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Abstract. In this paper, we study the nonlinear boundary-layer equation of Falkner-
Skan defined on a semi-infinite domain. An iterative finite difference (IFD) scheme
is proposed to numerically solve such nonlinear ordinary differential equation. A
computational iterative scheme is developed based on Newton-Kantorovich quasi-
linearization. At every iteration, the obtained linearized differential equation is nu-
merically solved using the standard finite difference method. Numerical experiments
show the accuracy and efficiency of the method compared to existing solvers. The
computation is performed for different parameter values, including the special case of
Blasius problem.
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1 Introduction

The numerical solution for nonlinear differential equations is a major problem in
computational mathematics. Specifically, nonlinear boundary value problems
on infinite domain attract a major attention of the scientific community. One
known nonlinear differential equation defined on a semi-infinite domain is the
so-called Blasius equation which appeared in the literature in 1908 [4]. Blasius
equation describes the viscous flow in a laminar boundary layer over a flat
plate. Because of its interesting application to fluid flow, physicists as well as
engineers have been always keenly interested in solving this nonlinear ordinary

�
Copyright ©c 2018 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2018.009
mailto:temimi.h@gust.edu.kw
mailto:romdhane.m@gust.edu.kw
http://creativecommons.org/licenses/by/4.0/


140 H. Temimi and M. Ben-Romdhane

differential equation rich in physical, mathematical, and numerical challenges.
Blasius equation is part of the set of more general nonlinear problems known as
the Falkner-Skan equations [7]. The third-order nonlinear equation of Falkner-
Skan type is a famous example of nonlinear boundary value problems on semi-
infinite domains arising from the boundary layer flow with stream-wise pressure
gradient. It is governed by the following equation:

d3f

dη3
+ β0f

d2f

dη2
+ β1

[
1−

( df
dη

)2]
= 0, 0 < η <∞ (1.1a)

subject to the boundary conditions

f(0) = 0, f ′(0) = γ, lim
η→+∞

f ′(η) = 1, (1.1b)

where γ is the movement velocity ratio of the plate to the mainstream.
In fact, when 0 < γ < 1, the speed of oncoming fluid is larger than the speed of
the plate; however, when γ > 1, the speed of the moving plate is faster than the
speed of the oncoming fluid. Furthermore, the case when γ < 0 corresponds to a
movement of the plate and the mainstream in opposite directions. Particularly,
the special case γ = 0 (for a fixed plate) and β1 = 0 leads to Blasius problem [4].

Due to its challenging physical properties, many researchers have attempted
to solve Falkner–Skan equation with various methods. Among these attempts,
we can cite the work of Hartree [11] who showed that under some conditions
there exists a family of unique solutions of the problem whose first-order deriva-
tive tends to 1 exponentially. Howarth [14] attempted also to solve the bound-
ary layer problem in a retarded region by reducing the problem to the solution
of a first order differential equation.

Later, Falkner-Skan problem has attracted the attention of more researchers
such as Cebeci and Keller [5], Asaithambi [2], and Sher and Yakhot [27] who
applied various numerical approaches to solve this problem. Moreover, Liao
[15,16] applied the homotopy analysis method to solve the Falkner-Skan equa-
tion which provided an explicit analytical solution with the same boundary
conditions as those of above. Additionally, Salama [26] proposed a higher-order
method for solving such free boundary problems. Sachdev et al [25] proposed
also an exact solution to Falkner-Skan equation subject to appropriate physi-
cal boundary conditions arising from boundary layer theory. Besides, Liu and
Chang [17] investigated numerically the solutions of the Falkner-Skan equation
with the boundary conditions of resting and impermeable wall. Moreover, Zhu
et al. [30] presented two iterative methods for solving the Falkner-Skan equa-
tion based on the quasilinearization technique and a cubic spline solver. The
original problem has been formulated as a new free boundary value problem.
Additionally, an adaptive algorithm for the Thomas-Fermi equation by means
of the moving mesh finite element method has been developed [31].

Recently, Fang et al. [8, 9] have studied analytically a special case of the
Falkner-Skan equation using β1 = −1 with the boundary conditions of mass
transfer and wall stretching, as well as the problem of a shrinking sheet with
a constant sheet velocity. On the other hand, different numerical methods
have been applied in order to find accurate solutions, such as Runge-Kutta
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algorithm [6], recursive evaluation of Taylor coefficients [1], and iterative trans-
formation method [10]. Furthermore, other types of similar flows has been
recently treated such as the work of Raju et al. who studied the nonlinear
flows of Casson and Carreau fluids on various types of wedges [20,21,22,23,24].
Also, Mukhopadhyay et al. [18] investigated a boundary-layer forced convection
flow of a Casson fluid past a symmetric wedge.

Despite these aforementioned research work since the beginning of the pre-
vious century, there is no closed-form solutions available for Falkner-Skan prob-
lem nor for the special case of Blasius problem. This fact stimulated researchers
to investigate for most reliable, efficient, and low-computation cost solutions.
In this manuscript, we introduce a new coordinate transformation and we ap-
ply it to Falkner-Skan problem (1.1) in order to overcome the difficulty of the
semi-infinite domain. Using the aforementioned transformation and the intro-
duced auxiliary function, a system of nonlinear differential equations is obtained
leading to a second order nonlinear integro-differential equation subjected to
boundary conditions defined on a finite values 0 and 1. In order to solve the
resulting nonlinear integro-differential equation, we develop an iterative scheme
based on Newton-Raphson-Kantorovich method in function space [3, 28] com-
bined with the standard finite difference method. Numerical simulations will
be performed to demonstrate the efficiency and reliability of the proposed nu-
merical solver in producing accurate solutions with low computation cost.

2 Transformed problem and iterative finite difference
solution

2.1 Order reduction and coordinate transformation

In order to perform order reduction of the problem (1.1), we introduce an
auxiliary function g defined by g(η) = f ′(η) to obtain the following nonlinear
system 

d2g

dη2
+ β0f

dg

dη
+ β1

(
1− g2

)
= 0,

f ′ − g = 0,
(2.1a)

subject to the boundary conditions

f(0) = 0, g(0) = γ, lim
η→+∞

g(η) = 1. (2.1b)

The solution of Falkner-Skan problem is sought on a semi-infinite domain η ≥ 0.
Moreover, one of the boundary conditions is asymptotically assigned on the
first derivative at infinity. These two aforementioned characteristics of the
problem are the main challenges to be faced on handling this type of problems.
Therefore, we define a coordinate transformation by introducing a new variable
t in order to map the changing physical domain [0,∞) to a fixed computational
domain [0, 1). This new variable is defined as

t = η/(η + 1). (2.2)

Math. Model. Anal., 23(1):139–151, 2018.
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It is clear that the mapping t : [0,∞) −→ [0, 1), η −→ η/(η + 1) is one-to-one.
Then, given t, η is obtained as η = t/(1− t). We also introduce two functions
h(t) and k(t) defined by

f(η) = f(η(t)) = f(t/(1− t)) = h(t), (2.3a)

g(η) = g(η(t)) = g(t/(1− t)) = k(t). (2.3b)

As a result, we have

f ′(η) =
df

dt

dt

dη
= h′(t)

dt

dη

=
1

(η + 1)2
h′(t) = (1− t)2 h′(t).

Similarly,

g′(η) = (1− t)2k′(t),
g′′(η) =

[
(1− t)2k′′(t)− 2(1− t)k′(t)

]
(1− t)2

= (1− t)4k′′(t)− 2(1− t)3k′(t).

Hence, using (2.2) and (2.3) in the system of nonlinear differential equations
(2.1) leads to the following{

(1− t)4k′′(t)− 2(1− t)3k′(t) + β0h(t)k′(t)− β1k2(t) = −β1,
(1− t)2h′(t)− k(t) = 0,

(2.4a)

subject to the boundary conditions

h(0) = 0, k(0) = γ, k(1) = 1. (2.4b)

Using the boundary condition h(0) = 0, the second equation in the system
(2.4a) becomes

h(t) =

∫ t

0

1

(1− ε)2
k(ε) dε. (2.5)

Thus, by combining both equations of the system (2.4a), the problem (2.4) can
be written in the form of a second order nonlinear integro-differential equation
defined for t ∈ (0, 1) as

(1− t)4k′′(t)− 2(1− t)3k′(t) − β1 k
2(t) + β1

+ β0(1− t)2k′(t)
∫ t

0

k(ε)

(1− ε)2
dε = 0

(2.6a)

and subject to the boundary conditions

k(0) = γ, k(1) = 1. (2.6b)

In summary, we reduced the Falkner-Skan problem (1.1) of third order, defined
on a semi-infinite domain with an asymptotic boundary condition, to a second
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order nonlinear integro-differential equation (2.6) defined over a finite domain
and subjected to two boundary conditions given at finite values 0 and 1. To
determine the solution of problem (1.1), we have to solve problem (2.6) for
k(t), recuperate h(t) using (2.5), then compute f(η) using the relation

f(η) = h(t) = h(η/(η + 1)), ∀η ∈ (0,+∞).

2.2 Quasi-linearization of the transformed Falkner-Skan problem

In this section, we apply the Newton-Raphson-Kantorovich approximation in
function space introduced by [3, 28] on the newly introduced second order
integro-differential equation (2.6) resulting in the previous section. At ev-
ery iteration, the obtained quasi-linearized differential equation is numerically
solved using the finite difference method yielding the solution of the trans-
formed Falkner-Skan’s boundary value problem (2.1).

First, let us recall the Newton-Raphson-Kantorovich approximation method
in function space to solve nonlinear differential equations. Let {vn} be a se-
quence of approximate solutions of the nonlinear ordinary differential equation
F (v, v′, v′′, x) = 0, where F (v, v′, v′′, x) is a differentiable functional with re-
spect to v, v′ and v′′. Then, the generalized Newton-Raphson-Kantorovich
approximation can be reformulated as

F (vn+1, v
′
n+1, v

′′
n+1, x) ≈ F (vn, v

′
n, v
′′
n, x) + (vn+1 − vn)Fv(vn, v

′
n, v
′′
n, x)

+ (v′n+1 − v′n)Fv′(vn, v
′
n, v
′′
n, x) + (v′′n+1 − v′′n)Fv′′(vn, v

′
n, v
′′
n, x).

As a result, the sequence {vn} will converge to the solution of the nonlinear
ODE: F (v, v′, v′′, x) = 0.

Hence, in order to solve the transformed Falkner-Skan problem (2.6), we
consider the functional

F (v, v′, v′′, t) = (1− t)4v′′ − 2(1− t)3v′ − β1 v2 + β1

+ β0(1− t)2v′
∫ t

0

v(ε)

(1− ε)2
dε.

Then, the partial derivatives of F are

Fv(v, v
′, v′′, t) = β0(1− t)2v′

∫ t

0

1

(1− ε)2
dε− 2β1 v, (2.7a)

Fv′(v, v
′, v′′, t) = −2(1− t)3 + β0(1− t)2

∫ t

0

1

(1− ε)2
v(ε) dε, (2.7b)

Fv′′(v, v
′, v′′, t) = (1− t)4. (2.7c)
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Thus, the resulting quasi-linearizased problem (2.6) is given by

(1− t)4k′′n − 2(1− t)3k′n + β0(1− t)2k′n
∫ t

0

1

(1− ε)2
kn(ε) dε− β1 k2n + β1

+ (kn+1 − kn)
(
β0(1− t)2k′n

∫ t

0

1

(1− ε)2
dε− 2β1 kn

)
+ (k′n+1 − k′n)

(
β0(1− t)2

∫ t

0

1

(1− ε)2
kn(ε) dε− 2(1− t)3

)
+ (k′′n+1 − k′′n)(1− t)4 = 0,

which can be simplified as

(1− t)4k′′n+1 +

(
β0(1− t)2

∫ t

0

1

(1− ε)2
kn(ε) dε− 2(1− t)3

)
k′n+1

+

(
β0t(1− t)k′n − 2β1 kn

)
kn+1 = β0t(1− t)k′nkn − β1k2n − β1, (2.8a)

subject to the boundary conditions

kn+1(0) = γ. kn+1(1) = 1. (2.8b)

The main advantage of the proposed iterative scheme is that, given kn, the
function kn+1 is the solution of a linear ordinary differential problem with
known Dirichlet boundary conditions. Thus, at every iteration, given kn, the
obtained linearized ODE will be numerically solved for kn+1 using the finite
difference method.

Provided that the choice of the initial approximation k0 is crucial for the con-
vergence of the scheme, we propose the following initial solution satisfying the
boundary conditions (2.8b):

k0(t) = (1− γ)t2 + γ, for 0 ≤ t ≤ 1.

2.3 Iterative finite difference scheme

In order to solve equation (2.8) for kn+1 using the finite difference method, we
consider a uniform mesh of size h = 1

M and grid points ti = i ∗ h for i = 0 . . .M .
For a fixed n > 0, we refer to the finite difference solution as Kn.

To write the finite difference scheme, We use the standard finite difference
approximations of the first and second derivatives, respectively, as

k′n(ti) ≈
Kn(ti+1)−Kn(ti−1)

2h
, k′′n(ti) ≈

Kn(ti+1)− 2Kn(ti) +Kn(ti−1)

h2
,

for 1 ≤ i ≤M − 1.

We also use a numerical computation of the integral

∫ t

0

kn(ε)

(1− ε)2
dε at the
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mesh points ti, for i = 1, . . . ,M − 1, using the standard Simpson’s rule as∫ ti

0

kn(ε)

(1− ε)2
dε ≈

i∑
j=0

Kn(tj)

(1− tj)2
Wj = In(ti), if i is even (2.9)

∫ ti

0

kn(ε)

(1− ε)2
dε≈h

2

(
Kn(t1)

(1− t1)2
+γ

)
+

i∑
j=1

Kn(tj)

(1− tj)2
Wj = In(ti), if i is odd,

(2.10)

where Wj ’s are the known Simpson’s weights. Hence, we can write the finite
difference scheme for the ODE (2.8) as follows(

(1− ti)4

h2
+
β0(1− ti)2In(ti)− 2(1− ti)3

2h

)
Kn+1(ti+1) (2.11)

+

(
β0ti(1− ti)DKn(ti)− 2β1 Kn(ti)− 2

(1− ti)4

h2

)
Kn+1(ti)

+

(
(1− ti)4

h2
− β0(1− ti)2In(ti)− 2(1− ti)3

2h

)
Kn+1(ti−1)

= β0ti(1− ti)DKn(ti)Kn(ti)− β1 (Kn(ti))
2 − β1, (1 ≤ i ≤M − 1),

where DKn is the centred finite difference approximation of the first derivative
using the computed solution from the previous iteration n, i.e.,

DKn(ti) ≈
Kn(ti+1)−Kn(ti−1)

2h
, for 1 ≤ i ≤M − 1.

Using the simplified notations Ki
n = Kn(ti) and Iin = In(ti), for n ≥ 0, we can

summarize the iterative finite difference scheme (2.11) above as follows:(
(1− ti)4

h2
+
β0(1− ti)2Iin − 2(1− ti)3

2h

)
Ki+1
n+1

+

(
β0ti(1− ti)DKi

n − 2β1 K
i
n − 2

(1− ti)4

h2

)
Ki
n+1

+

(
(1− ti)4

h2
− β0(1− ti)2Iin − 2(1− ti)3

2h

)
Ki−1
n+1

= β0ti(1− ti)DKi
nK

i
n − β1 (Ki

n)2 − β1,

(2.12a)

for 1 ≤ i ≤M − 1. The boundary conditions are written as

Kn(t0 = 0) = γ, Kn(tM = 1) = 1. (2.12b)

In addition, the initial approximation is given by

K0(ti) = (1− γ)t2i + γ for 0 ≤ i ≤M. (2.12c)

Then, once the numerical solution Kn of the integro-differential equation (2.6)
is computed, the other numerical solution Hn of the nonlinear system (2.4) is
obtained via a numerical evaluation of (2.5) using (2.9) and (2.10).

Math. Model. Anal., 23(1):139–151, 2018.
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Finally, the actual solutions f and g of Falkner–Skan equation are numeri-
cally computed at ηi, i = 0, . . . ,M , by using the backward transformation (2.3)
as follows

F (ηi) = H(ti), G(ηi) = K(ti), ηi =
ti

1− ti
.

We note that, in order to control the convergence of the proposed IFD scheme
(2.12a), we set an error tolerance δ > 0. Then, the algorithm is iteratively
applied until such accuracy is reached in the sense that ||Kn −Kn−1||∞ ≤ δ.
We also mention that the convergence rate of the proposed IFD scheme (2.12a)
is quadratic, since it is based on Newton-Raphson-Kantorovich approximation
[3]. Thus, this scheme is highly efficient in terms of computational time and
cost. Such fact will be numerically exhibited in the following Section 3.

3 Numerical simulation

In this section, we present several numerical simulations in which we compute
the solution of Falkner–Skan equation (1.1) for various values of the parameters
β0 and β1 corresponding to different cases of flows. Particularly, we focus on
the following special cases: Blasius flow [4]: β1 = 0; Pohlhausen flow [19]:
β0 = 0 and β1 = 1; Hiemenz flow [12]: β0 = 1 and β1 = 1; Homann flow [13]:
β0 = 2 and β1 = 1.

In Table 1, we present the numerical solution of Blasius equation (β1=0)
computed with the proposed IFD method when β0 = 0.5. We also present
a comparison of this computed solution to some of the most accurate results
available in the literature [6, 14].

Table 1. Numerical solution of Blasius equation with β0 = 0.5 and β1=0 compared to
Howarth’s [14] and Cortell’s [6] solutions.

η f(η) f(η) [6] f(η) [14] f ′(η) f ′(η) [6] f ′(η) [14] f ′′(η) f ′′(η) [6] f ′′(η) [14]

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.33206 0.33206 0.33206
1 0.16557 0.16557 0.16557 0.32978 0.32978 0.32979 0.32301 0.32301 0.32301
2 0.65003 0.65003 0.65003 0.62977 0.62977 0.62977 0.26675 0.26675 0.26675
3 1.39681 1.39682 1.39682 0.84605 0.84605 0.84605 0.16136 0.16136 0.16136
4 2.30575 2.30576 2.30576 0.95552 0.95552 0.95552 0.06423 0.06423 0.06424
5 3.28333 3.28330 3.28329 0.99154 0.99155 0.99155 0.01591 0.01591 0.01591
6 4.27967 4.27965 4.27964 0.99897 0.99898 0.99898 0.00240 0.00240 0.00240
7 5.27925 5.27927 5.27926 0.99992 0.99993 0.99992 0.00022 0.00022 0.00022
8 6.27929 6.27925 6.27923 0.99999 1.00000 1.00000 0.00001 0.00001 0.00001
9 7.27922 7.27925 7.27923 1.00000 1.00000 1.00000 0.00000 0.00000 0.00000

In Table 2 we present the numerical solution of Blasius equation (β1=0)
computed with the proposed IFD method for the values of β0 = 2/3 and β0 = 1.
We compare it to the results in [6]. It is clear that our computed solution is
accurate and in good agreement with the previously computed solutions of
Falkner-Skan problem.

In Table 3, we present the computed values of the wall shear stress α = f ′′(0)
for Falkner-Skan model when β0=1, for different values of β1. We also compare
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Table 2. Numerical solution of Blasius equation with β1=0 compared to Cortell’s [6]
solution.

β0 η f(η) f(η) [6] f ′(η) f ′(η) [6] f ′′(η) f ′′(η) [6]

0 0.00000 0.00000 0.00000 0.00000 0.46960 0.46960
1 0.23299 0.23299 0.46063 0.46063 0.43438 0.43438
2 0.88680 0.88681 0.81669 0.81670 0.25567 0.25567

1 3 1.79557 1.79558 0.96906 0.96906 0.06771 0.06771
4 2.78389 2.78390 0.99777 0.99777 0.00687 0.00687
5 3.78328 3.78325 0.99994 0.99994 0.00026 0.00026
6 4.78326 4.78324 1.00000 1.00000 0.00000 0.00000

0 0.00000 0.00000 0.00000 0.00000 0.38342 0.38342
1 0.19090 0.19090 0.37939 0.37939 0.36747 0.36747
2 0.74235 0.74235 0.70789 0.70789 0.27420 0.27420
3 1.56317 1.56317 0.90911 0.90910 0.12858 0.12858

2
3

4 2.51730 2.51730 0.98323 0.98323 0.03313 0.03313
5 3.51042 3.51038 0.99827 0.99827 0.00444 0.00444
6 4.50983 4.50979 0.99990 0.99990 0.00030 0.00030
7 5.50976 5.50976 0.99999 0.99999 0.00001 0.00001
8 6.50983 6.50977 1.00000 1.00000 0.00000 0.00000

these results obtained by our IFD method to some existing accurate results
available in the literature [1, 26].

Table 3. The wall shear stress α = f ′′(0) of Falkner-skan model with β0 = 1 compared to
Asaithambi’s [1] and Salama’s [26] solutions.

β1 α α [1] α [26]

40 7.314802 7.314785 7.314785
30 6.338220 6.338209 6.338208
20 5.180725 5.180718 5.180718
15 4.491492 4.491487 4.491487
10 3.675237 3.675234 3.675234
2 1.687218 1.687218 1.687218
1 1.232587 1.232589 1.232588
0.5 0.927679 0.927680 0.927680
0 0.469599 0.469600 0.469600

In Table 4 we consider different benchmark solutions for some of the famous
practical cases of flows.

Furthermore, in Figure 1, we graphically exhibit the solution of Falkner-
Skan problem for different flows (Blasius, Pohlhausen, Hiemenz, and Homann).
It is observed that for all these types of flows, the solution of Falkner-Skan
problem is increasing with respect to η.

We also display the velocity profile in Figure 2 as well as the shear stress
in Figure 3 for different flows. We notice that for all the considered types of
flows, the shear stress decays to zero, however the decay in the case of Blasius
flow is slower than in the other flow cases.

Math. Model. Anal., 23(1):139–151, 2018.
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Table 4. The wall shear stress α = f ′′(0) of Falkner-skan models compared to different
benchmark solutions.

Type of flow β0 β1 α

Blasius flow 1
2

0 0.33206 0.33206 [6]
Pohlhausen flow 0 1 1.15470 1.15470 [19]
Hiemenz flow 1 1 1.23258 1.23258 [29]
Homann flow 2 1 1.31193 1.31193 [13]
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Figure 1. The Solution of Falkner-Skan problem for the cases of: Blasius problem β1 = 0
(left) and Pohlhausen, Hiemenz, and Homann flows β0 = 0, 1, 2, respectively, with β1 = 1
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β1 = 0 (left) and Pohlhausen, Hiemenz, and Homann flows β0 = 0, 1, 2, respectively, with

β1 = 1 (right).
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Figure 3. Shear stress of Falkner-Skan solution for the cases of: Blasius problem β1 = 0
(left) and Pohlhausen, Hiemenz, and Homann flows β0 = 0, 1, 2, respectively, with β1 = 1

(right).

4 Conclusions

In this paper, we have presented a new iterative finite difference method to
numerically solve a nonlinear problem defined on a semi-infinite domain, arising
from the boundary layer flow with stream-wise pressure gradient, known as
Falkner-Skan problem.

For that purpose, we have introduced a new coordinate transformation to
overcome the difficulty of the semi-infinite domain. Such transformation led to
a second order nonlinear integro-differential equation defined on a finite domain
and subjected to boundary conditions on finite values.

We have then used Newton-Raphson-Kantorovich quasilinearisation method
in function space [3] in combination with the standard finite difference method
to solve transformed Falkner-Skan problem. The proposed iterative finite dif-
ference method leads to an iterative scheme in which an accurate solution at
every iteration is computed using the approximate solution from the previous
iteration.
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