
Mathematical Modelling and Analysis http://mma.vgtu.lt

Volume 23, Issue 1, 64–78, 2018 ISSN: 1392-6292

https://doi.org/10.3846/mma.2018.005 eISSN: 1648-3510

A Numerical Technique for Solving Nonlinear
Singularly Perturbed Delay Differential
Equations

A.S.V. Ravi Kanth and P. Murali Mohan Kumar

Department of Mathematics, National Institute of Technology Kurukshetra

Kurukshetra, Haryana, India

E-mail(corresp.): asvravikanth@yahoo.com

Received April 28, 2017; revised December 5, 2017; accepted December 6, 2017

Abstract. This paper presents a numerical technique for solving nonlinear singu-
larly perturbed delay differential equations. Quasilinearization technique is applied
to convert the nonlinear singularly perturbed delay differential equation into a se-
quence of linear singularly perturbed delay differential equations. An exponentially
fitted spline method is presented for solving sequence of linear singularly perturbed
delay differential equations. Error estimates of the method is discussed. Numerical
examples are solved to show the applicability and efficiency of the proposed scheme.
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1 Introduction

In this paper, we consider the following nonlinear singularly perturbed delay
differential equations is of the form:

εy′′ = g(x, y, y′(x− δ)) on (0, 1) (1.1)

under the interval and boundary conditions

y(x) = φ(x) on − δ 6 x 6 0 , y(1) = γ, (1.2)

where ε is a small singular perturbation parameter, 0 < ε� 1 and δ is the delay
parameter of o(ε). The solution y(x) of the boundary value problem (1.1)–(1.2)
must be continuous on [0,1] and continuously differentiable on (0,1). Suppose
g is smooth and satisfies the conditions,
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i. ∂
∂y g(x, y, z) > 0 and ∂

∂z g(x, y, z) 6 0,

ii.
(
∂
∂y −

∂
∂z

)
g(x, y, z) > α > 0 , α is a positive constant,

iii. the growth condition g(x, y, z) = O(|z|2) as z → ∞ for all x ∈ [0, 1] and
all real y and z.

For δ = 0, under the conditions listed above the equations (1.1)–(1.2) has a
unique solution [10].

In general, the boundary value problems for singularly perturbed nonlinear
delay differential equations play an essential role in explaining different ap-
plications like oceanic and atmosphere circulation [4], theory of non-premixed
combustion [7], geodynamics [9], chemical reactions [18] etc.

In the past, the numerical study of linear singularly perturbed delay differ-
ential equations has been paid more attention [5, 6, 14]. But in recent years,
there has been growing interest in solving nonlinear singularly perturbed delay
differential equations. The solution of these problems can have steep exponen-
tial boundary layers. Classical approaches for solving such type of problems
are inefficient due to the existence of boundary layer behavior when singular
perturbation parameter(ε) is goes to zero. It is significant to improve suitable
numerical methods for these problems whose accuracy does not depend on ε.
Lange and Miura [13] considered the boundary value problems for a singularly
perturbed nonlinear differential equation with shift and discussed the existence
and uniqueness of their solutions. Bartoszewski and Baranowska [2] have pre-
sented a fixed-point approach to solve boundary value problem for second order
singularly perturbed delay differential equation. Kadalbajoo and Sharma [12]
presented a finite difference method for solving the singularly perturbed nonlin-
ear with delay differential equations. Kadalbajoo and Kumar [11] constructed
B’Spline collocation method to solve singularly perturbed nonlinear system
with delay differential equations. A numerical patching technique is presented
for solving singularly perturbed nonlinear delay differential equations in [16].

A description of the contents of the paper is as follows. In Section 2, quasi-
linearization method and convergence analysis are discussed. Section 3 recalls
the continuous problem. Derivation of the scheme is given in Section 4. Error
estimates for the method is discussed in Section 5. Finally, the paper ends with
computational results and discussion in Section 6.

2 The quasilinearization method

The quasilinearization technique [3], has been used to reduce the given nonlin-
ear singularly perturbed delay differential equations (1.1)–(1.2) into a sequence
of linear singularly perturbed delay differential equations. We choose a reason-
able initial approximation for the function y(x) in g(x, y, y′(x − δ)), call it as
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y(0)(x) and expand g(x, y, y′(x− δ)) around the function y(0)(x), we obtain

g
(
x, y(1), y′(1)(x− δ)

)
= g

(
x, y(0), y′(0)(x− δ)

)
+
(
y(1)−y(0)

)(∂g
∂y

)
(x,y(0),y′(0))

+
(
y′(1)−y′(0)

)( ∂g
∂y′

)
(x,y(0),y′(0))

+ . . . .

In general we can write for k = 0, 1, . . . (k is iteration index)

g
(
x, y(k+1), y′(k+1)(x− δ)

)
= g

(
x, y(0), y′(0)(x− δ)

)
+
(
y(k+1)−y(k)

)(∂g
∂y

)
(x,y(0),y′(0))

+
(
y′(k+1)−y′(k)

)( ∂g
∂y′

)
(x,y(0),y′(0))

+ . . . .

Using the quasilinearization process, equations (1.1)–(1.2) becomes,

εy′′(k+1)(x) +

(
−∂g

(k)

∂y′

)
y′(k+1)(x− δ) +

(
−∂g

(k)

∂y

)
y(k+1)(x)

=

(
g(k) − y(k) ∂g

(k)

∂y
− y′(k)(x− δ)∂g

(k)

∂y′

)
, k = 0, 1, . . . (2.1)

with

y(k+1)(x) = φ(x), − δ 6 x 6 0, y(k+1)(1) = γ (2.2)

and g(k) = g(x, y(k), y′(k)(x− δ)). Thus the equations (2.1)–(2.2) are linear in
y(k+1)(x). Instead of solving the original problem (1.1)–(1.2), now we will solve
a sequence of linear singularly perturbed delay differential equations given by
(2.1)–(2.2) by using exponential fitting method which is introduced in Section 4.
Theoretically, we require for a solution to the nonlinear problem,

lim
k→∞

y(k)(x) = y∗(x), 0 6 x 6 1,

where y∗(x) is the solution of the nonlinear problem. Numerically, we require
that ∣∣∣y(k+1)(x)− y(k)(x)

∣∣∣ < Tol., 0 6 x 6 1.

Where Tol. is a small tolerance prescribed by us. We terminate the iteration
once the tolerance test is reached and the profile y(k+1)(x) is the numerical
solution of the nonlinear boundary value problem (1.1)–(1.2).

2.1 Convergence analysis

The convergence of the sequence
〈
y(k)

〉
is obtained as follows. We denote

g(x, y, y′(x − δ)) as g(y) throughout the convergence part for the sake of con-
venience. Consider the problem

εy′′ = g(y),

y(x) = φ(x), − δ 6 x 6 0, y(1) = γ.
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After quasilinearization technique, we get a sequence
〈
y(k)

〉
of linear equations

determined by the following recurrence relation

εy′′(k+1)(x) = g(y(k)) +
(
y(k+1) − y(k)

)
g′(y(k)), (2.3)

y(k+1)(x) = φ(x), − δ 6 x 6 0, y(k+1)(1) = γ,

where g′(y) = ∂g(y)
∂y . Let y(0)(x) be an initial approximation, then from equa-

tion (2.3), we have

εy′′(k)(x) = g(y(k−1)) +
(
y(k) − y(k−1)

)
g′(y(k−1)). (2.4)

From equation (2.3) and equation (2.4), we have

ε
(
y(k+1) − y(k)

)′′
(x) = g(y(k))− g(y(k−1))−

(
y(k) − y(k−1)

)
g′(y(k−1))

+
(
y(k+1) − y(k)

)
g′(y(k)). (2.5)

Equation (2.5) is a second order differential equation in
(
y(k+1) − y(k)

)
. Thus,

the integral form of equation (2.5) by using Green’s function is

ε
(
y(k+1) − y(k)

)
(x) =

∫ 1

0

G(x, s)
[
g(y(k))− g(y(k−1))

−
(
y(k) − y(k−1)

)
g′(y(k−1)) +

(
y(k+1) − y(k)

)
g′(y(k))

]
ds, (2.6)

where G(x, s) is the Green’s function and determined by

G(x, s) =

{
(x− 1)s, 0 6 s 6 x 6 1,

x(s− 1), 0 6 x 6 s 6 1,

where maxx,s |G(x, s)| = 1/4. By the mean value theorem, we have

g(y(k))− g(y(k−1)) =
(
y(k) − y(k−1)

)
g′(y(k−1)) +

(
y(k) − y(k−1)

)2
2

g′′(θ), (2.7)

where y(k−1) 6 θ 6 y(k). Substituting equation (2.7) into equation (2.6), we
obtain

ε
(
y(k+1) − y(k)

)
=

∫ 1

0

G(x, s)
[ (
y(k) − y(k−1)

)2
g′′(θ)/2

+
(
y(k+1) − y(k)

)
g′(y(k))

]
ds. (2.8)

Let
max
‖y‖61

g′(y) = a1, max
‖y‖61

g′′(y) = a2.

Taking the maximum of the moduli over the domain of consideration on both
sides of equation (2.8), we get

max
06x61

∣∣∣(y(k+1) − y(k)
)

(x)
∣∣∣ 6 1

4ε

∫ 1

0

[
max
06x61

(
y(k) − y(k−1)

)2
2

max
06x61

|g′′(θ)|

+ max
06x61

∣∣∣y(k+1) − y(k)
∣∣∣ max
06x61

∣∣∣g′(y(k))∣∣∣ ]ds.
Math. Model. Anal., 23(1):64–78, 2018.
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A simplification yields,

max
06x61

∣∣∣(y(k+1) − y(k)
)

(x)
∣∣∣ 6 K1 max

06x61

(
y(k) − y(k−1)

)2
,

where
K1 = a2/

(
8ε(1− a1/4ε)

)
< 1.

This proves that the sequence 〈y(k)〉 of linear equations converges quadrati-
cally provided K1 < 1. Therefore, to obtain the approximate solution of the
nonlinear singularly perturbed delay differential equations (1.1) and (1.2), it
is sufficient to approximate the solution of the sequence of linear singularly
perturbed delay differential equation of the form

εy′′(k+1)(x) + a(k)(x)y′(k+1)(x− δ) + b(k)(x)y(k+1)(x) = c(k)(x), (2.9)

k = 0, 1, . . . with

y(k+1)(x) = φ(x), − δ 6 x 6 0, y(k+1)(1) = γ, (2.10)

where

a(k)(x) = −∂g
(k)

∂y′
, b(k)(x) = −∂g

(k)

∂y
,

c(k)(x) = g(k) − y(k) ∂g
(k)

∂y
− y′(k)(x− δ)∂g

(k)

∂y′
.

3 Continuous problem

When the delay parameter is of small order of the singular perturbation pa-
rameter i.e., (δ < ε), an application of Taylor’s series expansion for the term
y′(k+1)(x− δ) in equation (2.9) yields,

Lπ ≡ εy′′(k+1)(x) + p(k)(x)y′(k+1)(x) + q(k)(x)y(k+1)(x) = r(k)(x), (3.1)

k = 0, 1, . . ., where

p(k)(x) =
a(k)(x)

1− δ
εa

(k)(x)
, q(k)(x) =

b(k)(x)

1− δ
εa

(k)(x)
,

r(k)(x) =
g(k) − y(k) ∂g

(k)

∂y −
[
y′(k)(x)− δy′′(k)(x)

]
∂g(k)

∂y′

1− δ
εa

(k)(x)

with

y(k+1)(0) = φ(0) = φ0, y(k+1)(1) = γ. (3.2)

When δ is zero i.e.,(δ = 0), the solution of the above problem exhibits boundary
layer on the left or right side of the interval depending on the sign of the
coefficient p(k)(x), i.e., according as p(k)(x) > 0 or p(k)(x) < 0 respectively.
Here we assume that p(k)(x) > p∗ > 0 and q(k)(x) 6 −q∗ < 0 for some positive
constants p∗, q∗.

The operator Lπ = ε d2

dx2 +p(k)(x) d
dx+q(k)(x)I in (3.1) satisfies the following

Lemma 1.
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Lemma 1. Suppose ϕ(x) is a smooth function satisfying ϕ(k+1)(0) > 0,
ϕ(k+1)(1) > 0. Then Lπϕ

(k+1)(x) 6 0, ∀ x ∈ (0, 1) implies ϕ(k+1)(x) > 0,
∀ x ∈ [0, 1], k = 0, 1, . . .

Proof. Let m ∈ [0, 1] be such that ϕ(k+1)(m) < 0 and

ϕ(k+1)(m) = min
x∈[0,1]

ϕ(k+1)(x).

Clearly m /∈ {0, 1}, therefore ϕ′(k+1)(m) = 0 and ϕ′′(k+1)(m) > 0.

Now consider,

Lπϕ
(k+1)(x)|x=m = εϕ′′(k+1)(m) + p(k)(m)ϕ′(k+1)(m) + q(k)(m)ϕ(k+1)(m) > 0,

which is contradictory to our assumption. Thus ϕ(k+1)(x) > 0, ∀ x ∈ [0, 1]. ut

Lemma 2. Let y(k+1)(x) be the solution of the problem (3.1) and (3.2) then
we have ∥∥∥y(k+1)

∥∥∥ 6 (q∗)−1
∥∥∥r(k)∥∥∥+ max (|φ0| , |γ|) , k = 0, 1, . . . , (3.3)

where ‖·‖ is the L∞ norm given by
∥∥y(k+1)

∥∥ = max06x61

∣∣y(k+1)(x)
∣∣.

Proof. Let ϕ±(k+1)(x) be two barrier functions defined by

ϕ±(k+1)(x) = (q∗)−1 ‖r‖+ max (|ϕ0| , |γ|)± y(k+1)(x).

Then this implies

ϕ±(k+1)(0) = (q∗)−1
∥∥∥r(k)∥∥∥+ max (|φ0| , |γ|)± y(k+1)(0)

= (q∗)−1
∥∥∥r(k)∥∥∥+ max (|φ0| , |γ|)± φ0 > 0,

ϕ±(k+1)(1) = (q∗)−1
∥∥∥r(k)∥∥∥+ max (|φ0| , |γ|)± y(k+1)(1)

= (q∗)−1
∥∥∥r(k)∥∥∥+ max (|φ0| , |γ|)± γ > 0

and

Lπϕ
±(k+1)(x) = ε(ϕ±(k+1)(x))

′′
+ p(k)(x)(ϕ±(k+1)(x))

′
+ q(k)(x)ϕ±(k+1)(x)

= q(k)(x)
[
(q∗)−1

∥∥∥r(k)∥∥∥+ max(|φ0| , |γ|)
]
± Lπy

(k+1)(x)

= q(k)(x)
[
(q∗)−1

∥∥∥r(k)∥∥∥+ max(|φ0| , |γ|)
]
± r(k)(x).

As q(k)(x) 6 −q∗ < 0 implies q(k)(x)(q∗)−1 6 −1 and since
∥∥r(k)∥∥ > r(k)(x),

we have Lτϕ
(k+1) 6 0, ∀ x ∈ [0, 1]. By using Lemma 1, we obtain the required

estimate. ut

Math. Model. Anal., 23(1):64–78, 2018.
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Lemma 3. If y(k+1) satisfies equations (3.1)–(3.2), then

y(k+1)(x) = u(k+1)(x) + v(k+1)(x) + w(k+1)(x), k = 0, 1, . . . ,

where

u(k+1)(x) = −εy
′(k+1)(0)

p(k)(0)
exp

(
−p(k)(0)x

ε

)
,

v(k+1)(x) = −εy
′(k+1)(1)

p(k)(1)
exp

(
−p(k)(1)(1− x)

ε

)
,∣∣∣w(s)(k+1)(x)

∣∣∣ 6 M

{
1 + ε−s+1exp

[
−c1(1− x)

ε

]}
, s = 0(1)4,

where c1 is constant, M is a positive constant independent of h and ε.

From the theory of singular perturbations [15, pp. 22–26], it is known that the
solution of (3.1) with (3.2) is of the form

y(k+1)(x) ≈ y(k+1)
0 (x)+

p(k)(0)

p(k)(x)

(
φ0 − y(k+1)

0 (0)
)

exp

(
−
∫ x

0

p(k)(s)

ε
ds

)
+O(ε),

(3.4)

where y
(k+1)
0 (x) is the solution of reduced problem

p(k)(x)y
′(k+1)
0 (x) + q(k)(x)y

(k+1)
0 (x) = r(k)(x) with y

(k+1)
0 (1) = γ.

We first divide the interval [0,1] into N equal subintervals, each of length h. Let
0 = x0 < x1 < ... < xN = 1 be the points such that xi = ih, i = 0, 1, · · · , N .
From (3.4) as h→ 0, we obtain

lim
h→0

y(k+1)(ih) ≈ y(k+1)
0 (ih) +

(
φ0 − y(k+1)

0 (0)
)
exp

(
−p(k)(0)iρ

)
+O(ε), (3.5)

where ρ = h/ε. Now introducing an exponentially fitting factor σ into equa-
tion (3.1), we get

σεy′′(k+1)(x)+p(k)(x)y′(k+1)(x)+q(k)(x)y(k+1)(x) = r(k)(x), k = 0, 1, . . . (3.6)

with

y(k+1)(0) = φ0, y(k+1)(1) = γ. (3.7)

The fitting factor σ is to be determined in such a way that the solution of
equations (3.6)–(3.7) converges uniformly to the solution of equations (2.9)–
(2.10).

4 Derivation of the scheme

Let x0 = a, xi = a + ih, xN = b, h = (b − a)/N . A function S(k+1)(x, τ) of
class C2[a, b] which interpolates y(k+1)(x) at the mesh point xi depends on a
parameter τ , reduces to cubic spline in [a, b] as τ → 0 is termed as parametric
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cubic spline function. The spline function S(k+1)(x, τ) = S(k+1)(x) satisfying
in [xi, xi+1], the differential equation

S′′(k+1)(x) + τS(k+1)(x) =
[
S′′(k+1)(xi) + τS(k+1)(xi)

] (xi+1 − x)

h

+
[
S′′(k+1)(xi+1) + τS(k+1)(xi+1)

] (x− xi)
h

,

where S(k+1)(xi) = y
(k+1)
i and τ > 0 is termed as cubic spline in compression.

Following Aziz and Khan [1], we obtain the tridiagonal system

h2
(
λ1M

(k+1)
i−1 + 2λ2M

(k+1)
i + λ1M

(k+1)
i+1

)
= y

(k+1)
i−1 − 2y

(k+1)
i + y

(k+1)
i+1 , (4.1)

where i = 1, . . . , N − 1,

λ1 =
1

λ2

(
1− λ

sinλ

)
, λ2 =

1

λ2
(λ cotλ− 1) ,

λ = hτ1/2, M
(k+1)
j = y′′(k+1)(xj), j = i, i± 1, k = 0, 1, . . .

The consistency relation for (4.1) leads to the equation λ1 + λ2 = 1
2 , which

may also be expressed as λ
2 = tanλ2 . This equation has a zero root and an

infinite number of non-zero roots, the small positive being λ = 8.986818916 . . .
Substituting

σεM
(k+1)
j = r(k)(xj)− p(k)(xj)y′(k+1)(xj)− q(k)(xj)y(k+1)(xj), j = i, i± 1

into equation (4.1), and using the following approximations for first derivative

of y
(k+1)
i

y
′(k+1)
i ≈

y
(k+1)
i+1 − y(k+1)

i−1
2h

, y
′(k+1)
i+1 ≈

3y
(k+1)
i+1 − 4y

(k+1)
i + y

(k+1)
i−1

2h
,

y
′(k+1)
i−1 ≈

−y(k+1)
i+1 + 4y

(k+1)
i − 3y

(k+1)
i−1

2h
,

we get the following difference scheme

E
(k)
i y

(k+1)
i−1 − F (k)

i y
(k+1)
i +G

(k)
i y

(k+1)
i+1 = H

(k)
i , i = 1, . . . , N − 1, k ≥ 0, (4.2)

where

E
(k)
i =

σ

ρ
− 3λ1

2
p
(k)
i−1 − λ2p

(k)
i +

λ1
2
p
(k)
i+1 + λ1hq

(k)
i−1,

F
(k)
i =

2σ

ρ
− 2λ1p

(k)
i−1 + 2λ1p

(k)
i+1 − 2λ2hq

(k)
i ,

G
(k)
i =

σ

ρ
− λ1

2
p
(k)
i−1 + λ2p

(k)
i +

3λ1
2
p
(k)
i+1 + λ1hq

(k)
i+1,

H
(k)
i = λ1hr

(k)
i−1 + 2λ2hr

(k)
i + λ1hr

(k)
i+1.

Equation (4.2) forms a set of tridiagonal system of (N−1) equations with (N+
1) unknowns. These (N − 1) set of equations together with the equation (3.7)
are sufficient to solve the system by using Thomas algorithm.

Math. Model. Anal., 23(1):64–78, 2018.
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4.1 Determination of fitting factor

Taking the limit as h→ 0 in equation (4.2), we obtain

lim
h→0

(
σ

ρ

(
y(k+1)(ih+ h)− 2y(k+1)(ih) + y(k+1)(ih− h)

))
+ (λ1 + λ2) lim

h→0

(
p(k)(ih)

(
y(k+1)(ih+ h)− y(k+1)(ih− h)

))
= 0. (4.3)

We used the fact that r(k)(xi) − q(k)(xi)y(k+1)(xi) is bounded. Substituting
equation (3.5) into equation (4.3) and then simplifying, we get

σ = p(k)(0)ρ (λ1 + λ2) coth

(
p(k)(0)ρ

2

)
, k = 0, 1, . . . .

5 Error estimates

In this section, we derive the truncation error for the proposed scheme. The
truncation error of the numerical scheme is given by

τi(y
(k)) =

[
E

(k)
i y(k+1)(xi−1)− F (k)

i y(k+1)(xi) +G
(k)
i y(k+1)(xi+1)

]
−
[
λ1hr

(k)(xi−1) + 2λ2hr
(k)(xi) + λ1hr

(k)(xi+1)
]
, (5.1)

i = 1(1)N − 1, k = 0, 1, . . . .

Using the equation (3.6) for r(k)(x) in the above equation (5.1), we obtain

τi(y
(k)) =

[
E

(k)
i y(k+1)(xi−1)− F (k)

i y(k+1)(xi) +G
(k)
i y(k+1)(xi+1)

]
− λ1h

[ (
σεy′′(k+1)(xi−1)+p

(k)
i−1y

′(k+1)(xi−1)+q
(k)
i−1y

(k+1)(xi−1)
) ]

− 2λ2h
[ (
σεy′′(k+1)(xi) + p

(k)
i y′(k+1)(xi) + q

(k)
i y(k+1)(xi)

) ]
− λ1h

[ (
σεy′′(k+1)(xi+1)+p

(k)
i+1y

′(k+1)(xi+1)+q
(k)
i+1y

(k+1)(xi+1)
) ]
. (5.2)

An application of Taylor series expansion for y′′(k+1)(xi−1), y′′(k+1)(xi+1),
y′(k+1)(xi−1), y′(k+1)(xi+1), y(k+1)(xi−1) and y(k+1)(xi+1) in the above expres-
sion (5.2), we have for k ≥ 0:

τi(y
(k+1)) = T0y

(k+1)
i + T1y

′(k+1)
i + T2y

′′(k+1)
i + T3y

′′′(k+1)
i +Rem.,

where

T0 =
(
E

(k)
i − F (k)

i +G
(k)
i

)
−
(
λ1hq

(k)
i−1 + 2λ2hq

(k)
i + λ1hq

(k)
i+1

)
,

T1 = h
(
−E(k)

i +G
(k)
i

)
−
(
λ1h

(
p
(k)
i−1 + p

(k)
i+1

)
+ 2λ2hp

(k)
i

− λ1h2
(
q
(k)
i−1 − q

(k)
i+1

))
,
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T2 =
h2

2!

(
E

(k)
i +G

(k)
i

)
−
(

2(λ1 + λ2)hσε− λ1h2
(
p
(k)
i−1 − p

(k)
i+1

)
+ λ1

h3

2!

(
q
(k)
i−1 + q

(k)
i+1

))
=
hσε

2

(
1

2
− (λ1 + λ2)

)
,

T3 =
h3

3!

(
−E(k)

i +G
(k)
i

)
−
(
λ1
h3

2!

(
p
(k)
i−1 + p

(k)
i+1

)
− λ1

h4

3!

(
q
(k)
i−1 − q

(k)
i+1

))
,

=
h3

3

(
λ1p

(k)
i−1 − λ2p

(k)
i + λ1p

(k)
i+1

)
.

It can be easily seen that,

T0 = T1 = T2 = 0, |T3| 6Mh3, when λ1 + λ2 =
1

2
.

Now, from Lemma 3, we have

u
′′′(k+1)
j = −

(
p(k)(0)

ε

)2

y′(0) exp

(
−p(k)(0)xj

ε

)
,

therefore, ∣∣∣τj(u(k+1))
∣∣∣ 6 Mh3

ε2
exp

(
−p(k)(0)xj

ε

)
.

Similarly, ∣∣∣τj(v(k+1))
∣∣∣ 6 Mh3

ε2a
exp

(
−p(k)(1)(1− xj)

ε

)
and ∣∣∣w(3)(k+1)

j (x)
∣∣∣ 6M {

1 + ε−2 exp

(
−c1(1− xj)

ε

)}
,∣∣∣τj(w(k+1))

∣∣∣ 6Mh3
{

1 + ε−2 exp

(
−c1(1− xj)

ε

)}
.

Now,

τj(y
(k+1)) = τj(u

(k+1)) + τj(v
(k+1)) + τj(w

(k+1)),∣∣∣τj(y(k+1))
∣∣∣ 6 Mh3

ε2

[
1 + exp

(
−p(k)(0)xj

ε

)
+ exp

(
−p(k)(1)(1− xj)

ε

)]
.

Equation (4.2) can be written in the matrix form

AY (k+1) = B, k = 0, 1, . . . ,

where A is the matrix of the system (4.2), Y (k+1) and B are the corresponding
vectors and the local truncation error is τj(y

(k+1)). Thus,

max
j

∣∣∣y(k+1)
j − Y (k+1)

j

∣∣∣ 6 ∥∥A−1∥∥max
j

∣∣∣τj(y(k+1))
∣∣∣ , k = 0, 1, . . . .

By a result in [17], we have∥∥A−1∥∥ 6 max
16i6N−1

{∣∣∣E(k)
i

∣∣∣− ∣∣∣F (k)
i

∣∣∣+
∣∣∣G(k)

i

∣∣∣} , k = 0, 1, . . . .
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Theorem 1. Let Y
(k+1)
j , j = 0, . . . , N be an approximate solution to y(k+1)(x)

of equation (3.1) obtained by the proposed method. Then, the following estimate
holds

max
j

∣∣∣y(k+1)
j − Y (k+1)

j

∣∣∣ 6Mh2
{

exp

(
−k1xj
ε

)
+ exp

(
−k2(1− xj)

ε

)}
,

where k1, k2, M are positive constants, independent of h and ε.

6 Computational results and discussion

To show the applicability and efficiency of the proposed scheme, it has been
implemented to the following problems. Since the exact solution is not known,

the maximum pointwise error E
(k)
N,ε is calculated by using double mesh principle

[8],

E
(k)
N,ε = max

06x61

∣∣∣∣(y(k))N
i
−
(
y(k)

)2N
2i

∣∣∣∣ , k = 0, 1, . . .

and computational order O
(k)
N,ε is calculated by the following formula

O
(k)
N,ε = log2

∣∣∣E(k)
N,ε/E

(k)
2N,ε

∣∣∣ , k = 0, 1, . . . .

Table 1. Maximum absolute error(E) for Example 1 with δ = 0.5ε

N 32 64 128 256 512

ε E1 E2 E1 E2 E1 E2 E1 E2 E1

2−1 4.84E-4 5.50E-4 1.31E-4 1.49E-4 3.39E-5 3.88E-5 8.66E-6 9.91E-6 2.18E-6
2−2 1.54E-3 1.78E-3 4.28E-4 4.98E-4 1.13E-4 1.32E-4 2.90E-5 3.42E-5 7.37E-6
2−4 8.86E-3 1.08E-2 2.82E-3 3.52E-3 8.17E-4 1.04E-3 2.21E-4 2.86E-4 5.78E-5
2−6 3.87E-2 5.05E-2 1.23E-3 2.16E-2 2.91E-3 5.58E-3 6.93E-4 1.35E-3 1.68E-4
2−8 3.68E-2 1.30E-2 8.95E-3 1.52E-2 2.12E-3 3.49E-3 5.22E-4 8.62E-4 1.30E-4
2−12 4.05E-2 5.39E-2 8.33E-3 1.35E-2 1.87E-3 2.91E-3 4.46E-4 6.84E-4 1.11E-4
2−16 4.84E-2 5.23E-1 8.33E-3 1.35E-2 1.87E-3 2.91E-3 4.45E-4 6.82E-4 1.09E-4
2−32 4.84E-2 5.23E-1 8.33E-3 1.35E-2 1.87E-3 2.91E-3 4.45E-4 6.82E-4 1.09E-4

1 Method for λ1 = 1
6
, λ2 = 1

3
2 Method for λ1 = 1

12
, λ2 = 5

12

Example 1. Consider the following singularly perturbed nonlinear delay differ-
ential equation

εy′′(x) + y(x)y′(x− δ)− y(x) = 0

under the interval and boundary conditions

y(0) = 1, − δ 6 x 6 0, y(1) = 1.
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Table 2. Maximum absolute error and order of convergence for Example 1 with ε = 2−3,
δ = 0.5ε

N 32 64 128 256 512

λ1 = 1
6
, λ2 = 1

3
8.84E-03 2.04E-03 4.90E-04 1.20E-04 2.97E-05
2.1155 2.0577 2.0297 2.0145 2.0097

λ1 = 1
12
, λ2 = 5

12
1.19E-02 2.73E-03 6.52E-04 1.59E-04 3.93E-05
2.124 2.066 2.0358 2.0164 2.0125

λ1 = 1
18
, λ2 = 4

9
1.30E-02 3.00E-03 7.14E-04 1.74E-04 4.31E-05
2.1155 2.071 2.0368 2.0133 2.0119

λ1 = 1
14
, λ2 = 3

7
1.24E-02 2.84E-03 6.78E-04 1.66E-04 4.09E-05
2.1264 2.0665 2.0301 2.0210 2.0120

λ1 = 1
30
, λ2 = 14

30
1.40E-02 3.23E-03 7.68E-04 1.87E-04 4.63E-05
2.1158 2.0724 2.0381 2.0140 2.0037

λ1 = 1
24
, λ2 = 11

24
1.37E-02 3.14E-03 7.48E-04 1.82E-04 4.50E-05
2.1253 2.0697 2.0391 2.0159 2.0143

Table 1 presents the maximum absolute error for different values of λ1,
λ2, ε and N . It can be observed from the results, the error decreases as the
mesh size increases. The maximum absolute error and order of convergence
are presented in Table 2 for different values of λ1, λ2. It is observed that the
proposed method is almost second order convergence.

Figure 1 show the numerical solution for different values of δ. We note that
the thickness of the boundary layer increase as the delay increases.
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a) ε = 10−1 b) ε = 10−2

Figure 1. Numerical solution for Example 1.

Example 2. Consider the following singularly perturbed nonlinear delay differ-
ential equation

εy′′(x) + 2y′(x− δ)− ey(x) = 0

under the interval and boundary conditions

y(0) = 0, − δ 6 x 6 0, y(1) = 0.

Math. Model. Anal., 23(1):64–78, 2018.
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The maximum absolute error for different values of λ1, λ2, ε and N are
displayed in Table 3. From the results, it can be observed that the error
decreases as the mesh size increases.

Table 3. Maximum absolute error (E) for Example 2 with δ = 0.5ε

N 32 64 128 256 512

ε E1 E2 E1 E2 E1 E2 E1 E2 E1

2−1 7.32E-6 9.82E-6 1.71E-6 2.18E-6 4.07E-7 5.03E-7 9.85E-8 1.20E-7 2.42E-8
2−2 2.88E-5 3.48E-5 6.10E-6 7.33E-6 1.37E-6 1.64E-6 3.21E-7 3.83E-7 7.75E-8
2−3 4.98E-5 5.78E-5 9.33E-6 1.09E-5 1.92E-6 2.26E-6 4.26E-7 5.04E-7 9.96E-8
2−4 5.98E-5 6.78E-5 9.65E-6 1.11E-5 1.71E-6 1.99E-6 3.38E-7 3.97E-7 7.33E-8
2−8 2.34E-4 2.49E-4 4.54E-5 4.81E-5 6.89E-6 7.29E-6 9.22E-7 9.76E-7 1.20E-7
2−12 2.41E-4 2.57E-4 5.85E-5 6.18E-5 1.43E-5 1.51E-5 3.54E-6 3.71E-6 8.48E-7
2−16 2.41E-4 2.57E-4 5.85E-5 6.18E-5 1.43E-5 1.51E-5 3.54E-6 3.71E-6 8.80E-7
2−18 2.41E-4 2.57E-4 5.85E-5 6.18E-5 1.43E-5 1.51E-5 3.54E-6 3.71E-6 8.80E-7

1 Method for λ1 = 1/6, λ2 = 1/3
2 Method for λ1 = 1/12, λ2 = 5/12

Table 4 represents the maximum absolute error and order of convergence
for different λ1, λ2 and it is observed that the proposed method is almost second
order convergence.

Table 4. Maximum absolute error and order of convergence for Example 2 with ε = 2−3,
δ = 0.5ε

N 32 64 128 256 512

λ1 = 1
6
, λ2 = 1

3
4.98E-05 9.33E-06 1.92E-06 4.26E-07 9.96E-08
2.4162 2.2808 2.1722 2.0966 2.0176

λ1 = 1
12
, λ2 = 5

12
5.78E-05 1.09E-05 2.26E-06 5.04E-07 1.18E-07
2.4067 2.2699 2.1648 2.0946 2.0163

λ1 = 1
18
, λ2 = 4

9
6.06E-05 1.15E-05 2.38E-06 5.32E-07 1.25E-07
2.3977 2.2726 2.1615 2.0895 2.0189

λ1 = 1
14
, λ2 = 3

7
5.90E-05 1.12E-05 2.31E-06 5.16E-07 1.21E-07
2.3972 2.2775 2.1624 2.0924 2.0183

λ1 = 1
30
, λ2 = 14

30
6.30E-05 1.19E-05 2.48E-06 5.55E-07 1.30E-07
2.4044 2.2625 2.1598 2.0940 2.0176

λ1 = 1
24
, λ2 = 11

24
6.21E-05 1.18E-05 2.44E-06 5.46E-07 1.28E-07
2.3958 2.2738 2.1599 2.0928 2.0173

The numerical solution for different values of δ is depicted in Figure 2.
It can be observed from the graph that the thickness of the boundary layer
increases as the delay increases.
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Figure 2. Numerical solution for Example 2.
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