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Abstract. Jeffery’s equation describes the dynamics of a non-inertial ellipsoidal
particle immersed in a Stokes liquid and is used in various models of fiber suspension
flow. However, it is not valid in close neighbourhood of a rigid wall. Geometrically
impossible orientation states with the fiber penetrating the wall can result from this
model. This paper proposes a modification of Jeffery’s equation in close proximity
to a wall so that the geometrical constraints are obeyed by the solution. A class of
models differing in the distribution between the translational and rotational part of
the response to the contact is derived. The model is upscaled to a Fokker–Planck
equation. Another microscale model is proposed where recoiling from the wall upon
the collision is permitted. Numerical examples illustrate the dynamics captured by
the models.
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1 Introduction

Understanding the processes involved in fiber suspension flow near a solid wall
is far from complete. Experimental and numerical studies have shown that in
sufficiently dilute suspensions, Jeffery’s model is verified up to the wall gap to
fiber length ratio h/` ≥ 3.0. Close to the wall Jeffery’s orbits are perturbed,
the period increases by about 10 % at the distance h/` = 1.25. Oscillation of
the center of the fiber from and towards the wall is observed at h/` = 1.0. Still
closer, the presence of the wall exerts geometrical restrictions on the kinematics
of the fiber (excluded volume effect).

Fiber orientation close to a solid surface in a shear flow has been studied
experimentally and the wall effect on fiber orientation has been documented
in [1, 3, 6, 7]. A rich variety of fiber behaviour has been observed. Typical
example is the “pole vaulting” orbits during which the center of mass of the fiber
is lifted from the wall. Experiments performed in shear flow down an inclined

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2014.893263
mailto:ansiso@inbox.lv
mailto:uldis.strautins@lu.lv


76 A. Ozolins and U. Strautins

plane of a sedimenting fiber suspension suggest that short fibers (fiber aspect
ratio ra ≈ 10) align with the vorticity axis. Pole vaulting is only observed if
the solid wall is ridged [1, 3].

While several studies have been devoted to fiber level simulations, so far
no Jeffery like wall effect model is available [2]. The need for such models is
obvious, see [11] where a phenomenological recoiling model is proposed. The
slow-down of Jeffery’s orbits has been considered phenomenologically in the
reduced strain closure model, cf. [10]. However, that model is developed in a
different context (highly concentrated suspensions away from the wall).

This paper is organized as follows. Sections 2 and 3 are devoted to review-
ing Jeffery’s equation and the mesoscale framework for a fiber ensemble. The
next section contains the bulk of this work where we propose modifications
to Jeffery’s equation to include the excluded volume effect. Scenarios of fiber
sticking to the wall and recoiling from the wall are considered. The correspond-
ing mesoscale (Fokker–Planck) equations are formulated in Section 5. We close
the article with some numerical examples and conclusions.

2 Microscale Framework

In the original paper (see [4]) George Barker Jeffery considers the dynamics of
a single prolate ellipsoid shaped particle immersed in a Newtonian liquid. The
free flow velocity v satisfies the incompressible Stokes equation. Let κ = ∇v
so that the rate of deformation tensor is γ̇ = κ + κT and the vorticity tensor
is ω = κ− κT . The center of mass of the particle is translated with velocity v
and the rate of rotation is given by Jeffery’s equation:

ṗ = −1

2
ωp+

1

2
λ
[
γ̇p− (p⊗ p)(γ̇p)

]
.

Here p is the unit fiber orientation vector, λ =
r2a−1
r2a+1 is a fiber geometry pa-

rameter dependent on the aspect ratio ra of the fiber length ` to the diameter.
One can rewrite Jeffery’s equation in a compact form [9]:

ṗ = (I − p⊗ p) · (Mp) ≡ J(p), (2.1)

where the effective velocity gradient is defined as

M =
λ+ 1

2
κ+

λ− 1

2
κT .

Jeffery’s equation is commonly used as a basic ingredient for statistical mechan-
ics models for fiber-fluid interaction. Such models generally inherit unphysical
behaviour near obstacles from Jeffery’s equation, see Fig. 1.

3 Mesoscale Framework

We give a brief introduction to the continuum description of fiber suspensions.
The macroscopic velocity v(x, t), x ∈ Ω ⊂ R3, t > 0, of the suspension is
governed by the equations ∇·v = 0, ρvt+ρv ·∇v = µ4v−∇p+f+∇·σ where
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Figure 1. Unphysical situation: fiber penetrates the wall y = 0 according to Jeffery’s
model.

the stress stored in the fibers σ is a function of the rate of deformation tensor
γ̇ and the local fiber orientation distribution ψ = ψ(p, x, t), with the particle
number Np:

σ = Npγ̇ :
〈
p4
〉
;
〈
p4
〉
ijkl

(x, t) =

∫
S2

pipjpkplψ(p, x, t) dp.

The evolution of ψ(p, x, t), p ∈ S2, x ∈ Ω, t > 0 is governed by a Fokker–
Planck equation describing Jeffery’s dynamics ṗ = J(p) superposed by isotropic
(e.g. Folgar–Tucker model with scalar constant CD) or anisotropic [8] orienta-
tion diffusion:

ψt + v · ∇xψ = −∇p ·
(
J(p)ψ

)
+

1

2
∇p · (CD∇pψ)

supplemented with an initial condition and appropriate boundary conditions
on the inflow boundary. No boundary conditions wrt. p are required since p is
defined on the unit sphere. The order of the model can be reduced by expanding
ψ in the components of even order moments 〈p2k〉 and obtaining a system of
ODEs on the streamlines; this system requires a closure approximation.

4 Single Fiber Dynamics: Modified Jeffery’s Equations

We now turn to modeling the collision of a fiber with a flat wall. In general,
the collision influences both the translational and rotational motion of the
fiber. However, we first proceed to describe pure rotational response and pure
translation response.

4.1 Kinematics of the fiber

Our main assumptions are as follows:

1. The fibers are rigid i.e., inflexible and do not break. The wall is assumed
to be flat. Thus the coordinates of the fiber with respect to the wall can
be reduced to (h, p) where h denotes the distance from the center of mass
of the fiber to the wall and p is the orientation vector.

2. If the fiber is not in contact with the wall then Jeffery’s equation (2.1)
holds and ḣ = 〈v, n〉 ≡ ḣJ , where v is the bulk velocity of the suspension
flow, see [5], and n is the inwards pointing normal vector of the wall.

Math. Model. Anal., 19(1):75–84, 2014.
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3. Since we mainly deal with slender fibers, the diameter of the fiber is
neglected in comparison with the fiber length `, thus the contact condition
is established by the centerline of the fiber touching the wall.

Figure 2. Contact condition. The fiber with orientation p is in contact with wall (dashed
line). Wall normal n is decomposed in tangential and normal components to the sphere.

The Jeffery’s equation treats fiber orientation p and −p equally; let us
assume for the rest of this section that p is chosen so that 〈p, n〉 ≥ 0 (see
Fig. 2). Three cases are possible:∣∣〈p, n〉∣∣ < 2h/` no contact (allowed region), (4.1)∣∣〈p, n〉∣∣ = 2h/` contact with the wall (condition C), (4.2)∣∣〈p, n〉∣∣ > 2h/` penetration (forbidden region), (4.3)

where 〈·,·〉 denotes dot product in Euclidean space R3.
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Figure 3. Trajectory p(t): Jeffery’s equation (dashed line), sliding model (continuous
line). Projection of sphere onto Oxy . Wall’s normal is in z direction.

We will model several types of fiber orbit near a wall:

1. Sliding (collision only influences p, see Fig. 3);

2. Pole vaulting (collision only influences h, see Fig. 4);
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Figure 4. Pole vaulting model. Position of fiber wrt. wall in different time moments.
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Figure 5. Fiber drifting (ḣ < 0) towards the wall (y = 0) and remaining in contact (a)
and recoiling from the wall (b).

3. Combination of sliding and pole vaulting (both p and h are influenced,
fiber remains in contact with wall after collision, see Fig. 5a);

4. Recoiling (fiber loses contact with wall right after collision, see Fig. 5b).

4.2 First model: sliding

We assume that during contact one end of the fiber is sliding along the wall as
in Fig. 3. Jeffery’s equation has to be modified as to cancel the advance of the
end of the fiber towards the wall due to the translational and rotational motion
of the fiber. The relative velocity of the nearest end of the fiber wrt. the wall
is χ̇ := ḣ+ `

2 〈J(p), n〉, thus the contact condition C is |〈p, n〉| = 2h
` and χ̇ < 0.

We take tangent vector nt ∈ TS2
p such that nt ⊥ p, 〈nt, n〉 > 0 and n ⊥

nt × p, see Fig. 2. With np = 〈p, n〉p it is expressed:

nt =
n− np
‖n− np‖

=
n− 〈n, p〉p
‖n− 〈n, p〉p‖

, (4.4)

where ‖ · ‖ is usual Euclidean norm. The modified Jeffery’s equation is now
constructed from two terms. Assuming ḣ = 0 we see that the term needed to
avoid penetration is −〈n, J(p)〉nt. Assuming J(p) = 0, ḣ < 0, the required
term is −βḣ, where

β =
‖n− 〈n, p〉p‖

1− 〈n, p〉2
.

Math. Model. Anal., 19(1):75–84, 2014.
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In the general case we write ṗ = J(p) − (〈n, J(p)〉 + βḣ)nt under contact
condition C.

In total, the sliding model reads as:

ṗ =


J(p) ≡ (I − p⊗ p) · (Mp) , if ¬C;

J(p)− (〈n, J(p)〉+ βḣ)
n− 〈p, n〉p
‖ n− 〈p, n〉p ‖

, if C.
(4.5)

Since 〈p, ṗJ〉 = 0 and 〈p, nt〉 = 0 from the construction of nt, we conclude
that 〈p, ṗ〉 = 0 holds for (4.5), thus the unit sphere is an invariant manifold.

4.3 Second model: pole vaulting

Here we assume that during contact p(t) still fulfills Jeffery’s equation and mod-
ify the equation for h to avoid unphysical situations (see Fig. 1). geometrical
constraint for single fiber. However, recoiling effect does not appear, i.e. the
end of fiber remains on the wall. The center of mass of a fiber in a pole vault
orbit h(t) is no longer driven by the free flow velocity v, but by the contact
itself. The equation follows from the relative velocity of the fiber end wrt. wall
and reads as

ḣ =

ḣJ ≡ 〈v, n〉 if ¬C;

`

2
|〈ṗ, n〉| otherwise.

(4.6)

4.4 Combination of sliding and pole vaulting

The most general rigid body dynamics is a combination of translation and
rotation. We obtain a class of models depending on a constant α ∈ [0; 1]
interpolating between the two models introduced above:

ṗ =


J(p) ≡ (I − p⊗ p) · (Mp) , if ¬C;

J(p)− α(〈n, J(p)〉+ βḣ)
n− 〈p, n〉p
‖ n− 〈p, n〉p ‖

, if C
(4.7)

along with (4.6).

4.5 Third model: recoiling

We assume that fiber can slightly recoil from the wall at the moment of contact
due to the impact and possible roughness of the wall, see Fig. 5. A fiber in
Jeffery’s theory is inertialess, thus impulsive equations are required. Let us
consider 2 variants.

R1. The function h jumps at the moment of contact, evolution of p changes
smoothly according to Jeffery’s equation, see Fig. 5

ḣ = 〈v, n〉, if
∣∣〈p(t), n〉∣∣ < 2h(t)/`;

h(t+ 0) = h(t) + c
∣∣〈J(p(t)), n

〉
|, if |〈p(t), n〉| = 2h(t)/`,

(4.8)

where c ∈ R+ is a parameter.
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R2. Both functions h and p jump at the moment of a contact.

ṗ = (I − p⊗ p) · (Mp) ,
∣∣〈p(t), n〉∣∣ < 2h(t)/`;

p(t+ 0) = P(t),
∣∣〈p(t), n〉∣∣ = 2h(t)/`;

(4.9)

ḣ = 〈v, n〉 if
∣∣〈p(t), n〉∣∣ < 2h(t)/`;

h(t+ 0) = H(t), if
∣∣〈p(t), n〉∣∣ = 2h(t)/`,

(4.10)

where P and H are functions such that |〈P, n〉| ≤ 2H/`.

The pole vault model (4.6) is a special case of Model R1 with continuous
solutions. The model R2 is much more general - both p and h can jump in case
of contact.

The functions P, H in R1, R2 have to be provided according to the situation.
These can be quite sophisticated and include fiber diffusion towards the wall
so that h decreases with a jump and p is adjusted. An example of P, H is
provided in Section 6.

5 Mesoscale Modeling

Let us consider a stationary filtration problem where a fiber suspension flows
through a semi-permeable membrane and the fibers cannot flow through the
membrane. For the simplicity of argument assume that each streamline of
macroscopic velocity can be parameterized by distance from the membrane
h ∈ [0, H]. We derive a Fokker–Planck equation on each streamline wrt. the
distribution ψ(p, h, t), p ∈ S2, h ∈ (0, H), t > 0.

For each value of h we partition the unit sphere according to (4.1)–(4.3):

A(h) =
{
p ∈ S2

∣∣ ∣∣〈p, n〉∣∣ < 2h/`
}
, C(h) = ∂A, E(h) = S2\Ā.

The support of ψ(·, h, ·) is contained in the closure of A(h).
Choose one of the continuous microscale models (4.5)–(4.7). The Fokker–

Planck equation reads as:

ψt = −∇p · (ṗψ)−∇h(ḣψ) +
1

2
∇p · (CDp∇pψ) +

1

2
∇h · (CDh∇hψ), (5.1)

where CDp is the Fokker–Planck orientation diffusion constant and CDh is the
diffusion constant for the centroids of the fiber. The equation requires an initial
condition and boundary conditions on the inflow boundaries.

If the diffusion constants CDp and CDh vanish, no boundary conditions
either wrt. p or h are required near the wall since the microscale equations
allow for no flux. The fiber ends may remain in contact with the wall for
prolonged time periods, therefore the edge of zero surface C ⊂ S2 may contain
a finite mass. For this reason, ψ must be interpreted as a distribution.

For nonzero diffusion constants homogeneous Neumann (no flux) condition
has to be specified for (p, h) ∈ S2 × [0, h] s.t. contact condition C holds.

Math. Model. Anal., 19(1):75–84, 2014.
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Figure 6. Trajectory of orientation
vector, Jeffery’s equation.
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Figure 7. Fiber orientation, with
recoiling model R2.
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Figure 8. Trajectory of orientation
vector, sliding model.
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Figure 9. In recoiling models the
orientation jumps from p∗ to p∗∗.

6 Examples

We give some numerical examples. We choose matrix M in (2.1) as

M =

 −1 0 0
0 −3 0
0 0 4

 . (6.1)

There are two stable equilibrium points for Jeffery’s equation (0; 0;±1). We
take the wall’s normal as north pole n = (0; 0; 1). For simplicity, we assume
that ḣ = 0, i.e., simple shear flow is given.

We have used fourth order Runge-Kutta method for numerically solving
the ODEs. The contact condition is checked for each time step. Examples
for dynamics of the orientation vector p are shown in Figs. 6, 8, 7. Fiber
dynamics against plane Oxy are plotted in Figs. 5, 4. In Fig. 6, both pole
vaulting (4.6) and recoiling model (4.8) as well as the single fiber orientation
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without wall influence are represented. However, we see difference between the
two models when comparing evolution of h, where for one case fiber stays in
contact with the wall (Fig. 4), and for second case fiber slightly recoil from the
wall (Fig. 5b).

In Fig. 5, an example of a situation with recoiling, described with equations
(4.10) and (4.9), is given. Let us specify the terms P, H. We first describe the
situation when the wall normal points in the z direction, where the recoiling is
described by a jump of orientation from p∗ to p∗∗, see Fig. 9. Next we rotate
the coordinates so that (0, 0, 1) is mapped to the actual n. We use spherical
coordinates on the unit sphere: x = sin(θ) sin(φ), y = sin(θ) cos(φ), z = cos(θ).
Let (φ, θ) and (φn, θn) represent the vectors p and n respectively. We choose
H = max{h(t)− c|〈ṗJ , n〉|, 0}. We will inspect the case when pz(t) > 0 noting
that derivation is analogous if pz < 0. To compute H, the first step is to rotate n
to (0; 0; 1). To achieve the aim, we rotate n by an angle −φn around z (rotation
matrix Rz,−φn

) and then by an angle −θn around y. We obtain (0; 0; 1) =
Ry,−θnRz,−φn

n. Similarly, we transform p(t) into p∗ as p∗ = Ry,−θnRz,−φn
p(t).

Then we rotate p∗ by an angle θ0 against a plane Oxy, see Fig. 9. Denote
(φ∗, θ∗) – vector p∗ in a polar coordinate system. We assume that 2h(t+ 0)−
h(t) = cos(θ+ θ0), see Fig. 9. Hence we get θ0 = arccos(2h(t+ 0)− h(t))− θ∗.
The case 2h(t+ 0)−h(t) ≤ 0 is a special case, in which we take θ0 = π/2− θn.
Finally the vector p∗ rotated by an angle θ0 around the plane Oxy reads as

p∗∗ =

{
Rz,φ∗Ry,arccos(2h(t+0)−h(t))−θ∗Rz,−φ∗p∗, 2h(t+ 0)− h(t) > 0;

Rz,φ∗Ry,π/2−θnRz,−φ∗p∗, 2h(t+ 0)− h(t) ≤ 0.
(6.2)

Finally we transform p∗∗ from (6.2) back to the p(t+ 0) as

p(t+ 0) = R−1
z,−φn

R−1
y,−θnp∗∗.

In that way we have obtained P, H for (4.9), (4.10) as follows:

P = R−1
z,−φn

R−1
y,−θnRz,φ∗Ry,arccos(h(t)−2h(t+0))−θ∗Rz,−φ∗Ry,−θnR−φnp(t),

H = max
{
h(t)− c

∣∣〈ṗJ , n〉∣∣, 0},
where (φ, θ), (φn, θn) and (φ∗, θ∗) describe vector p, n and Rx,θRz,−φp(t), cor-
respondingly, in a polar coordinate system.

Fig. 4a shows the real positions of a fiber at different time moments that we
obtained using the recoiling model. The wall is assumed to be semi-permeable
so that h decreases with time. The trajectory traced out by p(t) is shown in
Fig. 10.

7 Conclusions

This study has shown that Jeffery’s equation can be modified so that the fibers
never penetrate a rigid wall. We believe that incorporating the distance from
the wall h in the description of suspensions is important and can be extended
e.g., to filtration where a membrane plays the role of the wall, see Fig. 5a.

Math. Model. Anal., 19(1):75–84, 2014.
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The complexity of the involved processes has not allowed us to formulate
a single model, – the choice between a model with or without recoiling will
depend among other factors on the physical characteristics (roughness) of the
wall, flexibility of the fibers, viscosity of the liquid. Of course, a direct two
phase simulation of interaction between the fibers and the liquid could provide
much more exact results, however, the value of our models is in the simplicity
and numerical tractability in applications.

The mesoscale formulation is readily obtained in the form of a Fokker–
Planck equation. However, the numerical treatment of it in the style of Folgar–
Tucker models (where low order moment approximations are used) is more
challenging. However, one can modify any Folgar–Tucker equation directly as
we did here with Jeffery’s equation.

We have not touched the problem of estimating the parameter α in (4.7)
from experimental data.
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