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Instituto de Investigação e Formação Avançada, Universidade de Évora,
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Abstract. In this paper, we improve the existing results in the literature by present-
ing weaker sufficient conditions for the solvability of a third-order impulsive problem
on the half-line, having generalized impulse effects. More precisely, our nonlinearities
do not need to be positive nor sublinear and the monotone assumptions are local
ones. Our method makes use of some truncation and perturbed techniques and on
the equiconvergence at infinity and the impulsive points. The last section contains
an application to a boundary layer flow problem over a stretching sheet with and
without heat transfer.
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1 Introduction
In this work we deal with a boundary value problem composed of the third-
order differential equation on the half real line

u′′′(t) = f (t, u(t), u′(t), u′′(t)) , t ∈ [0,+∞), (1.1)

where f : [0,+∞) × R3 → R is an L1− Carathéodory function, together with
the boundary conditions

u(0) = A, u′(0) = B, u′′(+∞) = C, (1.2)

�
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with A,B,C ∈ R, u′′(+∞) := lim
t→+∞

u′′(t) and the impulsive effects given by

the generalized functions

∆u(tk) = I0k (tk, u(tk), u′(tk), u′′(tk)) ,

∆u′(tk) = I1k (tk, u(tk), u′(tk), u′′(tk)) , (1.3)

∆u′′(tk) = I2k (tk, u(tk), u′(tk), u′′(tk)) ,

with 0 = t0 < t1 < t2 < ... < tk < ..., k ∈ N, such that lim
k→+∞

tk = +∞ and

Iik : [0,+∞)× R3 → R Catathéodory sequences for i = 0, 1, 2 and k ∈ N.
We point out that the technique presented in this paper can be easily

adapted, with obvious changes, to nth order problems of the type

u(n)(t) = f
(
t, u(t), ..., u(n−1)(t)

)
, t ∈ [0,+∞), (1.4)

u(i)(0) = Ai, u(n−1)(+∞) = B, Ai, B ∈ R, i = 0, 1, ..., n− 2,

∆u(j)(tk) = Iik

(
tk, u(tk), ..., u(n−1)(tk)

)
, j = 0, 1, ..., n− 1, k ∈ N. (1.5)

The option for order three here, is due to clearance reasons, to highlight
the method and not make the reading more difficult with heavy notation.

These higher-order boundary value problems with asymptotic conditions
can model some real phenomena as gas pressure in a semi-infinite porous
medium, draining or coating fluid-flow problems, and other evolution of phys-
ical processes. Likewise, they are useful in more theoretical studies such as
on nonlinear elliptic equations, to prove the existence of radially symmetric
solutions, or heteroclinic and homoclinic solutions of differential equations, or
coupled systems of differential and integral equations. As related works we
mention, for instance, [2, 5, 16,17,18,19,26,27].

As the infinite interval is noncompact, the discussion about sufficient con-
ditions for the solvability of boundary value problems on the half-line is more
delicate. In the literature the main methods to obtain existence results are the
extension of continuous solutions on finite intervals via a diagonalization pro-
cess, lower and upper solutions and fixed point theorems in Banach weighted
spaces (see [3, 4, 11,30] and their references).

Impulsive problems, that is, situations where sudden variations happens,
have had an important development in last decades, mostly due to their appli-
cability to real life phenomena. See, for example, [1, 12, 13, 14,16, 21, 24, 25,28]
and the references therein.

In [29], the authors consider a problem similar to (1.4)–(1.5) where the non-
linearity and all the impulsive functions must be sublinear and nondecreasing
in all space variables. The existence of positive solutions is proved using cone
theory and Mönch’s fixed point theorem, together with a monotone iterative
technique.

Motivated by this work, we study problem (1.1)–(1.3) under weaker condi-
tions, not only on the nonlinearity but also on the impulsive functions. Indeed,
being more specific:

• the nonlinearity f is an L1− Carathéodory function, meaning that it
could be discontinuous in time and, eventually, superlinear near the origin
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or at +∞. Moreover, there is not a monotone assumption on f in the
highest order derivative, while in the other variables there is only the
restriction of a local monotony in some strip;

• the impulsive functions Iik, with i = 0, 1, 2, are locally monotone, that
is, the monotonicity is required only on a strip. Moreover, the sequence
I2k has a different monotone behavior of [29] and there is no monotone
assumption at all on the highest order variable;

• the solutions may have negative values.

Our method relies on the lower and upper solutions technique, which reveals
to be adequate to these impulsive boundary value problems, adding to the
existence of solution its localization and some qualitative data on its behavior
as well. We apply some truncation and perturbation techniques suggested,
for example, in [6, 9, 10], together with equiconvergence at +∞ and on the
impulsive points, as it appears in [8].

The paper is organized in the following way: Section 2 contains the def-
inition of the Banach spaces, the corresponding weighted norms, and other
auxiliary results as well. In Section 3 we present the main theorem: an ex-
istence and localization result, where we prove the existence of at least one
solution, and some bounds on the first and second derivatives. The last sec-
tion, has an application to a boundary layer flow problem over a stretching
sheet with and without heat transfer.

2 Definitions and auxiliary results

A key argument of our method is based on a weighted space with some asymp-
totic assumptions.

Consider the spaces

PC2[0,+∞] =

{
u : u ∈ C2([0,+∞];R) for t 6= tk, u

(i)(tk) = u(i)(t−k ),
u(i)(t+k ) exists for k = 1, 2, ...,m, and i = 0, 1, 2

}
and

X =

{
x ∈ PC2[0,+∞) : lim

t→+∞

x(i)(t)

wi(t)
exists, i = 0, 1, 2

}
with wi(t) = 1 + t2−i and the norm ‖y‖ = max {‖y‖0 , ‖y‖1 , ‖y‖2}, where

‖y‖0 = sup
0≤t<+∞

{
|y(t)|
1 + t2

}
, ‖y‖1 = sup

0≤t<+∞

{
|y′(t)|
1 + t

}
, ‖y‖2 = sup

0≤t<+∞

{
|y′′(t)|

2

}
.

Therefore, (X, ‖.‖) is a Banach space.
The nonlinearities will have the regularity of L1− Carathéodory functions

defined as it follows:

Definition 1. A function f : [0,+∞) × R3 → R is L1− Carathéodory if it
satisfies
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i) for each (x, y, z) ∈ R3, t 7→ f(t, x, y, z) is measurable on [0,+∞);

ii) for almost every t ∈ [0,+∞), (x, y, z) 7→ f(t, x, y, z) is continuous in R3;

iii) for each ρ > 0, there exists a positive function ψρ ∈ L1[0,+∞) such that,
for max {‖x‖0 , ‖y‖1 , ‖z‖2} < ρ,

|f(t, x, y, z)| ≤ ψρ(t), a.e. t ∈ [0,+∞).

The impulsive effects are given in terms of sequences of functions as in next
definition.

Definition 2. A sequence (wn)n∈N is a Carathéodory sequence if

(i) for each (x, y, z) ∈ R3, (x, y, z)→ wn (x, y, z) is continuous for all n ∈ N;

(ii) for each ρ > 0, there are nonnegative constants λnρ ≥ 0 with
∑+∞
n=1 λnρ <

+∞ such that for |x| < ρ(1 + t2), |y| < ρ(1 + t), |z| < 2ρ, for t ∈ [0,+∞),
we have

|wn (x, y, z) | ≤ λnρ, for every n ∈ N.

Next lemma gives the exact solution for the associated linear and homoge-
neous problem:

Lemma 1. If e ∈ L1[0,+∞), then the boundary value problem{
u′′′(t) = e(t), t ∈ (0,+∞),

u(0) = A, u′(0) = B, u′′(+∞) = C
(2.1)

has a unique solution in X. Moreover, this solution can be expressed as

u(t) = A+Bt+
Ct2

2
+

∑
k : t>tk

×

[
I0,k (tk, u(tk), u′(tk), u′′(tk)) + I1,k (tk, u(tk), u′(tk), u′′(tk)) (t− tk)

+I2k (tk, u(tk), u′(tk), u′′(tk)) (t−tk)2
2

]

− t2

2

+∞∑
k=1

I2k (tk, u(tk), u′(tk), u′′(tk))−
∫ +∞

0

G(t, s) e(s)ds,

where G(t, s) is the Green function of the homogeneous problem associated to
(2.1), given by

G(t, s) =

{
1
2s

2 − st, 0 ≤ s ≤ t,
− 1

2 t
2, t ≤ s ≤ +∞. (2.2)

The proof follows from standard integrations and usual arguments and is omit-
ted.

The following theorem, to be used forward, gives a general criterion for
relative compactness:

Math. Model. Anal., 26(4):548–565, 2021.
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Theorem 1. ( [8]) Let M ⊂ C∞ = {x ∈ C[0,+∞) :limt→+∞ x(t) exists}.
Then M is relatively compact if the following conditions hold:
1. All functions in M are uniformly bounded;
2. All functions in M are equicontinuous on any compact interval of [0,+∞);
3. All functions in M are equiconvergent at infinity, that is, for any given
ε > 0, there exists a tε such that |x(t)− x(+∞)| < ε, for all t > tε and x ∈M .

3 Main result

In this section we prove the existence of at least one solution for the problem
(1.1)–(1.3), applying lower and upper solutions method. Moreover, some data
on its behavior and variation are given.

First we define lower and upper functions for impulsive problems.

Definition 3. Given A,B,C ∈ R, a function α ∈ X is a lower solution of
problem (1.1)–(1.3) if

α′′′(t) ≥ f (t, α(t), α′(t), α′′(t)) , t ∈ [0,+∞),
α(0) ≤ A, α′(0) ≥ B, α′′(+∞) ≤ C,
∆α(tk) ≤ I0k (tk, α(tk), α′(tk), α′′(tk)) ,
∆α′(tk) > I1k (tk, α(tk), α′(tk), α′′(tk)) ,
∆α′′(tk) > I2k (tk, α(tk), α′(tk), α′′(tk)) ,

with k ∈ N.
A function β ∈ X is an upper solution if it verifies the reversed inequalities.

Forward, the following assumption will play a key role:

(A) There is ξ > 0 such that

ξ ≥ max



‖α‖0 , ‖β‖0 , ‖α′‖1 , ‖β′‖1 , ‖α′′‖2 , ‖β′′‖2 ,
|A|+ |B|+|C|

2 +
∑+∞
k=1 λ0kξ +

∑+∞
k=1 λ1kξ +

∑+∞
k=1 λ2kξ

+M0

(
π
2 +

∫ +∞
0

ψξ(s)ds
)
,

|B|+ |C|+
∑+∞
k=1 λ1kξ + 2

∑+∞
k=1 λ2kξ

+M1

(
π
2 +

∫ +∞
0

ψξ(s)ds
)
,

|C|
2 +

∑+∞
k=1 λ2kξ + 1

2

∫ +∞
0

ψξ(s)ds+ π
4


,

where, for Catathéodory sequences Iik : [0,+∞) × R3 → R, i = 0, 1, 2,
k ∈ N,

|Iik (tk, y0, y1, y2)| ≤
+∞∑
k=1

λikξ < +∞,

when

|y0| < ξ(1 + t2), |y1| < ξ(1 + t), |y2| < 2ξ, for t ∈ [0,+∞),

M0 := sup
t∈[0,+∞[

|G(t, s)|
1 + t2

,M1 := sup
t∈[0,+∞[

∣∣∂G
∂t (t, s)

∣∣
1 + t

,
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for s ∈ [0,+∞), and

|f(t, x, y, z)| ≤ ψξ(t), a.e. t ∈ [0,+∞),

when max {‖x‖0 , ‖y‖1 , ‖z‖2} < ξ.

The existence and localization result is given by next theorem.

Theorem 2. Consider A,B,C ∈ R. Assume that there are α and β lower and
upper solutions of problem (1.1)–(1.3) such that

α′′(t) ≤ β′′(t), ∀t ∈ [0,+∞). (3.1)

Let f : [0,+∞]× R4 → R be a L1 − Carathéodory function with

f (t, α(t), α′(t), y2) ≥ f (t, y0, y1, y2) ≥ f (t, β(t), β′(t), y2) (3.2)

for t ∈ [0,+∞], α(t) ≤ y0 ≤ β(t), α′(t) ≤ y1 ≤ β′(t), and y2 ∈ R.
Assume that Iik : [0,+∞)×R3 → R are Catathéodory sequences, for i = 0, 1, 2,
k ∈ N, such that

I0k (tk, α(tk), α′(tk), α′′(tk))≤I0k (tk, y0, y1, y2)≤I0k (tk, β(tk), β′(tk), β′′(tk)) ,

for α(i)(tk) ≤ yi ≤ β(i)(tk), i = 0, 1, 2, (3.3)

I1k (tk, α(tk), α′(tk), α′′(tk))≤I1k (tk, y0, y1, y2))≤I1k (tk, β(tk), β′(tk), β′′(tk)) ,

for α(i)(tk) ≤ yi ≤ β(i)(tk), i = 0, 1, 2, (3.4)

I2k (tk, β(tk), β′(tk), y2) ≤ I2k (tk, y0, y1, y2)) ≤ I2k (tk, α(tk), α′(tk), y2) ,

for α(i)(tk) ≤ yi ≤ β(i)(tk), i = 0, 1, y2 ∈ R. (3.5)

If there is ξ > 0 such that assumption (A) holds, then there is at least u(t) ∈ X,
a solution of (1.1)–(1.3), such that

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), ∀t ∈ [0,+∞), i = 0, 1, 2.

Proof. Let α, β ∈ X be, respectively, lower and upper solutions of (1.1)–
(1.3) verifying (3.1). Notice that the relations α(t) ≤ β(t) and α′(t) ≤ β′(t),
∀t ∈ [0,+∞), are obtained by integration from (3.1) and the boundary con-
ditions (1.2). Consider the modified and perturbed problem composed of the
differential equation

u′′′(t) = f (t, δ0 (t, u(t)) , δ1 (t, u′(t)) , δ2 (t, u′′(t))) (3.6)

+
1

1 + t2
u′′(t)− δ2 (t, u′′(t))

1 + |u′′(t)− δ2 (t, u′′(t))|
,

for t ∈ [0,+∞), where the functions δj : [0,+∞)×R→ R, j = 0, 1, 2 are given
by

δj(t, u
(j)(t)) =


β(j)(t), u(j)(t) > β(j)(t),

u(j)(t), α(j)(t) ≤ u(j)(t) ≤ β(j)(t),

α(j)(t), u(j)(t) < α(j)(t),

Math. Model. Anal., 26(4):548–565, 2021.
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the boundary conditions (1.2) and the truncated impulsive effects

∆u(j)(tk)=Ij,k (tk, δ0 (tk, u(tk)), δ1(tk, u
′(tk)), δ2 (tk, u

′′(tk))) , j=0, 1, 2. (3.7)

For clearity we divide the proof into claims.

CLAIM 1: Problem (3.6),(1.2), (3.7) has at least one solution.
Define the operator T : X → X by

T u(t) = A+Bt+
Ct2

2
+

∑
k : t>tk

×

[
I0,k (tk, u(tk), u′(tk), u′′(tk)) + I1,k (tk, u(tk), u′(tk), u′′(tk)) (t− tk)

+I2k (tk, u(tk), u′(tk), u′′(tk)) (t−tk)2
2

]

− t2

2

+∞∑
k=1

I2k (tk, u(tk), u′(tk), u′′(tk))−
∫ +∞

0

G(t, s) F (u(s)) ds,

with G(t, s) given by (2.2), and

F (u(s)) :=f (s, δ0 (s, u(s)) , δ1 (s, u′(s)) , δ2(s, u′′(s)))

+
1

1 + t2
u′′(s)− δ2 (t, u′′(s))

1 + |u′′(s)− δ2 (s, u′′(s))|
.

By Lemma 1, the fixed points of T are solutions of the problem (3.6), (1.2) and
(3.7). So it is enough to prove that T has a fixed point.

For convenience we denote

Ii,k := Ii,k (tk, u(tk), u′(tk), u′′(tk)) , for i = 0, 1, 2.

(1) T : X → X is well defined.
Take

ρ > max {‖α‖0 , ‖β‖0 , ‖α
′‖1 , ‖β

′‖1 , ‖α
′′‖2 , ‖β

′′‖2} . (3.8)

As f is an L1−Carathéodory function, by Definition 1, for u ∈ X with
‖u‖ < ρ,∫ +∞

0

|F (u(s))| ds ≤
∫ +∞

0

(
ψρ(s) +

1

1 + t2

)
ds ≤

∫ +∞

0

ψρ(s)ds+
π

2
< +∞,

and so F (u(s)) ∈ L1([0,+∞[).
By Lebesgue Dominated Theorem and Definition 2,

lim
t→+∞

|T u(t)|
1 + t2

≤ |C|
2

+

+∞∑
k=1

|I2k| ≤
|C|
2

+

+∞∑
k=1

λ2kρ < +∞.

Analogously,

lim
t→+∞

|T u′(t)|
1 + t

≤ |C|+ 2

+∞∑
k=1

|I2k| ≤ |C|+ 2

+∞∑
k=1

λ2kρ < +∞,
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and

lim
t→+∞

|(T u)′′(t)|
2

≤ 1

2

(
|C|+ 2

+∞∑
k=1

λ2kρ +

∫ +∞

0

ψρ(s)ds

)
< +∞.

Therefore, T u ∈ X.

(2) T is continuous.
For any convergent sequence un → u in X, there exists r1 > 0 such that,

for ‖un‖ < r1, we have

‖T un − T u‖ = max {‖T un − T u‖0 , ‖(T un)′ − (T u)′‖1 , ‖(T un)′′ − (T u)′′‖2}

≤
∫ +∞

0

max {M0,M1} |F (un(s))− F (u(s))| ds

≤
∫ +∞

0

|F (un(s))− F (u(s))| ds −→ 0 , n→ +∞.

(3) T is compact.
Let D ⊂ X be any bounded subset. Therefore there is R > 0 such that

‖u‖ < R,∀u ∈ D. Then,

‖T u‖0 = sup
t∈[0,+∞[

|T u(t)|
1 + t2

≤ |A|+ |B|+ |C|
2

+

+∞∑
k=1

|I0k|

+

+∞∑
k=1

|I1k|+
+∞∑
k=1

|I2k|+
∫ +∞

0

sup
t∈[0,+∞[

|G(t, s)|
1 + t2

ψR(s)ds

≤|A|+ |B|+ |C|
2

+

+∞∑
k=1

λ0kR +

+∞∑
k=1

λ1kR +

+∞∑
k=1

λ2kR

+M0

(
π

2
+

∫ +∞

0

ψR(s)ds

)
< +∞,

‖T u‖1 = sup
t∈[0,+∞[

| (T u(t))
′ |

1 + t

≤ |B|+ |C|+ sup
t∈[0,+∞[

1

1 + t

∑
k : t>tk

|I1k|+ sup
t∈[0,+∞[

∑
k : t>tk

|I2k|
t− tk
1 + t

+ sup
t∈[0,+∞[

t

1 + t

+∞∑
k=1

|I2k|+
∫ +∞

0

M1 |F (u(s))| ds

≤ |B|+ |C|+
+∞∑
k=1

λ1kR + 2

+∞∑
k=1

λ2kR +M1

(
π

2
+

∫ +∞

0

ψp(s)ds

)
< +∞,

and

‖T u‖2 = sup
t∈[0,+∞[

| (T u(t))
′′ |

2
≤ |C|

2
+

+∞∑
k=1

λ2kR +
1

2

∫ +∞

0

ψR(s)ds+
π

4
< +∞.
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So T is uniformly bounded. Moreover, T is equicontinuous on each interval
(tk, tk+1]. To see this, let t1, t2 ∈ (tk, tk+1], with t1 < t2; as t1 → t2,∣∣∣∣T u(t1)

1 + t21
− T u(t2)

1 + t22

∣∣∣∣ ≤
∣∣∣∣∣Bt1 + C

2 t
2
1

1 + t21
−
Bt2 + C

2 t
2
2

1 + t22

∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑

k : t1>tk

[
I0k + I1k(t1 − tk) + I2k

(t1−tk)2
2

]
−

∑
k : t2>tk

[
I0k + I1k(t2 − tk) + I2k

(t2−tk)2
2

]
∣∣∣∣∣∣∣+

1

2

∣∣t21 − t22∣∣ +∞∑
k=1

|I2k|

+

∫ +∞

0

∣∣∣∣G(t1, s)

1 + t21
− G(t2, s)

1 + t22

∣∣∣∣ (ψR(s) + 1) ds −→ 0

and ∣∣∣∣ (T u)
′
(t1)

1 + t1
− (T u)

′
(t2)

1 + t2

∣∣∣∣ ≤ ∣∣∣∣ Ct11 + t1
− Ct2

1 + t2

∣∣∣∣+ |t1 − t2|
+∞∑
k=1

|I2k|

+

∣∣∣∣∣ ∑
k : t1>tk

[I1k + I2k (t1 − tk)]−
∑

k : t2>tk

[I1k + I2k (t2 − tk)]

∣∣∣∣∣
+

∫ +∞

0

∣∣∣∣∣ ∂G∂t (t1, s)

1 + t21
−

∂G
∂t (t2, s)

1 + t22

∣∣∣∣∣ (ψR(s) + 1) ds −→ 0.

The function ∂2G
∂t2 (t, s) is not continuous for s = t but the jump is controlled

by 1. Then,∣∣∣∣ (T u)
′′

(t1)

2
− (T u)

′′
(t2)

2

∣∣∣∣ ≤ 1

2

∑
k : t1<tk<t2

|I2k|

+

∣∣∣∣∫ +∞

t1

F (u(s)) ds−
∫ +∞

t2

F (u(s)) ds

∣∣∣∣
≤ 1

2

∑
k : t1<tk<t2

|I2k|+
∫ t2

t1

(ψR(s) + 1) ds −→ 0 as t1 → t2.

To prove that T D is equiconvergent at infinity we apply, as t→ +∞,∣∣∣∣T u(t)

1 + t2
− lim
t→+∞

T u(t)

1 + t2

∣∣∣∣ ≤ ∣∣∣∣A+Bt

1 + t2
+

Ct2

2 + 2t2
− C

2

∣∣∣∣
+

1

1 + t2

∣∣∣∣∣∣
∑

k : t>tk

[
I0k + I1k(t1 − tk) + I2k

(t1−tk)2
2

]
− 1

2

∑+∞
k=1 I2k

∣∣∣∣∣∣
+

∣∣∣∣∣12 t2

1 + t2

+∞∑
k=1

|I2k| −
1

2

+∞∑
k=1

|I2k|

∣∣∣∣∣
+

∫ +∞

0

∣∣∣∣G(t, s)

1 + t2
+

1

2

∣∣∣∣ (ψR(s) + 1) ds −→ 0,
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′
(t)

1 + t
− lim
t→+∞

(T u)
′
(t)

1 + t

∣∣∣ ≤ ∣∣∣B + Ct

1 + t
− C

∣∣∣
+

1

1 + t

∣∣∣∣∣ ∑
k : t>tk

[I1k + I2k (t1 − tk)]−
+∞∑
k=1

I2k

∣∣∣∣∣
+

∣∣∣∣∣ t

1 + t

+∞∑
k=1

|I2k| −
+∞∑
k=1

|I2k|

∣∣∣∣∣
+

∫ +∞

0

∣∣∣∣∣ ∂G∂t (t, s)

1 + t
+ 1

∣∣∣∣∣ (ψR(s) + 1) ds −→ 0,

∣∣∣∣ (T u)
′′

(t)

2
lim

t→+∞

(T u)
′′

(t)

2

∣∣∣∣ ≤ 1

2

∣∣∣∣∣ ∑
k : t>tk

I2k −
+∞∑
k=1

I2k

∣∣∣∣∣
+

∫ +∞

0

∣∣∣∣∂2G∂t2 (t, s) + 1

∣∣∣∣ (ψR(s) + 1) ds −→ 0, as t→ +∞ .

Finally, to prove that T D is equiconvergent at the impulsive moments we apply,
as t→ t+i , for i ∈ N,∣∣∣∣∣T u(t)

1 + t2
− lim
t→t+i

T u(t)

1 + t2

∣∣∣∣∣ ≤
∣∣∣∣∣Bt+ C

2 t
2

1 + t2
−
Bti + C

2 t
2
i

1 + t2i

∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

1+t2

∑
k : t>tk

(
I0k + I1k(t− tk) + I2k

(t−tk)2
2

)
− 1

1+t2i

∑
k : t+i >tk

(
I0k + I1k(t+i − tk) + I2k

(t+i −tk)
2

2

) ∣∣∣∣∣∣∣
+

∣∣∣∣∣
(
− t2

1 + t2
+

t2i
1 + t2i

) +∞∑
k=1

I2k

∣∣∣∣∣
+

∫ +∞

0

∣∣∣∣G(t, s)

1 + t2
− G(t+i , s)

1 + t2i

∣∣∣∣ (ψR(s) + 1)) ds −→ 0,

uniformly on u ∈ D, as t −→ t+i ,∣∣∣ (T u)
′
(t)

1 + t
− lim
t→t+i

(T u)
′
(t)

1 + t

∣∣∣ ≤ ∣∣∣ Ct
1 + t

− Cti
1 + ti

∣∣∣
+
∣∣∣ 1

1 + t

∑
k : t>tk

[I1k + I2k (t− tk)]− 1

1 + ti

∑
t+i >tk

[I1k + I2k (ti − tk)]
∣∣∣

+
∣∣∣(− t

1 + t
+

ti
1 + ti

) +∞∑
k=1

I2k

∣∣∣
+

∫ +∞

0

∣∣∣ ∂∂tG(t, s)

1 + t2
−

∂
∂tG(t+i , s)

1 + t2i

∣∣∣ (ψR(s) + 1)) ds −→ 0, as t −→ t+i ,

∣∣∣ (T u)
′′

(t)

2
− lim
t→t+i

(T u)
′′

(t)

2

∣∣∣ ≤ ∣∣∣1
2

∑
k : t>tk

I2k −
1

2

∑
k : t+i >tk

I2k

∣∣∣
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+
1

2

∣∣∣∣∫ +∞

t

F (u(s)) ds−
∫ +∞

ti

F (u(s)) ds

∣∣∣∣
≤ 1

2

∣∣∣∣∣∣
∑

k : t>tk

I2k −
∑

k : t+i >tk

I2k

∣∣∣∣∣∣+
1

2

∣∣∣∣∫ t

ti

(ψR(s) + 1)ds

∣∣∣∣ −→ 0,

uniformly for u ∈ D, as t −→ t+i .
So, by Theorem 1, T D is relatively compact. To apply Schauder’s Fixed

Point Theorem, we need to show that T : D → D.

CLAIM 2: For some nonempty, closed, bounded and convex subset D ⊂ X,
T D ⊆ D.

By assumption (A) in Step (3) of the previous Claim 1, take R > 0 such
that

R ≥ max



ρ, |A|+ |B|+|C|
2 +

∑+∞
k=1 λ0kR +

∑+∞
k=1 λ1kR +

∑+∞
k=1 λ2kR

+M0

(
π
2 +

∫ +∞
0

ψR(s)ds
)
,

|B|+ |C|+
∑+∞
k=1 λ1kR + 2

∑+∞
k=1 λ2kR

+M1

(
π
2 +

∫ +∞
0

ψR(s)ds
)
,

|C|
2 +

∑+∞
k=1 λ2kR + 1

2

∫ +∞
0

ψR(s)ds+ π
4


,

with ρ given by (3.8).
From the calculations in Claim 1, for every u ∈ D such that ‖u‖ < R, we

have T D ⊆ D. Hence T is completely continuous, by Schauder’s Fixed Point
Theorem, T has at least one fixed point u ∈ X.

From Lemma 1, (3.6) and (3.7), this fixed point will be a solution of the
problem (1.1)–(1.3) if

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), i = 0, 1, 2, ∀t ∈ [0,+∞).

CLAIM 3: Every solution of problem (3.6), (2), (3.7), satisfies

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), i = 0, 1, 2, ∀t ∈ [0,+∞).

Let u be a solution of problem (3.6), (2), (3.7). Suppose for a contradiction
that there is u′′(t) < α′′(t), and define

inf
t∈[0,+∞[

u′′(t)− α′′(t) := u′′(t∗)− α′′(t∗) < 0.

Note that t∗ 6= +∞, as by (2) and Definition 3, u′′(+∞)− α′′(+∞) ≥ 0.
If t∗ = 0, the following contradiction holds, by (3.2) and Definition 3:

0 ≤ u′′′(0)− α′′′(0) = f (0, δ0(0, u(0)), δ1(0, u′(0)), δ2(0, u′′(0)))

+
u′′(0)− α′′(0)

1 + |u′′(0)− α′′(0)|
− α′′′(0) < f (0, δ0(0, u(0)), δ1(0, u′(0)), δ2(0, u′′(0)))

− α′′′(0) ≤ f (0, α(0), α′(0), α′′(0))− α′′′(0) ≤ 0.
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Therefore t∗ 6= 0.
Consider now that t∗ is between two consecutive impulses. That is, there

is a p ∈ N such that t∗ ∈ (tp, tp+1). Then,

u′′′(t∗) = α′′′(t∗), u
′′(t∗)− α′′(t∗) < 0

and we have, by (3.2) and Definition 3, the contradiction

0 = u′′′(t∗)− α′′′(t∗) = f (t∗, δ0 (t∗, u(t∗)) , δ1(t∗, u
′(t∗)), u

′′(t∗))

+
1

1 + t2∗

u′′(t∗)− δ2(t∗, u(t∗))

|u′′(t∗)− δ2(t∗, u(t∗))|+ 1
− α′′′(t∗)

≤ f(t∗, α(t∗), α
′(t∗), α

′′(t∗)) +
1

1 + t2∗

u′′(t∗)− α′′(t∗)
|u′′(t∗)− α′′(t∗)|+ 1

− α′′′(t∗)

< f(t∗, α(t∗), α
′(t∗), α

′′(t∗))− α′′(t∗) ≤ 0.

Assume now that the infimum is attained at an impulsive moment. So, we have
two cases: t∗ = t−q or t∗ = t+q . Firstly, consider that there is q ∈ N where

min
t∈[0,+∞)

(u′′(t)− α′′(t)) := u′′(tq)− α′′(tq) < 0.

Then this contradiction holds:

0 ≤ ∆(u′′ − α′′)(tq)
= I2,q (tq, δ0(tq, u(tq)), δ1(tq, u

′(tq)), δ2(tq, u
′′(tq)))−∆α′′(tq)

= I2,q (tq, δ0(tq, u(tq)), δ1(tq, u
′(tq)), α

′′(tq))−∆α′′(tq)
≤ I2,q (tq, α(tq), α

′((tq), α
′′(tq))−∆α′′(tq) < 0.

In the second case, assume that

inf
t∈[0,+∞)

u′′(t)− α′′(t) := u′′(t+∗ )− α′′(t+∗ ) < 0.

Consider ε > 0 small enough such that

(u′′ − α′′)(t) < 0, u′′′(t+)− α′′′(t+) ≥ 0, for t ∈ (tq, tq + ε).

So, for t ∈ (tq, tq + ε), a contradiction can be obtained following the same
arguments as for t∗ ∈ (tp, tp+1). Therefore,

α′′(t) ≤ u′′(t), for t ∈ [0,+∞).

By a similar technique, it can be proved that u′′(t) ≤ β′′(t), for t ∈ (0,+∞),
and then

α′′(t) ≤ u′′(t) ≤ β′′(t), for t ∈ [0,+∞). (3.9)

Integrating the first inequality of (3.9) for t ∈ [0, t1], by (1.2) and Definition 3,

α′(t) ≤ u′(t) + α′(0)− u′(0) ≤ u′(t). (3.10)

Math. Model. Anal., 26(4):548–565, 2021.
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By integration in (t1,+∞), (3.5), (3.10) and Definition 3, we have for t ∈
(t1,+∞)

α′(t) ≤ u′(t) + α′(t+1 )− u′(t+1 ) = u′(t) + α′(t+1 )

− I11 (t1, δ0(t1, u(t1)), δ1(t1, u
′(t1)), δ2(t1, u

′′(t1)))− u′(t1)

≤ u′(t) + I11 (t1, α(t1), α′(t1), α′′(t1)) + α′(t1)

− I11 (t1, δ0(t1, u(t1)), u′(t1), u′′(t1))− u′(t1)

≤ u′(t) + I11 (t1, α(t1), α′(t1), α′′(t1))− I11 (t1, δ0(t1, u(t1)), u′(t1), u′′(t1))

≤ u′(t).

Analogously, one can show that u′(t) ≤ β′(t), ∀t ∈ [0,+∞) and, then,

α′(t) ≤ u′(t) ≤ β′(t), for t ∈ [0,+∞). (3.11)

Integrating the first inequality of (3.11) on [0, t1], we have

α(t) ≤ u(t)− u(0) + α(0) ≤ u(t),

and on (t1,+∞), by (3.3) and Definition 3,

α(t) ≤ u(t) + α(t+1 )− u(t+1 ) ≤ u(t) + I01 (t1, α(t1), α′(t1), α′′(t1))

+ α(t1)− I01 (t1, δ0(t1, u(t1)), δ1(t1, u
′(t1)), δ2(t1, u

′′(t1)))− u(t1)

≤ u(t) + I01 (t1, α(t1), α′(t1), α′′(t1))− I01 (t1, u(t1), u′(t1), u′′(t1)) ≤ u(t).

So, α(t) ≤ u′(t),∀t ∈ [0,+∞), and the remaining inequality u(t) ≤ β(t),∀t ∈
[0,+∞), can be proved using the same technique. ut

4 Example

Problems of boundary layer flow over a stretching sheet, with and without
heat transfer, are a topic that arouses growing interest in the literature (see,
for example [7, 15, 20, 23]). These papers deal with a boundary value problem
of normal stagnation point flow impinging on a stretching sheet, governed by
the parameter b which represents the ratio of the strain rate of the stagnation
flow to that of the stretching sheet. Existing numerical studies on the basic
flow shows that a solution exists for all values of b > 0.

In [22], the third order differential equation

f ′′′ + f f ′′ − (f ′)
2

+ b2 = 0, (4.1)

together with the boundary conditions

f (0) = 0, f ′ (0) = 1, f ′ (∞) = b,

is studied.
Motivated by this paper, in this application, we prove the solvability of the

impulsive third order problem composed of a differential equation similar to
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(4.1), namely,

u′′′(t) =


− 0.01

1+t2

(
3
√
u(t)

√
|u′′(t)|+ sgn(u′(t))

√
|u′(t)| − sgn(u′′(t))b2

)
,

if 0 ≤ t ≤ 1,

− 0.01
1+t2

(
3
√
u(t)

√
|u′′(t)|+ sgn(u′(t))

√
|u′(t)|+ 10sgn(u′′(t))b2

)
,

if t > 1,
(4.2)

with b ∈ R\ {0} , where u(t) represents the flow speed across a time t, together
with the asymptotic boundary conditions

u(0) = A, u′(0) = B, u′′(+∞) = 0, (4.3)

for A,B ∈ R, and the impulsive effects with the form

∆u(tk) =
1

(tk)
3

(
λ01

3
√
u(tk) + λ02 (u′(tk)) + λ03

3
√
u′′(tk)

)
,

∆u′(tk) =
1

(tk)
3

(
λ11 (u(tk)) + λ12

3
√
u′(tk)

)
, (4.4)

∆u′′(tk) =
1

(tk)
3

(
λ21

3
√
u(tk)+λ22 (u′(tk)) +λ23 (u′′(tk)) +sgn(u′′(tk)) ∗ 5tk

)
,

where λij ∈ R, for 1 = 0, 1, 2 and j = 1, 2, 3, and k ∈ N.
Note that:

1. The null function is not a solution of (4.2).

2. In (4.2), from a theoretical point of view, the parameter b could be non-
positive.

3. For functions u ∈ X, the condition u′′(+∞) = 0 implies that u′(+∞) is
finite.

4. Neither (4.2) nor (4.4) are covered by Theorem 3.1 of [29], as they are
not sublinear and have different monotonicities.

5. The problem (4.2)–(4.4) is a particular case of the initial problem (1.1)–
(1.3), with C = 0,

f (t, y0, y1, y2) = (4.5) −
0.01
1+t2

(
3
√
y0
√
|y2|+ sgn(y1)

√
|y1| − sgn(y2)b2

)
, if 0 ≤ t ≤ 1,

− 0.01
1+t2

(
3
√
y0
√
|y2|+ sgn(y1)

√
|y1|+ 10 sgn(y2)b2

)
, if t > 1,

I0,1(tk, w0, w1, w2) =
1

(tk)
3 (λ01 3

√
w0 + λ02 (w1) + λ03 3

√
w2) ,

I1,1(tk, w0, w1, w2) =
1

(tk)
3 (λ11 (w0) + λ12 3

√
w1) ,

I2,1(tk, w0, w1, w2) =
1

(tk)
3 (λ21 3

√
w0+λ22 (w1) +λ23 (w2) +sgn(w2)5tk) .
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Figure 1. Solution region.

As a numeric example, let us consider b = −1, A = B = 0, tk = k, k ∈ N,
and adequate values for the parameters.

In this case, the impulsive conditions are given by

∆u (k) =
1

k3

(
0.001k 3

√
u(k) + 0.001k (u′ (k)) + 0.001k 3

√
u′′ (k)

)
,

∆u′ (k) =
1

k3

(
0.1k (u (k)) + 0.1k 3

√
u′ (k)

)
, (4.6)

∆u′′ (k) =
1

k3

(
−0.1k 3

√
u (k)− 0.1k (u′ (k)) +0.1k (u′′ (k)) +sgn(u′′ (k))5k

)
,

and the piecewise functions α, β ∈ X defined as

α(t) =

{
1.5t3 − 5t2, if 0 ≤ t ≤ 1,

−0.1
(

1
2t + 16t

)
− 3k, if t ∈]k, k + 1], k ≥ 1,

β(t) =

{
−1.5t3 + 5t2, if t ≤ 1,

0.1
(

1
2t + 16t

)
+ 3k, if t ∈]k, k + 1], k ≥ 1,

are, respectively, lower and upper solutions of problem (4.2), (4.3), (4.6), ac-
cording to Definition 3, satisfying (3.1).

Moreover, the nonlinear part given by (4.5) verifies (3.2), the impulsive
functions Ii,1 : R4 7→ R, i = 0, 1, 2,

0, 1 (k,w0, w1, w2) =
1

k3
(
0.001k 3

√
w0 + 0.001kw1 + 0.001k 3

√
w2

)
,

I1,1 (k,w0, w1, w2) =
1

k3
(
0.1kw0 + 0.1k 3

√
w1

)
,

I2,1 (k,w0, w1, w2) =
1

k3
(
−0.1k 3

√
w0 − 0.1kw1 + 0.1kw2 + sgn(w2) ∗ 5k

)
,

satisfy (3.3), (3.4) and (3.5), and assumption (A) holds for ξ ≥ 24.245.
Then, by Theorem 2, there exists a solution u ∈ X of problem (4.2), (4.3),

(4.6), in the strip

α(t) ≤ u(t) ≤ β(t), for t ∈ (0,+∞),

that is, in the region illustrated in Figure 1.
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From the localization part of Theorem 2 we can also have some data on the
first and second derivatives:

α′(t) ≤ u′(t) ≤ β′(t), α′′(t) ≤ u′′(t) ≤ β′′(t), for t ∈]0,+∞),

that is the growth and concavity variations are in the strips given by Figure 2.

a) b)

Figure 2. a) derivative region; b) concavity variation.

5 Conclusions

Higher-order boundary value problems on unbounded domains are more deli-
cate, as the nonlinearities can be chaotic. From a theoretical point of view, the
issue relies on the noncompacity of the associated operator, and to overcome
it, some additional tools are required, such as the stability at∞ . Moreover, in
impulsive problems, with extra jumps, the stability on each impulsive moment
must hold. Lower and upper solutions prove to be an adequate method and
technique for these kinds of problems, as it gives not only the existence of a
solution but also some qualitative data such as monotonicity, variations, con-
cavity,. . . . In this way, it enlarges the range of applications and it is very useful
for nonlinear problems, where it is not possible to have an explicit solution.
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