convergence, so we still choose H = 1/64.
Figure 6 shows the numerical result with h = 1/256 and θ = 0.08H. We find
that with the increase of Reynolds number, in order to ensure the convergence
of the algorithm, it will be more difficult to find a suitable value of θ.

As mentioned in [9], the Navier-Stokes equations with nonlinear slip bound-
ary conditions can simulate the blood flow of patients with arteriosclerosis. So
in the last example, we simulate a simplified blood flow problem of this type.
It should be noted that the parameters we set for the convenience of calcula-
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Figure 3. Computed streamlines(left) and pressure contours(right) for lid-driven cavity
flow at Re=1000.
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Figure 4. Computed streamlines(left) and pressure contours(right) for lid-driven cavity
flow at Re=5000.
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Figure 5. Computed streamlines(left) and pressure contours(right) for lid-driven cavity
flow at Re=10000.

tion are still somewhat different from the real blood flow parameters, but they
can basically explain some facts. We first introduce Dirichlet boundaries with
parabolic shape normal to the fixed boundary, which is given by

m(s) = m̄(1− (
2s

l
)2), s ∈ [− l

2
,
l

2
],

where l is the length of the boundary part where the flow velocity is presented
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Figure 6. Computed streamlines for lid-driven cavity flow at
Re=30000(left),Re=50000(right).

and m̄ is the magnitude of the flow velocity at the centre of this boundary
part. The detailed boundary conditions and regional distribution are shown in
Figure 7 which in our example represents a bifurcated blood vessel. The inlet
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Figure 7. Domain Ω of the blood flow.

is set to Dirichlet boundary conditions with the maximum flow velocity m̄ = 1
and the length l = 1.2, and the outlet is set to open boundary, i.e.g1 = 0, where
g1 = (ν∇u − pI) · n. A part of the top of the blood vessel is set to nonlinear
slip boundary conditions, and the remaining boundary is set to zero Dirichlet
condition.

Like the previous example, we also need to know the position function g.
Similarly, we also calculate a problem on a relatively finer grid mesh(h = 1/200)
with no-slip conditions to obtain a solution as the exact solution and obtain
g = στ . We compute approximate solutions for the cases at ν = 0.1 and
ν = 0.001 for the blood flow with H = 1/64, h = 1/128 and θ = 0.1H. The
influence of the stable term is hardly reflected when ν = 0.1. In the two-
level algorithm, regardless of whether there is a stable term, the number of
Oseen iterations on the coarse mesh is m = 6. But for the case of ν = 0.001,
stabilization is necessary. If there is no stabilizing term, then the method will
not converge on the coarse mesh, which will lead to the failure of calculation.
When we add stabilizing term and set θ = 0.1H, the number of Oseen iterations
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on the coarse mesh is m = 99. Figures 8–9 depict the numerical streamlines
and pressure contours computed by the two-level subgrid stabilized method.

Figure 8. Computed streamlines(left) and pressure contours(right) for blood flow at
ν = 0.1.

Figure 9. Computed streamlines(left) and pressure contours(right) for blood flow at
ν = 0.001

6 Conclusions

In this paper, we propose a two-level subgrid stabilized method for Navier-
Stokes equations with nonlinear slip boundary conditions and high Reynolds
number. In this way, we use an elliptic projection to stabilize problems only
on the coarse grid. Stability and error estimates of the method were analyzed.
Numerical results verified the theoretical results and demonstrated the effi-
ciency of the method. We will go on working on the highly efficient methods
of numerical solutions to Navier-Stokes equations.
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