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Abstract. We are interested in general homogenization theory for fourth-order el-
liptic equation describing the Kirchhoff model for pure bending of a thin solid sym-
metric plate under a transverse load. Such theory is well-developed for second-order
elliptic problems, while some results for general elliptic equations were established by
Zhikov, Kozlov, Oleinik and Ngoan (1979). We push forward an approach of Antonić
and Balenović (1999, 2000) by proving a number of properties of H-convergence for
stationary plate equation.
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1 Introduction

We consider a homogeneous Dirichlet boundary value problem for a general
fourth-order partial differential equation{

div div (M∇∇u) = f in Ω,
u ∈ H2

0(Ω) ,
(1.1)

where Ω ⊆ Rd is an open and bounded set, and M is a tensor valued function,
which can be understood as a linear operator on the space of all symmetric
d× d real matrices, denoted by Sym.
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The weak solution u of (1.1) is defined as a function u ∈ H2
0(Ω) satisfying

(∀ v ∈ H2
0(Ω))

∫
Ω

M∇∇u : ∇∇v dx = H−2(Ω)〈 f, v 〉H2
0(Ω) .

The problem is elliptic, if we assume that M is bounded (almost everywhere)
and coercive. More precisely, we assume that M belongs to M2(α, β;Ω) :=
{M ∈ L∞(Ω;L(Sym,Sym)) : (∀S ∈ Sym) M(x)S : S ≥ αS : S & M(x)−1S :
S ≥ 1

βS : S, a.e.x ∈ Ω}, where β > α > 0 are given, and : stands for the scalar
product on the space Sym. The bounds are chosen in this form to ensure their
preservation during the homogenization process, as noted in [11] in the case of
stationary diffusion equation.

The well-posedness follows by a standard application of the Lax-Milgram
lemma. To be precise, differential operator div div (M∇∇·):H2

0(Ω)−→H−2(Ω)
is an isomorphism, i. e. a linear and continuous operator with bounded inverse
(the bound depending only on Ω and α).

In the two-dimensional case, boundary value problem (1.1) describes the
Kirchhoff (also known as Kirchhoff-Love) model for pure bending of a thin,
solid symmetric plate clamped at the boundary, under a transverse load f .
This model can be derived by taking a limit in 3d elasticity equations with a
technique similar to H-convergence [8], or by means of Gamma convergence [7].
The plate is assumed to be symmetric with respect to its midplane Ω and a
tensor valued function M describes its elastic properties (depending on the
material properties and the thickness of the plate). In this model, additional
symmetry is present, making tensor function M self-adjoint. Such assumption
simplifies the theory, since it is equivalent to consider G-convergence [9, 10]
instead of H-convergence. However, in this paper we shall present the general
theory (in arbitrary space dimension), ignoring this symmetry assumption.

We are interested in the general (non-periodic) homogenization theory for
this equation. Such theory is well developed for second-order elliptic problems,
such as the stationary diffusion equation or the system of linearized elasticity,
for which the notion of H- (or G-) convergence has been studied and properties,
such as compactness, locality, independence of boundary conditions and con-
vergence of energies, have been established (see [1, 14] and references therein).
In [5,15], a homogenization of general elliptic system of partial differential equa-
tions has been considered, and some of the above properties have been shown
in such full generality. However, due to this generality, some of the important
properties are missing, while proofs end up being rather complicated.

In this paper we push forward the work of Antonić and Balenović [2, 3],
where, prompted by possible applications in optimal design problems, a more
direct approach to the homogenization of stationary plate equation was con-
sidered, and compactness of H-convergence was established. Using Tartar’s
method of oscillating test functions [13, 14], we give simpler proofs for the
above mentioned properties of H-convergence for stationary plate equation,
and additionally prove a number of results, such as the metrizability and the
corrector result.

The paper is organized as follows: we finish introductory section by re-
calling the definition of H-convergence, the compactness by compensation re-
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sult suited for the stationary plate equation, and the compactness result for
H-convergence [2, 3]. In the second section we prove main properties of H-
convergence, including locality, independence of boundary conditions, metriz-
ability of H-topology and convergence of energies, and in the third section we
give the corrector result.

Definition 1. A sequence of tensor functions (Mn) in M2(α, β;Ω) H-conver-
ges to M ∈M2(α′, β′;Ω) if for any f ∈ H−2(Ω) the sequence of solutions (un)
of problems {

div div (Mn∇∇un) = f,
un ∈ H2

0(Ω)

converges weakly to a limit u in H2
0(Ω), while the sequence (Mn∇∇un) con-

verges to M∇∇u weakly in the space L2(Ω; Sym).

This implies that u solves the boundary value problem{
div div (M∇∇u) = f,
u ∈ H2

0(Ω) .

Note that sequences (un) and (Mn∇∇un) in the above definition are boun-
ded in H2

0(Ω) and L2(Ω; Sym), respectively, and thus converge (on a subse-
quence). Therefore, H-convergence just makes connection between their limits.
Since the existence of H-limit M is doubtful, the following compactness the-
orem justifies the previous definition. Moreover, it shows that the bounds in
definition of M2(α, β;Ω), which could also be written in many equivalent ways,
are chosen in such a way that in the previous definition one actually has α′ = α
and β′ = β.

Theorem 1. Let (Mn) be a sequence in M2(α, β;Ω). Then there is a sub-
sequence (Mnk) and a tensor function M ∈ M2(α, β;Ω) such that (Mnk) H-
converges to M.

The above theorem can be proved by using the following Lemma [2, 3]. It
also has the key role in proving other properties of homogenization for elastic
plate equation.

Lemma 1 [Compactness by compensation result]. Let the following con-
vergences be valid:

wn −⇀ w∞ in H2
loc(Ω), Dn −⇀ D∞ in L2

loc(Ω; Sym),

with an additional assumption that the sequence (div divDn) is contained in a
precompact (for the strong topology) set of the space H−2loc(Ω). Then we have

En : Dn ∗−−⇀ E∞ : D∞

in the space of Radon measures, where we denote En := ∇∇wn, for n ∈ N ∪
{∞}.



Homogenization of Elastic Plate Equation 193

2 Properties of H-convergence

In this section we prove the main properties of the H-convergence, which corre-
spond to the similar properties obtained for the stationary diffusion equation.
The proofs are commonly based on Tartar’s method of oscillating test functions.
The relationship between H-convergence and some other types of convergence
is studied in the next theorem.

Theorem 2. Let (Mn) be a sequence of tensors in M2(α, β;Ω) that either
converges strongly to a limit tensor M∗ in L1(Ω;L(Sym,Sym)), or converges
to M∗ almost everywhere in Ω. Then, Mn also H-converges to M∗.

Proof. The sequence (Mn) belongs to M2(α, β;Ω) and therefore it is bounded
in L∞(Ω;L(Sym,Sym)). By the Lebesgue dominated convergence theorem
(Mn) converges strongly to M∗ in Lp(Ω;L(Sym,Sym)), for any 1 ≤ p <∞. If
un is the solution of {

div div (Mn∇∇un) = f,
un ∈ H2

0(Ω) ,

then the sequence (un) is bounded in H2
0(Ω), and therefore (up to a subse-

quence) it converges weakly to u ∈ H2
0(Ω).

Since (Mn) converges strongly to M∗ in L2(Ω;L(Sym,Sym)) and (∇∇un)
converges to ∇∇u weakly in L2(Ω; Sym), we conclude that σn := Mn∇∇un
converges weakly to σ = M∗∇∇u in L1(Ω; Sym), and thus also in L2(Ω; Sym),
as sequence (σn) is bounded in this space.

The homogenized equation has a unique solution in H2
0(Ω), so every subse-

quence of (un) converges to the same limit u and this implies that the entire
sequence (un) converges to u. Since f ∈ H−2(Ω) is arbitrary, it follows that
(Mn) H-converges to M∗. ut

Theorem 3 [Irrelevance of boundary conditions]. Let (Mn) be a sequence
of tensors in M2(α, β;Ω) that H-converges to M∗. For any sequence (zn) such
that

zn −⇀ z in H2
loc(Ω),

div div (Mn∇∇zn) = fn −→ f in H−2loc(Ω),

the weak convergence Mn∇∇zn ⇀M∗∇∇z in L2
loc(Ω; Sym) holds.

Proof. Let ω be an open set compactly embedded in Ω. The sequence (zn) is
bounded in H2(ω), implying that (Mn∇∇zn) is bounded in L2(ω; Sym). If we
denote σn := Mn∇∇zn, we can pass to a weakly convergent subsequence such
that σn ⇀ σ in L2(ω; Sym). Since ω b Ω, there exists ϕ ∈ C∞c (Ω) such that
ϕ|ω = 1. For arbitrary N ∈ Sym, we define

w(x) :=
1

2
ϕ(x)Nx · x, g := div div (M∇∇w) ∈ H−2(Ω).

Let (wn) be a sequence of solutions to{
div div (Mn∇∇wn) = g,
wn ∈ H2

0(Ω) .

Math. Model. Anal., 23(2):190–204, 2018.



194 K. Burazin, J. Jankov and M. Vrdoljak

Since (Mn) H-converges to M∗, the following holds:

wn −⇀ w in H2
0(Ω), Mn∇∇wn −⇀M∗∇∇w in L2(Ω; Sym) .

By coercivity of Mn we have

(Mn∇∇zn −Mn∇∇wn) : (∇∇zn −∇∇wn) ≥ 0 a. e. in Ω ,

which, after passing to the limit and using the compactness by compensation
result, becomes

(σ −M∗∇∇w) : (∇∇z −∇∇w) ≥ 0 a. e. in Ω.

If we consider the previous inequality only in ω, we have:

(σ −M∗N) : (∇∇z −N) ≥ 0 a. e. in ω. (2.1)

For any joint Lebesgue point x0 ∈ ω of∇∇z, σ and M∗, let N = ∇∇z(x0)+tO,
where O ∈ Sym and t ∈ R+ are arbitrary. Now (2.1) yields

(σ(x0)−M∗(x0)∇∇z(x0)− tM∗(x0)O) : (−tO) ≥ 0 ,

and after dividing this inequality by −t and taking the limit t→ 0+, it follows

(σ(x0)−M∗(x0)∇∇z(x0)) : O ≤ 0.

By arbitrariness of O ∈ Sym, the equality σ(x0) = M∗(x0)∇∇z(x0) now easily
follows, which concludes the proof. ut

The above theorem implies that the notion of H-convergence is not tied to
the prescribed boundary conditions: instead of homogeneous Dirichlet bound-
ary conditions in Definition 1 we can take any boundary conditions which enable
well posedness of the boundary value problem. H-convergence also implies the
convergence of energies, as stated in the sequel.

Theorem 4 [Energy convergence]. Let (Mn) be a sequence of tensors in
M2(α, β;Ω) that H-converges to M∗. For any f ∈ H−2(Ω), the sequence (un)
of solutions to {

div div (Mn∇∇un) = f,
un ∈ H2

0(Ω)

satisfies

Mn∇∇un : ∇∇un
∗−−⇀M∗∇∇u : ∇∇u in M(Ω),∫

Ω

Mn∇∇un : ∇∇un dx −→
∫
Ω

M∗∇∇u : ∇∇u dx ,

where u is the solution of the homogenized equation{
div div (M∗∇∇u) = f,
u ∈ H2

0(Ω) .
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Proof. If we apply the compactness by compensation result, it can easily be
seen that Mn∇∇un : ∇∇un

∗−−⇀M∗∇∇u : ∇∇u in the space of Radon mea-
sures, which proves the first statement.

From the weak formulation of given homogeneous Dirichlet boundary value
problems we get∫

Ω

Mn∇∇un : ∇∇un dx = H−2(Ω)〈 f, un 〉H2
0(Ω) ,∫

Ω

M∗∇∇u : ∇∇u dx = H−2(Ω)〈 f, u 〉H2
0(Ω)

and since (un) converges weakly to u in H2
0(Ω), we have

H−2(Ω)〈 f, un 〉H2
0(Ω) −→ H−2(Ω)〈 f, u 〉H2

0(Ω) ,

which concludes the proof. ut

Theorem 5 [Locality of H-convergence]. Let (Mn) and (On) be two se-
quences of tensors in M2(α, β;Ω) which H-converge to M∗ and O∗ respectively.
Let ω be an open subset compactly embedded in Ω. If Mn(x) = On(x) in ω,
then M∗(x) = O∗(x) in ω.

Proof. The proof goes along the same lines as the proof of Theorem 3: since
ω is compactly embedded in Ω, there exists ϕ ∈ C∞c (Ω) such that ϕ|ω = 1.
For arbitrary N ∈ Sym, let us define

w(x) :=
1

2
ϕ(x)Nx · x, g := div div (M∗∇∇w) ∈ H−2(Ω) ,

and let wn be a sequence of solutions to{
div div (Mn∇∇wn) = g,
wn ∈ H2

0(Ω) .

Since (Mn) H-converges to M∗, it follows that

wn −⇀ w in H2
0(Ω), Mn∇∇wn −⇀M∗∇∇w in L2(Ω; Sym).

For sequence (On) we can proceed similarly: for any S ∈ Sym we introduce

v(x) :=
1

2
ϕ(x)Sx · x, f := div div (O∗∇∇v) ∈ H−2(Ω) ,

and let (vn) be a sequence of solutions to{
div div (On∇∇vn) = f,
vn ∈ H2

0(Ω) ,

thus obtaining

vn −⇀ v in H2
0(Ω), On∇∇vn −⇀ O∗∇∇v in L2(Ω; Sym) .

Math. Model. Anal., 23(2):190–204, 2018.
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By applying the compactness by compensation result, we get

(Mn∇∇wn −On∇∇vn) : (∇∇wn −∇∇vn)
∗−−⇀ (M∗∇∇w −O∗∇∇v) : (∇∇w −∇∇v) (2.2)

in the space of Radon measures. On ω we have ∇∇v = S and ∇∇w = N, so
by assumption On = Mn in ω, the sequence in (2.2) equals

On(∇∇wn −∇∇vn) : (∇∇wn −∇∇vn) ,

which is nonnegative because of the coercivity of On. Therefore, the limit in
(2.2) is also nonnegative, i. e. (M∗N − O∗S) : (N − S) ≥ 0 a. e. in ω. If we
choose S = N + tZ, t ∈ R+, Z ∈ Sym, we obtain

(M∗N−O∗N− tO∗Z) : (−tZ) ≥ 0 in ω

and after dividing this inequality by −t and letting t→ 0+, we achieve (M∗ −
O∗)N : Z ≤ 0. Since Z and N are arbitrary, this implies M∗ = O∗ a. e. in ω.
ut

We can rephrase the previous theorem by stating that values of the homog-
enized tensor M∗ in a region ω do not depend on values of the sequence (Mn)
outside of this region.

Theorem 6 [Ordering property]. Let (Mn) and (On) be two sequences of
tensors in M2(α, β;Ω) that H-converge to the homogenized tensors M∗ and O∗,
respectively. Assume that Mn and On are ordered, for each n ∈ N:

Mnξ : ξ ≤ Onξ : ξ, ξ ∈ Sym .

Then the homogenized coefficients are also ordered:

M∗ξ : ξ ≤ O∗ξ : ξ, ξ ∈ Sym .

Proof. Let us define a sequence (vn) of oscillating test functions satisfying

vn −⇀
1

2
Nx · x in H2(Ω), div div (On∇∇vn) −→ gO in H−2loc(Ω),

where N ∈ Sym is arbitrary. Existence of such a sequence can be estab-
lished similarly as in the case of stationary diffusion equation [1,14]. Note that
∇∇vn −⇀ N, and additionally we have On∇∇vn −⇀ O∗N in L2

loc(Ω; Sym),
by Theorem 3.

Similarly, let us take a sequence (wn) of oscillating test functions satisfying

wn −⇀
1

2
Nx · x in H2(Ω), div div (Mn∇∇wn) −→ gM in H−2loc(Ω),

Mn∇∇wn −⇀ M∗N in L2
loc(Ω; Sym).

Since Mn is coercive, we have

Mn∇∇wn : ∇∇wn −Mn∇∇wn : ∇∇vn −Mn∇∇vn : ∇∇wn
+ Mn∇∇vn : ∇∇vn = Mn(∇∇wn −∇∇vn) : (∇∇wn −∇∇vn) ≥ 0
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in Ω. Since Mn ≤ On, it follows that

Mn∇∇wn : ∇∇wn −Mn∇∇wn : ∇∇vn
−Mn∇∇vn : ∇∇wn + On∇∇vn : ∇∇vn ≥ 0 in Ω.

By applying the compactness by compensation result, we can pass to the limit
in each term of the above expression and get

M∗N : N−M∗N : N−M∗N : N + O∗N : N = (O∗ −M∗)N : N ≥ 0 .

Since N is arbitrary, it follows that O∗ ≥M∗. ut

In the following theorem we introduce bounds on homogenized tensor, in the
sense of standard order on symmetric tensors. The bounds are given in terms of
weak-∗ limits, representing harmonic and arithmetic mean of the corresponding
sequence.

Theorem 7. Let (Mn) be a sequence of symmetric tensors in M2(α, β;Ω) that
H-converges to M∗. Assume that

Mn ∗−−⇀M in L∞(Ω;L(Sym; Sym)),

(Mn)−1
∗−−⇀M−1 in L∞(Ω;L(Sym; Sym)).

Then the homogenized tensor satisfies

Mξ : ξ ≤M∗ξ : ξ ≤Mξ : ξ, ξ ∈ Sym.

Proof. As before, let us take a sequence (wn) of oscillating test functions
satisfying

wn −⇀
1

2
Nx · x in H2(Ω), div div (Mn∇∇wn) −→ gM in H−2loc(Ω),

Mn∇∇wn −⇀ M∗N in L2
loc(Ω; Sym) ,

where N ∈ Sym is an arbitrary matrix. Since Mn is coercive it follows

Mn(∇∇wn −N) : (∇∇wn −N) ≥ 0,

which, by symmetry of Mn, is equivalent to

Mn∇∇wn : ∇∇wn − 2Mn∇∇wn : N + MnN : N ≥ 0.

By the compactness by compensation result, passing to the limit gives

M∗N : N− 2M∗N : N + MN : N ≥ 0 ,

thus proving inequality M ≥M∗, by arbitrariness of N.
Similarly, for σ ∈ Sym, the coercivity of (Mn)−1 implies

(Mn)−1(Mn∇∇wn − σ) : (Mn∇∇wn − σ) ≥ 0,

Math. Model. Anal., 23(2):190–204, 2018.
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which is equivalent to

Mn∇∇wn : ∇∇wn − 2∇∇wn : σ + (Mn)−1σ : σ ≥ 0.

Passing to the limit as before gives

M∗N : N− 2N : σ + M−1σ : σ ≥ 0 ,

which for σ = MN becomes

M∗N : N− 2MN : N + MN : N ≥ 0,

i.e.
(M∗ −M)N : N ≥ 0 .

This proves the second inequality, and concludes the proof. ut

A useful result is that H-convergence defines a metrizable topology on the
set M2(α, β;Ω).

Theorem 8. Let F = {fn : n ∈ N} be a dense countable family in H−2(Ω), M
and O tensors in M2(α, β;Ω), and (un), (vn) sequences of solutions to{

div div (M∇∇un) = fn,
un ∈ H2

0(Ω)
and

{
div div (O∇∇vn) = fn,
vn ∈ H2

0(Ω),

respectively. Then,

d(M,O) :=

∞∑
n=1

2−n
‖un − vn‖L2(Ω) + ‖M∇∇un −O∇∇vn‖H−1(Ω;Sym)

‖fn‖H−2(Ω)

is a metric function on M2(α, β;Ω) and H-convergence is equivalent to the
convergence with respect to d.

Proof. Since M2(α, β;Ω) is bounded and L2(Ω;L(Sym,Sym)) is continuously
imbedded in H−1(Ω;L(Sym,Sym)), there exists a constant c > 0 such that

(∀M ∈M2(α, β;Ω)) ‖un‖L2(Ω) + ‖M∇∇un‖H−1(Ω;Sym) ≤ c‖fn‖H−2(Ω) .

Clearly, the same is true if we replace M and (un) with tensor O and the
corresponding sequence (vn), which implies that the series in definition of d
converges. In order to verify that d is a metric, we shall only prove that
d(M,O) = 0 implies M = O, as other properties are straightforward. The
equality d(M,O) = 0 implies that for any f ∈ H−2(Ω), the solutions u and v
of {

div div (M∇∇u) = f,
u ∈ H2

0(Ω)
and

{
div div (O∇∇v) = f,
v ∈ H2

0(Ω)

satisfy u = v and M∇∇u = O∇∇v in Ω. Indeed, by definition of d, this
immediately follows for f ∈ F , and then for any f ∈ H−2(Ω) by density of
set F in H−2(Ω) and continuity of linear mappings f 7→ u and f 7→ v from
H−2(Ω) to H2

0(Ω). For a set ω compactly embedded in Ω let us take ϕ ∈ C∞c (Ω)
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such that ϕ|ω = 1. If we take f = div div (M∇∇( 1
2Sx · xϕ(x))), for S ∈ Sym

arbitrary, this yields ∇∇u = ∇∇v = S in ω, implying MS = OS in ω, and
finally M = O, by arbitrariness of S and ω.

It remains to prove that H-convergence is equivalent to the convergence in
this metric space. Assume that sequence (Mm) in M2(α, β;Ω) H-converges to
M in M2(α, β;Ω), and let (umn ), (un) be the sequences of solutions of{

div div (Mm∇∇umn ) = fn,
umn ∈ H2

0(Ω)
and

{
div div (M∇∇un) = fn,
un ∈ H2

0(Ω),

respectively. Since (Mm) H-converges to M it follows

umn −⇀ un in H2
0(Ω), Mm∇∇umn −⇀M∇∇un in L2(Ω; Sym)

and by Rellich compactness theorem we have strong convergences umn → un in
L2(Ω) and Mm∇∇umn→M∇∇un in H−1(Ω; Sym), which implies d(Mm,M)→0.

In order to prove the converse statement, let a sequence (Mm) and M belong
to M2(α, β;Ω) and d(Mm,M) → 0. We take an arbitrary f ∈ H−2(Ω) and a
sequence (fn′) ⊆ F strongly converging to f in H−2(Ω). Let u, um, un′ and
umn′ be solutions of{

div div (M∇∇u) = f,
u ∈ H2

0(Ω),

{
div div (Mm∇∇um) = f,
um ∈ H2

0(Ω),{
div div (M∇∇un′) = fn′ ,
un′ ∈ H2

0(Ω),

{
div div (Mm∇∇umn′) = fn′ ,
umn′ ∈ H2

0(Ω),

respectively. For any n′ ∈ N the sequences (umn′)m and (Mm∇∇umn′)m are
bounded in H2

0(Ω) and L2(Ω; Sym), respectively, and therefore converge weakly
on a subsequence. However, from d(Mm,M) → 0 it follows that, for every
n′ ∈ N, umn′ → un′ in L2(Ω) and Mm∇∇umn′ → M∇∇un′ in H−1(Ω; Sym),
which implies the convergence of whole sequences:

umn′ −⇀ un′ in H2
0(Ω), Mm∇∇umn′ −⇀M∇∇un′ in L2(Ω; Sym), (2.3)

as m→∞.
If we subtract the equations for u and un′ , we get{

div div (M∇∇(u− un′)) = f − fn′ ,
u− un′ ∈ H2

0(Ω)

and similarly for um and umn′ :{
div div (Mm∇∇(um − umn′)) = f − fn′ ,
um − umn′ ∈ H2

0(Ω) .

Since (fn′) strongly converges to f , the well-posedness result for these problems
ensure that un′ → u in H2

0(Ω) and thus M∇∇un′ →M∇∇u in L2(Ω; Sym), as
well as umn′ → um in H2

0(Ω) and thus Mm∇∇umn′ →Mm∇∇um in L2(Ω; Sym),
uniformly in m as n′ → ∞. Here, for the last convergence we have also used
boundedness of the sequence (Mm) in L∞(Ω;L(Sym,Sym)).
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Together with (2.3) this implies

um −⇀ u in H2
0(Ω),

Mm∇∇um −⇀M∇∇u in L2(Ω; Sym) , (2.4)

i. e. Mm H-converges to M, by arbitrariness of f . Indeed, for an arbitrary
f ∈ H−2(Ω) and ε > 0, the above (uniform) convergences imply that the first
and the third term on the right-hand side of the inequality

|H−2(Ω)〈 f, um − u 〉H2
0(Ω)| ≤ |H−2(Ω)〈 f, um − umn′ 〉H2

0(Ω)|
+ |H−2(Ω)〈 f, umn′ − un′ 〉H2

0(Ω)|+ |H−2(Ω)〈 f, un′ − u 〉H2
0(Ω)|

can be made ε small for n′ large enough, i. e.

|H−2(Ω)〈 f, um − u 〉H2
0(Ω)| ≤ 2ε+ |H−2(Ω)〈 f, umn′ − un′ 〉H2

0(Ω)|

is valid for every m and n′ large enough. Taking the limit as m → ∞, from
(2.3) and arbitrariness of ε and f , we get the first convergence in (2.4), while
the second one can be derived similarly. ut

3 Corrector results

This section is devoted to corrector results. Their goal is to improve conver-
gence of ∇∇un by adding correctors, and ending up with strong convergence,
instead of the weak one given by the definition of H-convergence.

Definition 2. Let (Mn) be a sequence of tensors in M2(α, β;Ω) that H-con-
verges to a limit M∗. For 1 ≤ i, j ≤ 2 let (wijn )n be a sequence of oscillating
test functions satisfying

wijn −⇀
1

2
xixj in H2(Ω), div div (Mn∇∇wijn ) −→ gij in H−2loc(Ω), (3.1)

where gij are some elements of H−2loc(Ω). The tensor Wn with components
Wn
ijkm := [∇∇wkmn ]ij is called the corrector.

It is important to note that functions (wijn )1≤i,j≤N are not uniquely de-
fined. However, for any other family of such functions, it is easy to see that
their difference converges strongly to zero in H2(Ω), and similar holds for the
corrector tensors.

Lemma 2. Let (Mn) be a sequence of tensors in M2(α, β;Ω) that H-converges
to a tensor M∗. A sequence of correctors (Wn) is unique in the sense that, for
any two sequences of correctors (Wn) and (W̃n), their difference (Wn − W̃n)
converges strongly to zero in L2

loc(Ω;L(Sym,Sym)).

Proof. For 1 ≤ i, j ≤ 2, let (wijn )n and (w̃ijn )n be two sequence satisfying (3.1)
and let ϕ ∈ C∞c (Ω). Using coercivity of Mn, and integrating by parts two
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times we obtain:

α‖ϕ(∇∇wijn −∇∇w̃ijn )‖2L2(Ω;Sym) ≤
∫
Ω

ϕ2Mn∇∇(wijn −w̃ijn ) : ∇∇(wijn −w̃ijn ) dx

= H−2
loc(Ω)〈 div div (Mn∇∇(wijn − w̃ijn ), ϕ2(wijn − w̃ijn ) 〉H2

c (Ω)

+ H−1
loc(Ω)〈 div (Mn∇∇(wijn − w̃ijn )),∇(ϕ2)(wijn − w̃ijn ) 〉H1

c (Ω)

− L2
loc(Ω)〈Mn∇∇(wijn − w̃ijn ),∇(wijn − w̃ijn )∇(ϕ2)) 〉L2

c(Ω).

Each term on the right hand side tends to zero when n → ∞, the first
one because of the assumption (3.1), while the second one and the third one
converge to zero by the Rellich compactness theorem. Thus, we deduce that
∇∇(wijn − w̃ijn ) converges strongly to zero in L2

loc(Ω; Sym), which proves the
statement. ut

Lemma 3. Let (Mn) be a sequence of tensors in M2(α, β;Ω) that H-converges
to a limit M∗, and Wn the corresponding sequence of correctors. Then

Wn −⇀ I4 in L2(Ω;L(Sym,Sym)) ,

MnWn −⇀M∗ in L2(Ω;L(Sym,Sym)) ,

(Wn)TMnWn −⇀M∗ in D′(Ω;L(Sym,Sym)) .

Proof. The first convergence is a consequence of the definition of correctors.
The second one follows from the definition of H-convergence, and the third one
from the compactness by compensation result applied to the components of
(Wn)T and MnWn. ut

In the next theorem we clarify in what sense correctors transform a weak
convergence into the strong one.

Theorem 9. Let (Mn) be a sequence of tensors in M2(α, β;Ω) which H-con-
verges to M∗. For f ∈ H−2(Ω), let (un) be the sequence of solutions to{

div div (Mn∇∇un) = f,
un ∈ H2

0(Ω) .

Let u be the weak limit of (un) in H2
0(Ω), i.e., the solution of the homogenized

equation {
div div (M∗∇∇u) = f,
u ∈ H2

0(Ω) .

Then, if we denote rn := ∇∇un−Wn∇∇u, where Wn is the corrector, it holds
that (rn) converges strongly to zero in L1

loc(Ω; Sym).
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Proof. Let ϕ ∈ C∞c (Ω), and let (vm) be a sequence in C∞c (Ω) such that
vm → u in H2

0(Ω). Since Mn is coercive we have

α‖ϕ(∇∇un −Wn∇∇vm)‖2L2(Ω;Sym)

≤
∫
Ω

ϕ2Mn(∇∇un −Wn∇∇vm) : (∇∇un −Wn∇∇vm) dx

=

∫
Ω

ϕ2Mn∇∇un : ∇∇un dx−
∫
Ω

ϕ2Mn∇∇un : Wn∇∇vm dx−

−
∫
Ω

ϕ2MnWn∇∇vm : ∇∇un dx+

∫
Ω

ϕ2(Wn)TMnWn∇∇vm : ∇∇vm dx.

As n → +∞, the first term on the right hand side converges by Theorem 4,
while the second and the third term converge by the compensated compactness
result. The last term converges by Lemma 3, leading to

lim sup
n→∞

‖ϕ(∇∇un −Wn∇∇vm)‖2L2(Ω;Sym)

≤ 1

α

∫
Ω

ϕ2M∗∇∇(u− vm) : ∇∇(u− vm) dx .

If u is smooth (in that case we can choose vm = u), the proof is finished. If u
is not smooth, than after taking limit as n→ +∞ in the estimate (c is generic
constant below)

‖ϕ(∇∇un −Wn∇∇u)‖L1(Ω;Sym)

≤ ‖ϕ(∇∇un −Wn∇∇vm)‖L1(Ω;Sym) + ‖ϕWn(∇∇vm −∇∇u)‖L1(Ω;Sym)

≤ c‖ϕ(∇∇un −Wn∇∇vm)‖L2(Ω;Sym)

+ ‖ϕWn‖L2(Ω;L(Sym,Sym))‖∇∇vm −∇∇u‖L2(Ω;Sym) ,

we get

lim sup
n→∞

‖ϕ(∇∇un −Wn∇∇u)‖L1(Ω;Sym)

≤ c
(
‖ϕ(∇∇u−∇∇vm)‖L2(Ω;Sym) + ‖∇∇vm −∇∇u‖L2(Ω;Sym)

)
,

and finally

lim sup
n→∞

‖ϕ(∇∇un −Wn∇∇u)‖L1(Ω;Sym)

≤ c lim sup
m→∞

‖ϕ(∇∇u−∇∇vm)‖L2(Ω;Sym)+c‖∇∇u−∇∇vm‖L2(Ω;Sym) = 0,

which finishes the proof, by arbitrariness of ϕ. ut

4 Conclusions

We have proved a number of properties for H-convergence in the context of
the stationary plate equation and have given simpler proofs for some of them,
which could otherwise be derived from homogenization results for general ellip-
tic systems [15]. Clearly, one could push forward presented work by considering
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some other important questions such as small-amplitude homogenization and
G-closure problem for stationary plate equation, problem of boundary homog-
enization in more general terms [6], or considering homogenization theory for
vibrating plates (see [4]). We leave this open for some future work. Let us
remark that this shall also pave the way for possible applications of the ho-
mogenization theory in optimal design problems for stationary and vibrating
plates [12].
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