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Abstract. In this paper, the exponential stability of delayed coupled systems on
networks (DCSNs) is investigated via periodically intermittent control. By utilizing
graph-theoretic approach and Lyapunov function method, a novel method for stability
analysis of DCSNs is developed. Moreover, some useful and easily verifiable sufficient
conditions are presented in the form of Lyapunov-type theorem and coefficients-type
criterion. These laws reveal that the stability has a close relationship with the topol-
ogy structure of the networks. In addition, as a subsequent result, the obtained theory
is successfully applied to study the exponential stability of delayed coupled oscillators
on networks under periodically intermittent control. Finally, a numerical example is
given to validate the effectiveness of theoretical results.
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1 Introduction

During the past decades, networks have gained great attentions owing to their
widespread applications in communication networks, electricity supply net-
works, engineering and many other areas [11, 13, 23, 29]. It has been observed
that many complex networks with intricate interactions among their compo-
nents are described by coupled systems on networks (CSNs), such as neural
networks, coupled biological systems, ecological systems and so on. As is well
known, stability is one main property of CSNs, and plays a vital role in their
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extensive applications in theory and practice. For instance, if a network is
employed to solve some optimization problems, it is highly desirable for the
network to have a unique globally stable equilibrium. On the other hand,
time delay unavoidably exists in many practical systems and is thus naturally
considered in CSNs. As shown in [1], the existence of time delay could make
delayed CSNs be oscillation or instability. Therefore, the stability analysis of
CSNs with time delay have recently been studied by many researchers for bet-
ter understanding about the collective behavior of a wide variety of physical,
chemical, and biological problems [3, 9, 24, 33]. A large amount of sufficient
conditions have been obtained to determine the stability of delayed systems.

Recently, many control technique have been proposed to deal with the
various issues of networks, such as event-triggered control [12], feedback con-
trol [31], charging control [14], intermittent control and so on. Among them,
intermittent control has gained considerable research attention due to its wide
applications in many fields, such as manufacturing, transportation and commu-
nication [5, 26,36]. A significant benefit of intermittent control is that it has a
nonzero control width, and can be easily implemented in practice. For example,
in communications, when the strength of the system signal is below the required
level, the external control signal can be added to achieve the desired result or
requirement. Motivated by this practical consideration, intermittent control
has been successfully applied to stabilize and synchronize nonlinear dynami-
cal systems [8], neural networks [28], chaotic systems [10], and even complex
networks [34]. The stability and synchronization analysis problems for general
CSNs under intermittent control has received increasing research interest and
many relevant results have been reported in the literature (see e.g. [27, 32, 34]
and the references therein). Therefore, it is significant and practical to study
the stability of delayed coupled systems on networks (DCSNs) by using the
intermittent control technique.

Up to now, searching the common Lyapunov functions or variations of the
same framework is the main tool for studying dynamic characteristics of a sys-
tem. However, in terms of the intricate relations between the topological struc-
ture and divergent dynamical properties, it is quite tough to construct a proper
Lyapunov function for large-scale system. Fortunately, with the help of Kirch-
hoff’s Matrix Tree Theorem in graph theory, Li et al. [6, 15] presented a sys-
tematic method to construct a global Lyapunov function. They obtained some
criteria to guarantee the global stability and applied the theoretical results to
coupled oscillators, epidemic models and predator-prey models. Following this
pioneering work, numerous results have been reported. For instance, in [16], the
authors studied the global stability of coupled nonlinear systems with Marko-
vian switching by graph theory; in [35], Zhang et al. considered the existence
and global exponential stability of periodic solution for a neutral coupled sys-
tems based on graph-theoretic method; in [17], Li et al. used Razumikhin
technique and graph theory to investigate the exponential stability of delayed
multi-group model with reaction-diffusion and multiple dispersal. Additionally,
this technique has also been successfully applied in stochastic CSs [20], time
delay CSs [4], discrete CSs [2], impulse CSs [22] and multi-diffusion CSs [21]
and so on. Inspired by the pioneering work, DCSNs can be represented by a
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directed graph. However, as far as we know, there are few scholars considering
the stability of DCSNs by adopting graph-theoretic approach and periodically
intermittent control technique.

In this paper, we make first attempt to investigate exponential stability of
DCSNs under periodically intermittent control. Based on graph theory and
Lyapunov function method, two types of sufficient criteria are proposed, of
which one is given in the form of Lyapunov functions and network topology,
while the other is given by the means of coefficients in system, which is more
convenient to be tested in practice since it mainly depends on the coefficients
of considered system. Furthermore, as the applications of theoretical results, a
delayed coupled oscillators on network under periodically intermittent control
is also considered. At the same time, some stability criteria for it are pre-
sented. Finally, a numerical example is given to illustrate the effectiveness of
the proposed method in this paper.

Differing from the previous works on the stability of DCSNs, the key con-
tributions of this paper lie in the following. First, a periodically intermittent
control scheme is used to consider exponential stability of DCSNs. Second,
we analyze the exponential stability of DCSNs under periodically intermittent
control by means of combining graph theory with Lyapunov function method.
Some results in graph theory are effectively utilized to avoid the difficulty in
directly finding the global Lyapunov function of DCSNs. Third, the theoretical
results are applied to delayed coupled oscillators on network with periodically
intermittent control.

The rest of this paper is organized as follows. The model formulation is
given in Section 2. In Section 3, some sufficient criteria of exponential stability
for DCSNs under periodically intermittent control are arranged. In Section 4,
the stability results under periodically intermittent control for delayed coupled
oscillators on networks are presented. Section 5 provides a numerical example
to certify the effectiveness of the proposed theory. Finally, we use a conclusion
to close the paper.

2 Model formulation

In this section, we first introduce some useful notations. Basic concepts on
graph theory in this paper can be found in the Appendix. Then, we present the
model formulation considered in this paper and finally give a kind of stability
definition and an important lemma in graph theory.

The following notations will be used throughout this paper. Let R be the
set of all real numbers, Rn be the n−dimensional Euclidean space, R1

+ be
the set of all nonnegative real numbers and N+ = {0, 1, 2, . . .}. Also, let

` = {1, 2, . . . , l}, Z+ = {1, 2, . . .}, m =
∑l
i=1mi for mi ∈ Z+ and |·| be

the Euclidean norm in Rn. The superscript ′T′ stands for the transpose. In
addition, C1,1(Rn ×R1

+;R1
+) represents for the family of all nonnegative func-

tions V (x, t) on Rn ×R1
+ which are continuously differentiable in x and t, and

C([−τ, 0];Rn) is the space of continuous functions x : [−τ, 0]→ Rn with norm
‖x‖ = sup−τ≤t≤0|x(t)|.

Now, we give the model formulation considered in this paper. Based on
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graph theory, a network can be represented by a digraph G with l(l ≥ 2) ver-
tices. As alluded to in the Introduction, time delay is important in large-scale
networks. Note that the existence of delay may cause bad performance, e.g.
instability and oscillation. It leads to considerable technical complications, but
this generality would be natural in practice. In addition, compared with contin-
uous control methods, intermittent control is more effective. For these reasons,
we will study the stability problem of DCSNs under periodically intermittent
control, the k-th vertex system is constructed as follows:

ẋk(t) = bk(xk(t)) +

l∑
h=1

ckhfh(xh(t)) +

l∑
h=1

dkhgh(xh(t− τkh))

+ uk(t), t ≥ 0, k ∈ `, (2.1)

where xk(t) corresponds to the state of the k-th vertex at time t; bk(·) : Rmk →
Rmk is an appropriate behaved function; fh(·), gh(·): Rmh → Rmk denotes the
inner connecting functions in each vertex; 0 ≤ τkh is the discrete time delay
along h-th vertex system from k-th vertex system; the notations ckh, dkh are
the strength of the coupling and the time delay connection weight, respectively.
If there is a connection from vertex k to vertex h, then the coupling ckh 6= 0,
dkh 6= 0; otherwise, ckh = 0, dkh = 0; uk(t) is an intermittent control defined
by

uk(t) =


l∑

h=1

Ykhxh(t), nT ≤ t < (n+ θ)T,

0, (n+ θ)T ≤ t < (n+ 1)T,

(2.2)

where n ∈ N+, Ykh(k, h ∈ `) are the constant control, T is the control period,
0 < θ < 1 is called the rate of control duration. Here we assume that system
(2.1) is supplemented with initial value given by

x(t) = φ(t), t ∈ [−τ, 0],

φ(t) = (φT1 (t), φT2 (t), . . . , φTl (t))T ∈ C([−τ, 0],Rm) and τ = maxk,h∈`{τkh}.
Furthermore, let bk(0) = 0, fh(0) = 0 and gh(0) = 0, then, the system (2.1)
admits a trivial solution x(t) = (xT1 (t), xT2 (t), . . . , xTl (t))T = (0, 0, . . . , 0)T = 0.

A definition on the exponential stability of the trivial solution and a useful
lemma in graph theory are given as follows.

Definition 1. [8] Suppose that there exist constants M ≥ 1 and λ > 0
satisfying

|x(t)| ≤M‖φ‖e−λt, t ≥ 0,

then the trivial solution of system (2.1) is exponentially stable.

Lemma 1. [15] Suppose that l ≥ 2. Let ck denote the cofactor of the k-th
diagonal element of L. Then the following identity holds:

l∑
k,h=1

ckδkhFkh(xk, xh) =
∑
Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs(xr, xs),
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where for any k, h ∈ `, Fkh(xk, xh) is an arbitrary function, Q is the set of all
spanning unicyclic graphs of (G, A),W (Q) is the weight of Q, and CQ denotes
the directed cycle of Q. Particularly, if (G, A) is strongly connected, then ck > 0
for k ∈ `.

3 Stability Analysis for DCSNs

In this section, with the help of graph theory and Lyapunov function method
as well as periodically intermittent control, two kinds of exponential stability
criteria for DCSNs are established in the form of Lyapunov function and the
coefficients of DCSNs. Moreover, the proofs of our main results are given in
details. Let us first establish a Lyapunov-type theorem.

3.1 Lyapunov-type theorem

In order to further study, we need to prepare a definition about k-th vertex-
Lyapunov function following [30] and two basic assumptions first.

Definition 2. For k, h ∈ ` and p ≥ 2, let the following conditions hold:
A1. There exist positive constants αk and βk , such that

αk|xk(t)|p ≤ Vk(xk(t), t) ≤ βk|xk(t)|p. (3.1)

A2. There exist constants σk > 0, σ1
k > 0, δkh > 0, k, h ∈ ` and function

Mkh(Xk, Xh) ∈ C(Rpmk × Rpmh ;R), such that

dVk(xk(t), t)

dt
≤



−σk|xk(t)|p+
l∑

h=1

δkh|xk(t−τhk)|p+
∑l
h=1δkhMkh(Xk, Xh),

nT ≤ t < (n+ θ)T,

−σ1
k|xk(t)|p+

l∑
h=1

δkh|xk(t−τhk)|p+
∑l
h=1δkhMkh(Xk, Xh),

(n+ θ)T ≤ t < (n+ 1)T,

where σk = σ1
k− pYkk− (p− 1)

l∑
h=1,h6=k

|Ykh|, Xk = |xk(t)|p + |xk(t− τhk)|p and

Xh = |xh(t)|p + |xh(t− τkh)|p.
A3. Along each directed cycle C of weighted digraph (G, A), there is∑

(h,k)∈E(C)

Mkh(Xk, Xh) ≤ 0 (3.2)

for all Xk∈Rpmk , Xh∈Rpmh . Then function Vk(xk(t), t)∈C1,1
(
Rmk×R1

+;R1
+

)
is called the k-th vertex-Lyapunov function for system (2.1).

Assumption 1. For k ∈ `, system (2.1) admits vertex-Lyapunov function
Vk(xk(t), t), the following condition holds,

min
k∈`

{
σk/βk

}
> max

k∈`

{ l∑
h=1

δkh/αk
}
.
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It follows from Assumption 1 that there exists a sufficiently small ε > 0, such
that

−ε+ min
k∈`

{
σk/βk

}
−max

k∈`

{ l∑
h=1

δkh/αk
}
eετ > 0. (3.3)

Assumption 2. ε− ζ(1− θ) > 0, where ζ = maxk∈`{|ςk/βk|} and ςk = pYkk +

(p− 1)
∑l
h=1,h 6=k|Ykh|.

Remark 1. Conditions A1 and A2 show that the decay of p-th moment of the
solution is exponential, which are applicable to the exponential stability of
coupled systems in some applications. It can be seen from condition A2 that
δkh ≥ 0, so δkh can not be sufficiently large to ensure V̇k(xk(t), t) ≤ 0. Hence,
Assumption 1 provides a restriction for weighted matrix (δkh)l×l to guarantee
the stability of DCSNs.

Remark 2. Assumption 2 provides a way to compute the rate of control duration
θ, namely θ > 1 − ε/ζ, if the parameter ε, βk and control constant Ykh are
properly chosen.

We now begin to establish the main result in this subsection to guarantee
exponential stability of system (2.1).

Theorem 1. Let digraph (G, A) be strongly connected, in which A = (δkh)l×l.
Suppose that the system (2.1) admits the vertex-Lyapunov function Vk(xk, t) for
any k ∈ `, and Assumptions 1 and 2 hold, then the trivial solution of system
(2.1) is exponentially stable under periodically intermittent control (2.2).

Proof. First, we set

V (x, t) =

l∑
k=1

ckVk(xk(t), t), (3.4)

where ck is the cofactor of the k-th diagonal element of the Laplacian matrix of
(G, A). Noting that (G, A) is strongly connected, we have ck > 0 for any k ∈ `
by Lemma 1. Denote β =

∑l
k=1 ckβk and

α =

(
l∑

k=1

ckαk

)1−p/2(
min
k∈`
{ckαk}

)p/2
.

Thus, from (3.1) and (3.4) we have

V (x, t) ≤
l∑

k=1

ckβk|xk(t)|p ≤

(
l∑

k=1

ckβk

)
|x(t)|p,

and

V (x, t) ≥
l∑

k=1

ckαk|xk(t)|p =

l∑
i=1

ciαi
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×
l∑

k=1

[
ckαk∑l
j=1 cjαj

(
|xk(t)|2

) p
2

]
≥

l∑
i=1

ciαi

[
l∑

k=1

ckαk∑l
j=1 cjαj

|xk(t)|2
] p

2

≥

(
l∑

k=1

ckαk

)1− p
2 (

min
k∈`
{ckαk}

) p
2

|x(t)|p = α|x(t)|p.

Hence,
α|x|p ≤ V (x, t) ≤ β|x|p. (3.5)

For simplicity, now we divide the proof into the following three steps.
Step 1. Prove P (t) = eεtV (x, t) − hβ‖φ‖p < 0, for all t ∈ [−τ, θT ), where

h > 1 is a constant.
It is easy to verify that, for all t ∈ [−τ, 0], P (t) < 0. Next, we prove that

for t ∈ [0, θT ):
P (t) < 0. (3.6)

Otherwise, there exists a t0 ∈ [0, θT ) such that

P (t0) = 0, D+P (t0) ≥ 0, (3.7)

P (t) < 0, for t ∈ [0, t0), (3.8)

where D+ denotes Dini derivative. Making use of Lemma 1, condition A3 and
a fact W (Q) > 0, it yields

l∑
k,h=1

ckδkhMkh(Xk, Xh) =
∑
Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Mrs(Xr, Xs) ≤ 0. (3.9)

Then, applying the conditions A1–A2, (3.4), and (3.7)–(3.9), we can derive
that

D+P (t0) = εeεt0V (x(t0), t0) + eεt0 V̇ (x(t0), t0)

≤ eεt0
{
εV (x(t0), t0)−

l∑
k=1

ckσk|xk(t0)|p +

l∑
k,h=1

ckδkh|xk(t0 − τhk)|p
}

+ eεt0
{ l∑
k,h=1

ckδkhMkh(Xk, Xh)
}

≤ eεt0
[
εV (x(t0), t0)−min

k∈`

{
σk/βk

}
V (x(t0), t0)

+ max
k∈`

{ l∑
h=1

δkh/αk
}
V (xk(t0 − τhk), t0 − τhk)

]
<
(
ε−min

k∈`

{
σk/βk

})
hβ‖φ‖p + max

k∈`

{ l∑
h=1

δkh/αk
}
eετhβ‖φ‖p

= −
(
− ε+ min

k∈`

{
σk/βk

}
−max

k∈`

{ l∑
h=1

δkh/αk
}
eετ
)
hβ‖φ‖p.
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From (3.3), it implies D+P (t0) < 0, which leads to a contradiction with
D+P (t0) ≥ 0. Hence inequality (3.6) holds.

Step 2. Prove Q(t) = eεtV (x, t)− hβ‖φ‖peζ(t−θT ) < 0, for all t ∈ [θT, T ).
Otherwise, there exists a t1 ∈ [θT, T ) such that

Q(t1) = 0, D+Q(t1) ≥ 0, Q(t) < 0, for t ∈ [θT, t1).

For k, h ∈ `, if θT ≤ t1 − τhk < t1, we get

eεt1
l∑

k=1

ckVk (xk(t1 − τhk), t1 − τhk) < eετhβ‖φ‖peζ(t1−θT )

and if −τ ≤ t1 − τhk < θT , from Step 1, we have

eεt1
l∑

k=1

ckVk (xk(t1 − τhk), t1 − τhk) < eετhβ‖φ‖p < eετhβ‖φ‖peζ(t1−θT ).

Hence, for any k ∈ `, we always have

eεt1
l∑

k=1

ckVk (xk(t1 − τhk), t1 − τhk) < eετhβ‖φ‖peζ(t1−θT ).

Then,

D+Q(t1) = εeεt1V (x(t1), t1) + eεt1 V̇ (x(t1), t1)− ζhβ‖φ‖peζ(t1−θT )

≤ eεt1
{
εV (x(t1), t1)−

l∑
k=1

ckσ
1
k|xk(t1)|p +

l∑
k,h=1

ckδkh|xk(t1 − τhk)|p
}

− ζhβ‖φ‖peζ(t1−θT ) + eεt1
{ l∑
k,h=1

ckδkhMkh(Xk, Xh)
}

<

(
ε−min

k∈`

{
σ1
k/βk

})
hβ‖φ‖peζ(t1−θT )

+ max
k∈`

{ l∑
h=1

δkh/αk
}
eετhβ‖φ‖peζ(t1−θT ) − ζhβ‖φ‖peζ(t1−θT )

= −

(
−ε+ min

k∈`

{
σk/βk

}
−max

k∈`

{ l∑
h=1

δkh/αk
}
eετ

)
hβ‖φ‖peζ(t1−θT )

− ςk
βk
hβ‖φ‖peζ(t1−θT ) − ζhβ‖φ‖peζ(t1−θT ).

According to (3.3) and Assumption 2, we have D+Q(t1) < 0, which contradicts
D+Q(t1) ≥ 0. Hence Q(t) < 0 holds for all t ∈ [θT, T ).

From Step 1 we get that, for t ∈ [−τ, θT ),

eεtV (x, t) < hβ‖φ‖p < hβ‖φ‖peζ(1−θ)T .

Math. Model. Anal., 23(1):44–63, 2018.
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It follows from Step 2, for t ∈ [θT, T ), we have

eεtV (x, t) < hβ‖φ‖peζ(t−θT ) < hβ‖φ‖peζ(1−θ)T .

Thus, for all t ∈ [−τ, T ), the following inequality holds,

eεtV (x, t) < hβ‖φ‖peζ(1−θ)T .

Similar to the proof of (3.6), we can get that

eεtV (x, t) < hβ‖φ‖peζ(1−θ)T ,

for T ≤ t < (1 + θ)T . Analogous to the proof of Step 2 , one sees that

eεtV (x, t) < hβ‖φ‖peζ(1−θ)T eζ[t−(1+θ)T ] = hβ‖φ‖peζ(t−2θT ),

for (1 + θ)T ≤ t < 2T .

Step 3. Applying mathematical induction method, we can certificate the
following estimates are true. For nT ≤ t < (n+ θ)T ,

eεtV (x, t) < hβ‖φ‖penζ(1−θ)T (3.10)

and for (n+ θ)T ≤ t < (n+ 1)T ,

eεtV (x, t) < hβ‖φ‖penζ(1−θ)T eζ[t−(n+θ)T ] = hβ‖φ‖peζ[t−(n+1)θT ]. (3.11)

The proofs of (3.10) and (3.11) are similar to those of [8], therefore we omit
this part to avoid redundancy. Thus, it follows from mathematical induction
method that inequalities (3.10) and (3.11) hold for any integer n > 0. For any
t ≥ 0, there exists a natural integer n such that nT ≤ t < (n + θ)T . When
nT ≤ t < (n+ θ)T , and n ≤ t/T , we have

eεtV (x, t) < hβ‖φ‖penζ(1−θ)T ≤ hβ‖φ‖peζ(1−θ)t.

Moreover, when (n+ θ)T ≤ t < (n+ 1)T and n+ 1 > t/T , we get

eεtV (x, t) < hβ‖φ‖peζ[t−(n+1)θT ] < hβ‖φ‖peζ(1−θ)t.

Finally, let h→ 1, according to (3.5), it is readily seen that

eεtα|x(t)|p ≤ eεtV (x, t) ≤ β‖φ‖peζ(1−θ)t.

Hence, we get the following estimate

|x(t)| ≤ (β/α)
1
p ‖φ‖e−

1
p [ε−ζ(1−θ)]t = M‖φ‖e−λt,

for any t ≥ 0, where λ = ε−ζ(1−θ)
p , M =

(
β
α

) 1
p

. It follows from α ≤ β and

Definition 1 that the trivial solution of system (2.1) is exponentially stable.
The proof is therefore complete. ut
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Remark 3. The feature of this paper is that the CSNs is described by a digraph
(see Figure 1), in which each vertex of digraph stands for an individual system
called vertex system, and the inter-connections and interactions among vertex
systems are characterized by the directed arcs of digraph. Hence, based on the
graph-theoretic approach, a new method is presented by utilizing the vertex-
Lyapunov function Vk, which is first applied to analyze the exponential stability
of DCSNs under periodically intermittent control. What is more, the sufficient
conditions obtained in Theorem 1 show that exponential stability of DCSNs has
a close relation with topological structure of CSs. The validity of the technique
is presented in Theorem 2.

1

23

δ21

δ31 δ12

δ32

δ13

δ23

Figure 1. A digraph G with 3 vertices.

Remark 4. It is well-known that the method of Lyapunov function is general for
the investigation of stability for systems. Actually, it is a challenge to construct
Lyapunov function for high dimensional systems directly. It is worth pointing
that, by using some results in graph theory, a global Lyapunov function V of
DCSNs is successfully constructed via the vertex-Lyapunov functions Vk and
the topology property of systems. That is, V (x, t) =

∑l
k=1 ckVk(xk, t), where

ck is the cofactor of the k-th diagonal element of the Laplacian matrix of (G, A).
Thus, this avoids to directly seek for the Lyapunov function of DCSNs. That
means, with the help of graph theory, CSNs can be studied much more easily.

Remark 5. It should be pointed out that condition A3 holds for each directed
cycle C and any Xk and Xh. Since the number of directed cycles may be very
large and Xk, Xh are arbitrary, we must check A3 for infinite times. It seems
to be so complicated. However, this problem can be successfully solved if we
find some appropriate functions Mkh(Xh, Xk), k, h = 1, 2, . . . l. We shall now
take one further step to study some others simple and easy-checked conditions
based on some results in graph theory.

Note that if (G, A) is balanced, we can readily get

l∑
k,h=1

ckδkhMkh(Xk, Xh)=
1

2

∑
Q∈Q

W (Q)
∑

(h,k)∈E(CQ)

[Mkh(Xk, Xh)+Mhk(Xh, Xk)] .
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Thus, (3.2) can be replaced by∑
(h,k)∈E(CQ)

[Mkh(Xk, Xh) +Mhk(Xh, Xk)] ≤ 0. (3.12)

Based on this, a corollary is obtained as follows.

Corollary 1. Suppose that (G, A) is balanced, then the conclusion of Theorem
1 holds if (3.2) is replaced by (3.12).

Furthermore, in view that if for every Mkh(Xk, Xh) there exist functions
Pk(Xk) and Ph(Xh), such that

Mkh(Xk, Xh) ≤ Pk(Xk)− Ph(Xh), (3.13)

then (3.2) can be readily verified. We thus obtain one more corollary below.

Corollary 2. The conclusion of Theorem 1 holds if (3.2) is replaced by (3.13).

In the discussions above, a Lyapunov-type theorem is presented in the form
of Lyapunov functions and topological structure. In what follows, we explore
that how to find the detailed functions Mkh(Xk, Xh) to check the availability
of Theorem 1, which is the task of Theorem 2.

3.2 Coefficients-type criterion

In this subsection, a coefficients-type criterion is presented as follows.

Theorem 2. Suppose that the following conditions hold:
B1. There exist positive constants ηk, Ah, Bh, such that

xTk bk(xk) ≤ −ηk|xk|2, (3.14)

|fh(xh)| ≤ Ah|xh|, (3.15)

|gh(xh)| ≤ Bh|xh|. (3.16)

B2. Digraph (G, A) is strongly connected and the following inequality holds:

min
k∈l
{pηk − |ckk|Ak − Jk − ζk −

l∑
h=1

δkh} > max
k∈l
{

l∑
h=1

δkh},

where Jk = (p− 1)(
∑l
h=1|ckh|Ah +

∑l
h=1|dkh|Bh), A = (δkh)l×l, p ≥ 2 and

δkh ,

{
max {|ckh|Ah + |Ykh|, |dkh|Bh} , h 6= k,
0, h = k.

Then the trivial solution of system (2.1) is exponentially stable.

Proof. For any k ∈ `, denote Vk(xk(t), t) = |xk(t)|p, which satisfies condition
A1 obviously. In the sequel, computing the time derivative of Vk(xk(t), t) along
the trajectories of system (2.1). When nT ≤ t < (n+ θ)T , we can get

dVk(xk(t), t)

dt
= p|xk(t)|p−2xTk (t)ẋk(t)
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≤ p|xk(t)|p−2xTk (t)bk(xk(t)) + p|xk(t)|p−2|xTk (t)|
l∑

h=1

|ckh||fh(xh(t))|

+ p|xk(t)|p−2xTk (t)Ykkxk(t) + p|xk(t)|p−2|xTk (t)|
l∑

h=1,h6=k

|Ykh||xh(t)|

+ p|xk(t)|p−2|xTk (t)|
l∑

h=1

|dkh||gh(xh(t− τkh))|. (3.17)

Applying the following inequality (see [18], p. 52)

|a|p|b|q ≤ p

p+ q
|a|p+q +

q

p+ q
|b|p+q, (3.18)

it yields

p|xk(t)|p−2|xTk (t)|
l∑

h=1,h6=k

|Ykh||xh(t)| ≤ p|xk(t)|p−1
l∑

h=1,h6=k

|Ykh||xh(t)|

≤ (p− 1)

l∑
h=1,h6=k

|Ykh||xk(t)|p +

l∑
h=1,h6=k

|Ykh||xh(t)|p. (3.19)

Together with (3.15) and (3.18), we have

p|xk(t)|p−2|xTk (t)|
l∑

h=1

|ckh||fh(xh(t))| ≤ p|xk(t)|p−1
l∑

h=1

|ckh|Ah|xh(t)|

≤ (p−1)

l∑
h=1

|ckh|Ah|xk(t)|p+|ckk|Ak|xk(t)|p +

l∑
h=1,h6=k

|ckh|Ah|xh(t)|p. (3.20)

From (3.16) and (3.18), one obtains

p|xk(t)|p−2|xTk (t)|
l∑

h=1

|dkh||gh(xh(t−τkh))|≤p|xk(t)|p−1
l∑

h=1

|dkh|Bh|xh(t−τkh)|

= p

l∑
h=1

|dkh|Bh|xk(t)|p−1|xh(t− τkh)|

≤ (p− 1)

l∑
h=1

|dkh|Bh|xk(t)|p +

l∑
h=1

|dkh|Bh|xh(t− τkh)|p. (3.21)

Submitting (3.14) and (3.19)–(3.21) into (3.17), one sees that

dVk(xk, t)

dt
≤
(
− ηkp+ |ckk|Ak + (p− 1)

l∑
h=1

|ckh|Ah + (p− 1)

l∑
h=1

|dkh|Bh

+ pYkk + (p− 1)

l∑
h=1,h6=k

|Ykh|
)
|xk(t)|p +

( l∑
h=1,h6=k

|ckh|Ah
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+

l∑
h=1,h6=k

|Ykh|
)
|xh(t)|p +

l∑
h=1

|dkh|Bh|xh(t− τkh)|p

≤ −
(
ηkp− |ckk|Ak − (p− 1)

l∑
h=1

|ckh|Ah − (p− 1)

l∑
h=1

|dkh|Bh − ςk

−
l∑

h=1

δkh

)
|xk(t)|p −

l∑
h=1

δkh|xk(t)|p +

l∑
h=1

δkh|xh(t)|p

+

l∑
h=1

δkh|xh(t− τkh)|p −
l∑

h=1

δkh|xk(t−τhk)|p+
l∑

h=1

δkh|xk(t−τhk)|p

= −σk|xk(t)|p +

l∑
h=1

δkh|xk(t− τhk)|p +

l∑
h=1

δkh

[
|xh(t)|p + |xh(t− τkh)|p

− (|xk(t)|p + |xk(t− τhk)|p)
]

= −σk|xk(t)|p +

l∑
h=1

δkh|xk(t− τhk)|p +

l∑
h=1

δkhMkh(Xk, Xh),

in which

σk=ηkp−|ckk|Ak−(p− 1)

l∑
h=1

|ckh|Ah − (p− 1)

l∑
h=1

|dkh|Bh − ςk −
l∑

h=1

δkh,

Mkh(Xk, Xh) =
(
|xh(t)|p + |xh(t− τkh)|p

)
−
(
|xk(t)|p + |xk(t− τhk)|p

)
.

Similarly, when (n+ θ)T ≤ t < (n+ 1)T , we can get

dVk(xk(t), t)

dt
≤ −

(
ηkp−|ckk|Ak−(p−1)

l∑
h=1

|ckh|Ah−(p−1)

l∑
h=1

|dkh|Bh

−
l∑

h=1

δkh

)
|xk(t)|p −

l∑
h=1

δkh|xk(t)|p +

l∑
h=1

δkh|xh(t)|p

+

l∑
h=1

δkh|xh(t−τkh)|p −
l∑

h=1

δkh|xk(t−τhk)|p +

l∑
h=1

δkh|(xk(t−τhk))|p

= −σ1
k|xk(t)|p +

l∑
h=1

δkh|xk(t− τhk)|p +

l∑
h=1

δkhMkh(Xk, Xh),

in which

σ1
k = ηkp− |ckk|Ak − (p− 1)

l∑
h=1

|ckh|Ah − (p− 1)

l∑
h=1

|dkh|Bh −
l∑

h=1

δkh.

Hence, condition A2 holds. Moreover, it is easy to verify that all functions
Mkh satisfy (3.2). Thus, the trivial solution of system (2.1) is exponentially
stable by Theorem 1 and condition B2. This completes the proof. ut
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Remark 6. An important feature of the result in Theorem 2 is that stability
criteria for system (2.1) are obtained according to the coefficients of system.
Contrasting with Theorem 1 discussed previously, the stability conditions in
Theorem 2 are easier to be checked. In what follows, under periodically in-
termittent control, we shall use an example of delayed coupled oscillators on
networks to illustrate the availability of above results.

4 An application to delayed coupled oscillators on net-
works

In this section, we will discuss the exponential stability of delayed coupled
oscillators on networks (DCONS) under periodically intermittent control. The
following nonlinear oscillation is one of the commonest examples in the broad
applications in physics, mechanics, electrical engineering and so on.

x′′(t) + ϕ(x(t))x′(t) + x(t) = 0, (4.1)

in which t ≥ 0, x(t) ∈ R is the state variable; ϕ(x) ≥ 0 is the damping
coefficient. Many properties of system (4.1) such as boundedness, stability and
limit cycles, have been studied widely [7,19]. Here nonlinear oscillator network
with time-varying delay on a diagraph G with l(l ≥ 2) vertices, for the k-th
vertex it is assigned a time delay oscillator described by

x′′k(t)+ϕk(xk(t))x′k(t)+xk(t)+

l∑
h=1

vkhNh(xh(t))+

l∑
h=1

bkhHh(xh(t−τkh)) = 0,

(4.2)
where k ∈ `, xk(t) ∈ R, Nh, Hh : R → R is the form of influence from vertex
h to vertex k. vkh, bkh represents the intensity of influence from vertex h to
vertex k. If there is a connection from vertex k to vertex h, then the coupling
vkh 6= 0, bkh 6= 0; otherwise, vkh = 0, bkh = 0.

As is well-known, the system may be unstable in the process of selecting
the parameters or time delay. Thus, in the following, we use periodically inter-
mittent control to stabilize the system (4.2). Let yk(t) = x′k(t) + ζkxk(t), we
can get that

x′k(t) = yk(t)− ζkxk(t) + uk(t),

y′k(t) = (ζk − ϕk(xk(t)))yk(t)− xk(t)−
l∑

h=1

vkhNh(xh(t))

−
l∑

h=1

bkhHh(xh(t− τkh)) + (ζkϕk(xk(t))− ζ2k)xk(t),

(4.3)

where uk(t) is periodically intermittent control defined by (2.2).
The following theorem is provided to guarantee exponential stability of the

trivial solution of system (4.2).

Theorem 3. Let digraph (G, D̄) be strongly connected. The trivial solution of
system (4.2) is exponentially stable provided that the following conditions are
satisfied.
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C1. For any k ∈ `, there are positive constants mk,Mk ≥ mk and γk, εk such
that

mk ≤ ϕk(xk) ≤Mk, |Nh(xh)| ≤ γh|xh|, |Hh(xh)| ≤ εh|xh|.

C2. There exist positive constants p ≥ 2 and µk, such that µk ≤ mk, (2Mk −
µk)µk ≤ 4 and

min
k∈l
{pµk − 4|vkk|γk − J̄k − 4ζk − 4

l∑
h=1

δ1kh} > max
k∈l
{4

l∑
h=1

δ1kh},

where J̄k = 4(p− 1)(
∑l
h=1|vkh|γh +

∑l
h=1|bkh|εh), D̄ = (δ1kh)l×l and

δ1kh ,

{
max {|vkh|γh + |Ykh|, |bkh|εh} , h 6= k,
0, h = k.

Proof. First of all, denote vector-valued functions Xk(t) = (xk(t), yk(t))T and

Fk(Xk(t), t) =

(
yk(t)− ζkxk(t)

(ζk − ϕk(xk(t)))yk(t) + (ζkϕk(xk(t))− ζ2k − 1)xk(t)

)
.

By simple calculation, we can get

XT
k (t)Fk(Xk(t), t)

≤ |ζkϕk(xk(t))− ζ2k ||xk(t)yk(t)| − ζkx2k(t) + (ζk − ϕk(xk(t)))y2k(t)

≤ −
(
ζk −

δ2k
2

(
ζkϕk(xk(t))− ζ2k

) )
x2k(t)

−
(
ϕk(xk(t))− ζk −

1

2δ2k

(
ζkϕk(xk(t))− ζ2k

) )
y2k(t),

where δk is an arbitrary value, then let δ2k = ζk = µk

2 , then we have

XT
k (t)Fk(Xk(t), t) ≤ −µk

4
|Xk|2.

So condition B1 is satisfied. On the other hand,

min
k∈l
{pηk − |ckh|Ah − Jk − ζk −

l∑
h=1

δkh} −max
k∈l
{

l∑
h=1

δkh}

= min
k∈l
{pµk

4
− |vkh|γh −

J̄

4 k
− ζk −

l∑
h=1

δ1kh} −max
k∈l
{

l∑
h=1

δ1kh},

where ηk = µk/4, Ah = γh, Bh = εh. Therefore, condition B2 is fulfilled.
Hence, the trivial solution of system (4.2) is exponentially stable according to
Theorem 2. This completes the proof. ut
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5 Numerical test

A detailed numerical example is provided in this section to demonstrate the
practical applicability of the theoretical results.

Example: Let l = 4. We proceed to consider the delayed coupled oscillators
on networks (4.2).

Assume that ϕk(xk) = 0.25− 0.2 sinxk, Nh(xh) = 0.1xh, Hh(xh) = xh and
some parameters are presented as follows: p = 2, τ = 1, ζ1 = 0.01, ζ2 = 0.03,
ζ3 = 0.05, ζ4 = 0.04. The other parameters of system (4.2) are given in Table 1.

Table 1. The values of vkh and bkh

vkh 1 2 3 4

1 0 0.04 0 -0.09
2 0.03 0 0 0.05
3 0 -0.2 0 0.08
4 0.07 0 0.01 0

bkh 1 2 3 4

1 0 0.01 0 0.05
2 0 0 0.02 0.01
3 0 -0.05 0 0.02
4 0.05 -0.06 0.01 0

The weighted matrix of digraph (G, D̄) is also given as follows

(δ1kh)4×4 =


0.000 0.010 0.000 0.050
0.003 0.000 0.020 0.010
0.000 0.020 0.000 0.020
0.050 0.060 0.010 0.000

 .

By simple calculations, we can get µ1 = 0.02, µ2 = 0.06, µ3 = 0.1, µ4 = 0.08,
γh = 0.1, εh = 1 for k, h = 1, 2, 3, 4. Choosing Y11 = −0.3, Y22 = −0.3,
Y33 = −0.25, Y44 = −0.4, Ykh = 0 (k, h = 1, 2, 3, 4, k 6= h). Then ζ = 0.8 and
ε = 0.072 by computation. From Assumption 2 that θ > 0.91. Here we select
θ = 0.92 and T = 5. The conditions C1 and C2 in Theorem 3 are all fulfilled,
and thus system (4.2) is exponentially stable.

Furthermore, the initial values associated with system (4.2) are given in
(5.1). The numerical simulation results are presented in Figures 2 and 3.
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Figure 2. Simple paths of the solution to system (4.2) with initial values (5.1)
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Figure 3. Simple path of the solution to system (4.3) under periodically intermittent
control with initial values (5.1)

Figure 2 is the paths of the solution to system (4.2) without the control.
Figure 3 is the respond of the solution to system (4.3) under periodically in-
termittent control. We can clearly see from presented figures that periodically
intermittent control plays a critical role in the exponential stability of system
(4.3). In fact, these simulation results support our theoretical results:

x1(t) = −1.4 cos t− 0.5 sin t, y1(t) = −0.92 sin t− 0.2 cos 2t sin t,

x2(t) = −1.5 sin t− 0.7 cos t, y2(t) = 0.6 sin t+ 0.5 cos t, t ∈ [−1, 0]

x3(t) = sin t+ 1.7 cos t, y3(t) = 0.82 cos t− 0.5 sin t+ 0.5,

x4(t) = 0.5 sin t+ 0.6 cos t+ 0.4, y4(t) = −1.2 sin t− 0.1. (5.1)
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Appendix

To analyze the stability for DCSNs over directed network topology, we now
state some basic concepts of graph theory. For detail, we refer the reader
to [15, 25]. A digraph G = (`, E) contains a set ` of vertices and a set E of
arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of
G is said to be spanning if H and G have the same vertex set. A digraph G
is weighted if a positive weight δij is assigned to each arc (i, j). Here δij > 0
if and only if there exists an arc from vertex j to vertex i in G, and we call
A = (δij)l×l the weight matrix. The weight W (G) of G is the product of
the weights on all its arcs. A directed path P in G is a subgraph with distinct
vertices {i1, i2, . . . , is} such that its set of arcs is {(ik, ik+1) : k = 1, 2, . . . , s−1}.
If is = i1, we call P a directed cycle. A tree T is rooted at vertex i, called
the root, if i is not a terminal vertex of any arcs, and each of the remaining
vertices is a terminal vertex of exactly one arc. A subgraph Q is unicyclic
if it is a disjoint union of rooted trees whose roots form a directed cycle. A
digraph G is strongly connected if for any pair of distinct vertices, there exists a
directed path from one to the other. Denote the digraph with weight matrix A
as (G, A). A weighted digraph (G, A) is said to be balanced if W (C) = W (−C)
for all directed cycles C. Here −C denotes the reverse of C and is constructed
by reversing the direction of all arcs in C. For a unicyclic graph Q with cycle
CQ, let Q̃ be the unicyclic graph obtained by replacing CQ with −CQ. Suppose
that (G, A) is balanced, then W (Q) = W (Q̃). The Laplacian matrix of (G, A)
is defined as L = (pkh)l×l, where pkh = −δkh for k 6= h and pkh =

∑
j 6=k δkj

for k = h.
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