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Abstract. We consider approximation of a nonlinear Hammerstein equation with
a kernel of the type of Green’s function using the Nyström method based on the
composite midpoint and the composite modified Simpson rules associated with a
uniform partition. We obtain asymptotic expansions for the approximate solution un

at the node points as well as at the partition points and use Richardson extrapolation
to obtain approximate solutions with higher orders of convergence. Numerical results
are presented which confirm the theoretical orders of convergence.
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1 Introduction

Asymptotic error analysis of approximate solutions of operator equations is
a classical numerical analysis topic. Well known methods for approximate
solutions of operator equations are the Nyström methods and the projection
related methods such as the classical Galerkin methods and its variants. These
methods are extensively studied in the research literature. On establishing the
convergence of the approximate solution to the actual solution, one is often
interested in improving the orders of convergence of the approximate solution.
If asymptotic expansion for an approximate solution is established, then the
Richardson extrapolation can be used to improve the orders of convergence.

Asymptotic expansions for approximate solutions of linear integral equa-
tions with smooth kernels, in the case of Nyström methods, has been studied
in Baker [3]. The case of asymptotic expansions in the case of the iterated
collocation and the iterated Galerkin method has been studied by McLean [7].

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2014.893457
mailto:rpk@math.iitb.ac.in
mailto:akshayrane11@gmail.com


128 R.P. Kulkarni and A.S. Rane

There are physical problems which give rise to integral equations with nons-
mooth kernels, namely the Green’s type kernel. Such a kernel lacks differen-
tiability properties along the diagonal. For an integral operator with a Green’s
kernel, the only case of asymptotic expansion of the approximate solution of a
second kind Fredholm integral equation was that considered by Baker [3]. He
studied it in the context of a Nyström method with the composite trapezoidal
rule. The proof in this case is similar to the case of smooth kernels and uses the
classical Euler–MacLaurin summation formula. These results were extended to
the case of the Nyström method with the composite midpoint and the compos-
ite modified Simpson rule, proposed by Cubillos [4], in Kulkarni and Rane [6].
In the case of the Nyström approximation with the composite midpoint rule,
some node points are in the interior of the subintervals of integration involved
in the integral operator. As a consequence, the integrand fails to be differen-
tiable at an interior point of the subinterval of integration. Hence an extended
version of the Euler–MacLaurin summation formula, for functions which fail to
be differentiable at an interior point, is proved in Kulkarni and Rane [6].

The problem of asymptotic expansion for an approximate solution of a
nonlinear Hammerstein equation with the kernel of the Green’s type, was con-
sidered by Ford [5]. He considered it in the case of the Nyström method with
the composite trapezoidal rule. The main purpose of this paper is to extend the
results of Ford [5] in the case of Nyström method with the composite midpoint
rule and the modified Simpson’s rule. In developing the asymptotic expan-
sion for nonlinear equations, two things are to be taken in to account namely
the nature of the Green’s kernel and the nonlinearity of the integral equation.
The main points involved in obtaining the asymptotic expansions for the ap-
proximate solution at the nodes are the extended Euler-MacLaurin summation
formula and the results of Ford [5]. But in the case of the composite midpoint
rule, in addition to the node points, we also require the asymptotic expansion of
the approximate solution at the partition points, so as to apply the extrapola-
tion technique. Using asymptotic expansion at the node points and the Taylor
series expansion, asymptotic expansions at the partition points is obtained.

2 Preliminaries

Let X = C0[0, 1] denote the space of all continuous functions defined on [0, 1]
equipped with the supremum norm. We consider the following Hammerstein
equation:

u(s)−
∫ 1

0

k(s, t)ψ
(
t, u(t)

)
dt = f(s), 0 ≤ s ≤ 1, (2.1)

where the kernel k(·,·) ∈ C0([0, 1]× [0, 1]). In addition, we assume that

k(s, t) =

{
k1(s, t) if s ≤ t,
k2(s, t) if t < s

with k1 ∈ Cm+2({0 ≤ s ≤ t ≤ 1}), k2 ∈ Cm+2({0 ≤ t ≤ s ≤ 1}). Here m is an
even positive integer. Thus, for each s ∈ [0, 1], the function k(s, t) is m + 2
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times differentiable with respect to t in [0, s)∪ (s, 1]. We shall denote the class
of such kernels by C(m+ 2, 0).

We assume that f ∈ Cm+2[0, 1] and that ψ ∈ Cm+2([0, 1] × R) satisfies
the Lipschitz condition with respect to the second variable, that is, there is a
constant L such that ∣∣ψ(t, t1)− ψ(t, t2)

∣∣ ≤ L|t1 − t2|
for all t1, t2 ∈ R, t ∈ [0, 1]. We assume that equation (2.1) has a unique solution.
With the assumptions on k, ψ and f, the unique solution u ∈ Cm+2[0, 1]. (See
Theorem 2.1 of Sidi [8].) We write (2.1) as

u− TΨu = f, (2.2)

where

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt, s ∈ [0, 1], x ∈ C[0, 1],

(Ψx)(t) = ψ
(
t, x(t)

)
.

The operator T : C0[0, 1] → C0[0, 1] is compact. Let Tn be a sequence of
continuous finite rank operators converging pointwise to T and let {Tn} be
collectively compact, that is, the set {Tnx : n ≥ 1, ‖x‖∞ ≤ 1} has a compact
closure in X. The integral equation (2.2) is approximated by

un − TnΨun = f.

Let B0(t)=1 and for p ≥ 1, let Bp(t) denote the Bernoulli polynomial of
degree p. For p ≥ 0, we define Bp as a periodic function on R with period 1:

Bp(t) = Bp(t), 0 ≤ t < 1, Bp(t+ 1) = Bp(t), t ∈ R.

We quote below an extension of the Euler–MacLaurin series expansion for func-
tions which are m times differentiable on [0, 1] except at one point.

Euler–MacLaurin Series Expansion: (Kulkarni and Rane [6].)

Let m ≥ 2. Fix s∈(0, 1). Let f : [0, 1]→ R be a continuous function such that

(i) the derivatives of f, f (1), f (2), . . . , f (m) exist on [0, s) ∪ (s, 1],

(ii) the m-th derivative f (m) is integrable on [0, 1],

(iii) for p = 1, 2, . . . ,m, f (p)(s+)− f (p)(s−) is nonzero and finite.

Then for 0 ≤ τ ≤ 1,

f(τ) =

∫ 1

0

f(t) dt+

m∑
p=1

Bp(τ)

p!

[
f (p−1)(1−)− f (p−1)(0+)

]
−

m∑
p=2

Bp(τ − s)
p!

[
f (p−1)(s+)− f (p−1)(s−)

]
+Rm, (2.3)

where

Rm = −
∫ 1

0

Bm(τ − t)
m!

f (m)(t) dt.

Math. Model. Anal., 19(1):127–143, 2014.
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2.1 Nyström approximation

Let n ∈ N, h = 1/n and

N∑
j=1

wjx(rj) ≈
∫ 1

0

x(t) dt

be a convergent composite quadrature rule with respect to the uniform partition

0 <
1

n
<

2

n
< · · · < n− 1

n
< 1 (2.4)

of [0, 1]. Here N, the weights wj and the nodes rj depend on n. The Nyström
approximation of T is defined as

(Tnx)(s) =

N∑
j=1

wjk(s, rj)x(rj), s ∈ [0, 1].

Then {Tn} is a collectively compact family of continuous finite rank operators
converging to T pointwise. (See Atkinson [1].) Now onwards we assume that
x belongs to Cm+2[0, 1]. Let

ti = (i− 1)/n = (i− 1)h, i = 1, 2, . . . , n+ 1

be the partition points and for i = 1, . . . , n

si =
ti + ti+1

2
=

(
i− 1

2

)
h

be the midpoints of [ti, ti+1].
In the case of approximation of an integral operator T with the kernel of

the type of Green’s function by Nyström operator Tn, asymptotic expansions
for (Tn − T )x at the node points are obtained in Kulkarni and Rane [6]. The
proofs of these expansions are based on the Euler–MacLaurin series expan-
sion (2.3). As the derivation of the asymptotic expansions for the approximate
solutions of the nonlinear equations at the nodes/partition points is based on
these expansions, we describe them below.

Composite Midpoint Rule. Let

(Tnx)(s) = h

n∑
j=1

k (s, sj)x (sj) , s ∈ [0, 1]. (2.5)

Then for i = 2, 3, . . . , n

(Tnx)(ti)=(Tx)(ti)+

m/2∑
p=1

(A2px)(ti)h
2p +

m/2∑
p=1

(C2px)(ti)h
2p +O

(
hm+2

)
, (2.6)
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whereas i = 1 or i = n+ 1

(Tnx)(ti) = (Tx)(ti) +

m/2∑
p=1

(A2px)(ti)h
2p +O

(
hm+2

)
, (2.7)

where for s ∈ [0, 1]

(A2px)(s) =
B2p(

1
2 )

(2p)!

[(
∂

∂t

)2p−1(
k(s, t)x(t)

)]t=1

t=0

,

(C2px)(s) = −
B2p(

1
2 )

(2p)!

[(
∂

∂t

)2p−1 (
k(s, t)x(t)

)]t=s+
t=s−

.

Also, for i = 1, 2, . . . , n

(Tnx)(si) = (Tx)(si) +

m/2∑
p=1

(A2px)(si)h
2p +

m/2∑
p=1

(C̃2px)(si)h
2p +O

(
hm+2

)
,

where for s ∈ [0, 1]

(C̃2px)(s) = −B2p(0)

(2p)!

[(
∂

∂t

)2p−1(
k(s, t)x(t)

)]t=s+
t=s−

.

See, Kulkarni and Rane [6]. Note that, A2px,C2px, C̃2px ∈ Cm+2−2p[0, 1].

Modified Simpson Rule. From Theorem 5.2 of Kulkarni and Rane [6], we
observe that if Tn is the Nyström approximation associated with the composite
Simpson rule then the asymptotic expansion for (Tn − T )x at the partition
points starts from h4 onwards whereas at the midpoints it starts from h2 on-
wards. In order to restore the order of convergence of h4, we consider the
following modified Simpson method. (See Atkinson and Shampine [2], Cubil-
los [4].) We introduce the following notation:

S{x, a, b} =
b− a

6

(
x(a) + 4x

(
a+ b

2

)
+ x(b)

)
.

For i = 1, 2, . . . , n, let x̃ |[ti,ti+1] be the quadratic polynomial such that

x̃(ti) = x(ti), x̃(si) = x(si), x̃(ti+1) = x(ti+1).

Then x̃ : [0, 1]→ R is a continuous piecewise quadratic polynomial with respect
to the uniform partition (2.4).

For s ∈ [0, 1], we define

(Tnx)(s) =

n∑
i=1

(
S
{
k(s, ·)x̃(·), ti, si

}
+ S

{
k(s, ·)x̃(·), si, ti+1

})
.

Math. Model. Anal., 19(1):127–143, 2014.
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Let

r2j−1 = tj , j = 1, 2, . . . , n+ 1, r2j = sj , j = 1, 2, . . . , n.

Note that the formula for (Tnx) can be written as

(Tnx)(s) =

2n+1∑
j=1

wj(s)x(rj), s ∈ [0, 1], (2.8)

w1(s) =
h

12

[
k(s, t1) +

3

2
k

(
s,
t1 + s1

2

)
− 1

2
k

(
s,
s1 + t2

2

)]
,

for j = 1, . . . , n

w2j(s) =
h

12

[
3k

(
s,
tj + sj

2

)
+ 2k(s, sj) + 3k

(
s,
sj + tj+1

2

)]
,

for j = 2, 3, . . . , n

w2j−1(s) =
h

12

[
2k(s, tj) +

3

2
k

(
s,
tj + sj

2

)
− 1

2
k

(
s,
sj + tj+1

2

)]
+

h

12

[
3

2
k

(
s,
sj−1 + tj

2

)
− 1

2
k

(
s,
tj−1 + sj−1

2

)]
,

w2n+1(s) =
h

12

[
−1

2
k

(
s,
tn + sn

2

)
+

3

2
k

(
s,
sn + tn+1

2

)
+ k(s, tn+1)

]
.

Note that Tn is a collectively compact family of operators converging to T
pointwise (see Cubillos [4].)

The following asymptotic expansion at the node points is proved in Kulkarni
and Rane [6]:

(Tnx)(ri)=(Tx)(ri) +

m/2∑
p=2

(A2px)(ri)

(
h

2

)2p

+

m/2∑
p=2

(C2px)(ri)

(
h

2

)2p

+O
(
hm+2

)
,

where for s ∈ [0, 1]

(A2px)(s) =
1

(2p)!

(
B2p(0) + 4B2p(

1
2 ) +B2p(1)

6

)[(
∂

∂t

)2p−1(
k(s, t)x(t)

)]t=1

t=0

,

(C2px)(s) = − 1

(2p)!

(
B2p(0) + 4B2p(

1
2 ) +B2p(1)

6

)
×
[(

∂

∂t

)2p−1

(k(s, t)x(t))

]t=s+
t=s−

.

3 Main Results

In this section we shall briefly describe two new methods and derive asymptotic
expansions for the approximate solution un, in the following two cases.
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a) Nyström Method, Composite Midpoint Rule:
Using the Nyström approximation associated with the composite midpoint
rule (2.5), the nonlinear integral equation (2.1) is approximated by

un(s)− h
n∑
j=1

k(s, sj)ψ
(
sj , un(sj)

)
= f(s), s ∈ [0, 1]. (3.1)

Evaluating the above equation at s = si, i = 1, 2, . . . , n, we obtain a system of
n nonlinear equations.

b) Nyström Method, Modified Simpson Rule:
Using the Modified Simpson rule (2.8), the nonlinear integral equation (2.1) is
approximated by

un(s)−
2n+1∑
j=1

wj(s)ψ
(
rj , un(rj)

)
= f(s), s ∈ [0, 1]. (3.2)

Evaluating the above equation at s = ri, i = 1, 2, . . . , 2n+1, we obtain a system
of 2n + 1 nonlinear equations. As in the proof of Theorem 2.4 of Ford [5], it
can be proved that equations (3.1) and (3.2) have a unique solution for n
large enough. The proof of the following Theorem on asymptotic expansions
of un − u at the node points in the case of the composite midpoint and the
modified Simpson rule is similar to that of Theorem 4.2 of Ford et al [5], we
only state the result.

Theorem 1. Let T be an integral operator with the kernel k(·,·) ∈ C(m+ 2, 0).
Let u be a solution of the operator equation u−TΨu = f, where f ∈ Cm+2[0, 1],
ψ ∈ Cm+2([0, 1]×R) satisfies the Lipschitz condition with respect to the second
variable. Assume that 1 is not an eigenvalue of (Tψ)′(u), where the prime
notation denotes the Fréchet derivative.

a) If Tn is the Nyström approximation associated with the composite mid-
point rule, then for sufficiently large n, un has an asymptotic expansion

un(si) = u(si) +

m/2∑
p=1

η2p(si)h
2p +O

(
hm+2

)
, i = 1, . . . , n, (3.3)

where η2p ∈ Cm+2−2p[0, 1], p = 1, . . . ,m/2 are independent of h.
b) If Tn is the Nyström approximation associated with the composite modi-

fied Simpson rule then for sufficiently large n, un has an asymptotic expansion

un(si) = u(si) +

m/2∑
p=2

η2p(si)

(
h

2

)2p

+O
(
hm+2

)
, i = 1, . . . , n

and

un(ti) = u(ti) +

m/2∑
p=2

η2p(ti)

(
h

2

)2p

+O
(
hm+2

)
, i = 1, . . . , n+ 1,

where functions η2p ∈ Cm+2−2p[0, 1], p = 2, . . . ,m/2 are independent of h.

Math. Model. Anal., 19(1):127–143, 2014.
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The purpose of asymptotic expansions is to obtain higher order approxima-
tions using the Richardson extrapolation. Consider the case of the composite

midpoint rule. Let S(n) = {s(n)i : i = 1, . . . , n} denote the set of node points

with respect to the partition with n intervals and S(2n) = {s(2n)i : i = 1, . . . , 2n}
denote the set of node points obtained by subdividing each subintervals in two
equal parts. Then S(n) ∩ S(2n) = ∅, and hence we cannot use the extrapola-
tion technique. However, we obtain below asymptotic expansions for un at the
partition points ti so that Richardson extrapolation is applicable.

For l = 1, . . . ,m+1, let ψ(0,l)(t, ·) denote the l-th partial derivative of ψ(t, ·)
with respect to the second variable. We now prove a Proposition before proving
the main result.

Proposition 1. Let Tn be the Nyström approximation associated with the com-
posite midpoint rule. For 1 ≤ l ≤ m+ 1, define(

Ψ [l]u
)
(t) = ψ(0,l)

(
t, u(t)

)
, t ∈ [0, 1].

For 1 ≤ p ≤ m/2, let

ξ2p,l =
∑

α1+···+αl=p

η2α1 . . . η2αl
, l ≤ p ≤ m/2. (3.4)

Then for s ∈ [0, 1]

(TnΨun)(s) = (TnΨu)(s)+

m/2∑
p=1

(
p∑
l=1

Tn((Ψ [l]u)ξ2p,l)(s)

l!

)
h2p+O

(
hm+2

)
. (3.5)

Proof. By Taylor’s Theorem,

ψ
(
t, un(t)

)
= ψ

(
t, u(t)

)
+

m+1∑
l=1

ψ(0,l)(t, u(t))(un(t)− u(t))l

l!

+O
((
un(t)− u(t)

)m+2)
, t ∈ [0, 1].

As in Theorem 2.4 of Ford [5], it can be proved that ‖un−u‖∞ = O(h2). Then

‖un − u‖m+2
∞ = O

(
h2m+4

)
.

Hence for j = 1, . . . , n,

ψ
(
sj , un(sj)

)
= ψ

(
sj , u(sj)

)
+

m+1∑
l=1

ψ(0,l)
(
sj , u(sj)

)(
un(sj)− u(sj)

)l
l!

+O
(
h2m+4

)
. (3.6)

From (3.3), we have

un(sj)− u(sj) =

m/2∑
r=1

η2r(sj)h
2r +O

(
hm+2

)
.
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Hence for 1 ≤ l ≤ m+ 1,

(
un(sj)− u(sj)

)l
=

(
m/2∑
r=1

η2r(sj)h
2r +O(hm+2)

)l

=

m/2∑
p=l

ξ2p,l(sj)h
2p +O

(
hm+2

)
,

where ξ2p,l is given by (3.4). Substituting the above expression in (3.6) and
rearranging terms, we get

ψ
(
sj , un(sj)

)
=ψ
(
sj , u(sj)

)
+

m/2∑
p=1

( p∑
l=1

ψ(0,l)(sj , u(sj))ξ2p,l(sj)

l!

)
h2p+O

(
hm+2

)
.

Multiplying the above equation by hk(s, sj) and taking the sum from j =
1, . . . , n, we obtain

h

n∑
j=1

k(s, sj)ψ
(
sj , un(sj)

)
= h

n∑
j=1

k(s, sj)ψ
(
sj , u(sj)

)
+

m/2∑
p=1

×

(
p∑
l=1

1

l!
h

n∑
j=1

k(s, sj)ψ
(0,l)
(
sj , u(sj)

)
ξ2p,l(sj)

)
h2p +O

(
hm+2

)
, s ∈ [0, 1].

Thus, for s ∈ [0, 1],

(TnΨun)(s) = (TnΨu)(s) +

m/2∑
p=1

(
p∑
l=1

Tn((Ψ [l]u)ξ2p,l)(s)

l!

)
h2p +O

(
hm+2

)
,

which completes the proof. ut

Now we prove the main result concerning asymptotic expansions for un at
the partition points.

Theorem 2. Let Tn be the Nyström approximation associated with the com-
posite midpoint rule. For i = 2, . . . , n, we have

un(ti) = u(ti) +

m/2∑
p=1

δ2p(ti)h
2p +O

(
hm+2

)
, (3.7)

where functions δ2p ∈ Cm+2−2p[0, 1] are independent of h.
For i = 1 and i = n+ 1, we have

un(ti) = u(ti) +

m/2∑
p=1

δ̃2p(ti)h
2p +O

(
hm+2

)
, (3.8)

where functions δ̃2p ∈ Cm+2−2p[0, 1] are independent of h.

Math. Model. Anal., 19(1):127–143, 2014.
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Proof. Since
un − TnΨun = f,

we have

un(ti) = (TnΨun)(ti) + f(ti), i = 1, . . . , n+ 1.

Substituting for (TnΨun)(ti), from (3.5) in the above equation, we get

un(ti) = (TnΨu)(ti) + f(ti) +

m/2∑
p=1

(
p∑
l=1

Tn((Ψ [l]u)ξ2p,l)(ti)

l!

)
h2p

+O
(
hm+2

)
, i = 1, . . . , n+ 1. (3.9)

Note that for 1 ≤ p ≤ m/2 and 1 ≤ l ≤ p,(
Ψ [l]u

)
ξ2p,l ∈ Cm+2−2p[0, 1].

For x ∈ Cm+2[0, 1] from (2.6), (2.7) we have

(Tnx)(ti) = (Tx)(ti) +

m/2∑
p=1

β2p(x)(ti)h
2p +O

(
hm+2

)
, i = 2, . . . , n,

whereas i = 1 or i = n+ 1

(Tnx)(ti) = (Tx)(ti) +

m/2∑
p=1

γ2p(x)(ti)h
2p +O

(
hm+2

)
,

where for p = 1, 2, . . . ,m/2

β2p(x) = A2px+ C2px and γ2p(x) = A2px.

Then β2p(x), γ2p(x) ∈ Cm+2−2p[0, 1]. Thus

(TnΨu)(ti) = (TΨu)(ti) +

m/2∑
p=1

β2p(Ψu)(ti)h
2p

+O
(
hm+2

)
, i = 2, . . . , n (3.10)

and for 1 ≤ p ≤ (m/2), 1 ≤ l ≤ p

Tn
((
Ψ [l]u

)
ξ2p,l

)
(ti) = T

((
Ψ [l]u

)
ξ2p,l

)
(ti) +

(m/2)−p∑
q=1

β2q
((
Ψ [l]u

)
ξ2p,l

)
(ti)h

2q

+O
(
hm+2−2p), i = 2, . . . , n. (3.11)

Substituting (3.10) and (3.11) in (3.9), for i = 2, . . . , n, we obtain

un(ti) = (TΨu)(ti) + f(ti)

+

m/2∑
p=1

β2p(Ψu)(ti)h
2p +

m/2∑
p=1

p∑
l=1

1

l!
T
((
Ψ [l]u

)
ξ2p,l

)
(ti)h

2p

+

(m/2)−1∑
p=1

p∑
l=1

(m/2)−p∑
q=1

1

l!
β2q
((
Ψ [l]u

)
ξ2p,l

)
(ti)h

2p+2q +O
(
hm+2

)
.
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Using u = TΨu+ f and rearranging terms, we obtain

un(ti) = u(ti) +

m/2∑
p=1

β2p(Ψu)(ti)h
2p +

m/2∑
p=1

p∑
l=1

1

l!
T
((
Ψ [l]u

)
ξ2p,l

)
(ti)h

2p

+

m/2∑
p=2

(
p−1∑
l=1

p−l∑
q=1

1

l!
β2q
((
Ψ [l]u

)
ξ2p−2q,l

)
(ti)

)
h2p +O

(
hm+2

)
.

Thus for i = 2, . . . , n

un(ti) = u(ti) +
(
β2(Ψu)(ti) + T

((
Ψ [1]u

)
ξ2,1
)
(ti)
)
h2

+

m/2∑
p=2

(
β2p(Ψu)(ti) +

p∑
l=1

1

l!
T
((
Ψ [l]u

)
ξ2p,l

)
(ti)

)
h2p

+

m/2∑
p=2

(
p−1∑
l=1

p−l∑
q=1

1

l!
β2q
((
Ψ [l]u

)
ξ2p−2q,l

)
(ti)

)
h2p +O

(
hm+2

)
= u(ti) +

m/2∑
p=1

δ2p(ti)h
2p +O

(
hm+2

)
,

where δ2 = β2(Ψu) + T
((
Ψ [1]u

)
ξ2,1
)

and for p = 2, 3, . . . ,m/2

δ2p = β2p(Ψu) +

p∑
l=1

1

l!
T
((
Ψ [l]u

)
ξ2p,l

)
+

p−1∑
l=1

p−l∑
q=1

1

l!
β2q
((
Ψ [l]u

)
ξ2p−2q,l

)
.

This proves (3.7). The proof of (3.8) is similar. ut

4 Extrapolation

In this section, we apply Richardson extrapolation to obtain better orders of
convergence for un at the partition points in the case of the composite midpoint
rule and at the node points in the case of composite modified Simpson rule.
We first tabulate the results obtained in Theorems 1 and 2 for the asymptotic
expansion of un.

1. Nyström Method: Composite Midpoint Rule

un(ti) = u(ti) +

m/2∑
p=1

δ2p(ti)h
2p +O

(
hm+2

)
, (4.1)

un(si) = u(si) +

m/2∑
p=1

η2p(si)h
2p +O

(
hm+2

)
. (4.2)
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2. Nyström Method: Composite Modified Simpson Rule

un(ti) = u(ti) +

m/2∑
p=2

η2p(ti)

(
h

2

)2p

+O
(
hm+2

)
, (4.3)

un(si) = u(si) +

m/2∑
p=2

η2p(si)

(
h

2

)2p

+O
(
hm+2

)
. (4.4)

Note that the functions η2p ∈ Cm+2−2p[0, 1] and δ2p ∈ Cm+2−2p[0, 1] and
are independent of h.

For each ti = i−1
n , i = 1, . . . , n + 1, and for un(ti) satisfying (4.1), define

un,0(ti) = un(ti) and

un,l(ti) =
22lu2n,l−1(ti)− un,l−1(ti)

22l − 1
, l = 1, 2, . . . ,m/2− 1.

Then we have the following result.

Corollary 1. Suppose that the conditions of Theorem 1 hold. Then

un,l(ti) = u(ti) +

m/2∑
p=l+1

el,p(ti)h
2p +O

(
hm+2

)
, i = 1, 2, . . . , n+ 1,

where the functions el,p are independent of h.

In a similar fashion, for each ti = i−1
n , i = 1, . . . , n + 1, and for un(ti)

satisfying (4.3) define un,0(ti) = un(ti) and

un,l(ti) =
22l+2u2n,l−1(ti)− un,l−1(ti)

22l+2 − 1
, l = 1, 2, . . . ,m/2− 1. (4.5)

For each si = (i − 1
2 )h, i = 1, . . . , n, and for un(si) satisfying (4.4) define

un,0(si) = un(si) and

un,l(si) =
22l+2u2n,l−1(si)− un,l−1(si)

22l+2 − 1
, l = 1, 2, . . . ,m/2− 1.

Then we have the following result.

Corollary 2. Suppose that the conditions of Theorem 1 hold. Then

un,l(ti) = u(ti) +

m/2∑
p=l+2

el,p(ti)

(
h

2

)2p

+O
(
hm+2

)
, i = 1, 2, . . . , n+ 1,

un,l(si) = u(si) +

m/2∑
p=l+2

el,p(si)

(
h

2

)2p

+O
(
hm+2

)
, i = 1, 2, . . . , n,

where the functions el,p are independent of h.
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5 Numerical Results

Consider the following equation

u(s)−
∫ 1

0

k(s, t)ψ
(
t, u(t)

)
dt = f(s), 0 ≤ s ≤ 1, (5.1)

where

k(s, t) =
1

γ sinh γ

{
sinh γs sinh γ(1− t) if s ≤ t,
sinh γ(1− s) sinh γt if t < s

with γ =
√

12,

(Ψu)(t) = ψ
(
t, u(t)

)
= γ2u(t)− 2

(
u(t)

)3
, t ∈ [0, 1]

and

f(s) =
1

sinh γ

{
2 sinh γ(1− s) +

2

3
sinh γs

}
.

The exact solution is u(s) = 1/(s+ 1/2).

5.1 Composite midpoint rule

Equation (5.1) is approximated by

un(s)− h
n∑
j=1

k(s, sj)
[
γ2un(sj)− 2

(
un(sj)

)3]
= f(s), 0 ≤ s ≤ 1.

The solution of the above equation is obtained by solving the nonlinear system
of equations

un(si)− h
n∑
j=1

k(si, sj)
[
γ2un(sj)− 2

(
un(sj)

)3]
= f(si), i = 1, 2, . . . , n (5.2)

and then for s ∈ [0, 1]

un(s) = f(s) + h

n∑
j=1

k(s, sj)
[
γ2un(sj)− 2

(
un(sj)

)3]
.

The Picard iteration is applied to obtain the solution of (5.2):

u0n(si) = f(si), i = 1, 2, . . . , n,

up+1
n (si) = f(si) +

(
TnΨu

p
n

)
(si), i = 1, 2, . . . , n, p = 0, 1, . . . .

We choose n = 20, n = 40 and n = 80. In the above method, 21 Picard
iterations were needed for the difference in the successive iterates to be less
than 10−12.

Let ti = (i− 1)/20, i = 1, 2, . . . , 21 be the partition points in a uniform
partition with step size h = 1/20.
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We have

En1 (ti) =
∣∣u(ti)− un(ti)

∣∣ = O
(
h2
)
, i = 1, 2, . . . , 21.

Define

un,1(ti) =
4u2n(ti)− un(ti)

3
, i = 1, 2, . . . , 21.

Then

En2 (ti) =
∣∣u(ti)− un,1(ti)

∣∣ = O
(
h4
)
, i = 1, 2, . . . , 21.

We compute the orders of convergence by the following formula:

α1 =
log(En1 (ti)/E

2n
1 (ti))

log(2)
, β =

log(En2 (ti)/E
2n
2 (ti))

log(2)
, with n = 20,

α2 =
log(En1 (ti)/E

2n
1 (ti))

log(2)
, with n = 40.

We expect α1 = α2 = 2 and β = 4. (See (4.1) and Corollary 1.)

In Tables 1, 2 we give some numerical results which validate the above
orders of convergence.

Table 1. Errors and convergence orders for the composite midpoint rule.

ti En
1 (ti) : n=20 En

1 (ti) : n=40 En
1 (ti) : n=80 α1 α2

0.1 4.52 × 10−4 1.14 × 10−4 2.84 × 10−5 1.99 2.00
0.2 4.61 × 10−4 1.16 × 10−4 2.89 × 10−5 2.00 2.00
0.3 2.91 × 10−4 7.29 × 10−5 1.82 × 10−5 2.00 2.00
0.4 6.90 × 10−5 1.70 × 10−5 4.24 × 10−6 2.02 2.00
0.5 1.40 × 10−4 3.53 × 10−5 8.85 × 10−6 1.98 2.00
0.6 2.96 × 10−4 7.45 × 10−5 1.86 × 10−5 1.99 2.00
0.7 3.76 × 10−4 9.43 × 10−5 2.36 × 10−5 1.99 2.00
0.8 3.61 × 10−4 9.06 × 10−5 2.27 × 10−5 2.00 2.00
0.9 2.40 × 10−4 6.00 × 10−5 1.50 × 10−5 2.00 2.00

Table 2. Errors and convergence orders for the composite midpoint rule: extrapolation

ti En
2 (ti) : n = 20 En

2 (ti) : n = 40 β

0.1 6.19 × 10−7 4.06 × 10−8 3.93
0.2 3.31 × 10−7 2.25 × 10−8 3.88
0.3 4.86 × 10−8 1.54 × 10−9 4.98
0.4 3.36 × 10−7 1.98 × 10−8 4.09
0.5 4.98 × 10−7 3.01 × 10−8 4.05
0.6 5.45 × 10−7 3.33 × 10−8 4.03
0.7 4.96 × 10−7 3.04 × 10−8 4.03
0.8 3.75 × 10−7 2.30 × 10−8 4.03
0.9 2.04 × 10−7 1.25 × 10−8 4.02
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5.2 Modified Simpson rule

Equation (5.1) is approximated by

un(s)−
2n+1∑
j=1

wj(s)
[
γ2un(rj)− 2

(
un(rj)

)3]
= f(s), 0 ≤ s ≤ 1,

where wj(s) is defined in (2.8). The solution of the above equation is obtained
by solving the nonlinear system of equations

un(ri)−
2n+1∑
j=1

wj(ri)
[
γ2un(rj)−2

(
un(rj)

)3]
= f(ri), i=1, 2, . . . 2n+1 (5.3)

and then for s ∈ [0, 1]

un(s) = f(s) +

2n+1∑
j=1

wj(s)
[
γ2un(rj)− 2

(
un(rj)

)3]
.

The Picard iteration is applied to obtain the solution of (5.3):

u0n(ri) = f(ri), i = 1, 2, . . . , 2n+ 1,

up+1
n (ri) = f(ri) +

(
TnΨu

p
n

)
(ri), i = 1, 2, . . . , 2n+ 1, p = 0, 1, . . . .

As in the case of the composite midpoint rule, choose n = 20, n = 40 and
n = 80. In the above method, 21 Picard iterations were needed for the difference
in the successive iterates to be less than 10−12.

Table 3. Errors and convergence orders for the composite modified Simpson Rule rule.

ti En
1 (ti) : n=20 En

1 (ti) : n=40 En
1 (ti) : n=80 α1 α2

0.1 2.21 × 10−5 1.46 × 10−6 9.30 × 10−8 3.92 3.98
0.2 2.45 × 10−5 1.62 × 10−6 1.03 × 10−7 3.92 3.98
0.3 2.24 × 10−5 1.47 × 10−6 9.34 × 10−8 3.93 3.98
0.4 1.94 × 10−5 1.27 × 10−6 8.05 × 10−8 3.93 3.98
0.5 1.63 × 10−5 1.07 × 10−6 6.75 × 10−8 3.93 3.98
0.6 1.32 × 10−5 8.65 × 10−7 5.48 × 10−8 3.93 3.98
0.7 1.02 × 10−5 6.65 × 10−7 4.22 × 10−8 3.93 3.98
0.8 7.02 × 10−6 4.59 × 10−7 2.91 × 10−8 3.94 3.98
0.9 3.66 × 10−6 2.39 × 10−7 1.52 × 10−8 3.94 3.98

Let ti = (i− 1)/20, i = 1, 2, . . . , 21 be the partition points in a uniform
partition with step size h = 1/20. We have

En1 (ti) =
∣∣u(ti)− un(ti)

∣∣ = O
(
h4
)
, i = 1, 2, . . . , 21.

Define

un,1(ti) =
16u2n(ti)− un(ti)

15
, i = 1, 2, . . . , 21.
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Then
En2 (ti) =

∣∣u(ti)− un,1(ti)
∣∣ = O

(
h6
)
, i = 1, 2, . . . , 21.

The orders of convergence α1, α2 and β are computed as in the case of the
composite midpoint rule and presented in Table 3, 4. In the present case, we
expect α1 = α2 = 4 and β = 6. (See (4.3) and Corollary 2.)

Table 4. Errors and convergence orders for the modified Simpson rule: extrapolation

ti En
2 (ti) : n=20 En

2 (ti) : n=40 β

0.1 8.91 × 10−8 1.57 × 10−9 5.83
0.2 9.10 × 10−8 1.60 × 10−9 5.83
0.3 7.80 × 10−8 1.38 × 10−9 5.82
0.4 6.44 × 10−8 1.16 × 10−9 5.79
0.5 5.24 × 10−8 9.74 × 10−10 5.75
0.6 4.17 × 10−8 8.00 × 10−10 5.70
0.7 3.16 × 10−8 6.26 × 10−10 5.66
0.8 2.15 × 10−8 4.39 × 10−10 5.62
0.9 1.11 × 10−8 2.31 × 10−10 5.58

6 Conclusions

Thus it was possible to obtain asymptotic expansions for approximate solutions
of a nonlinear Hammerstein equations with Green’s kernel, in the context of
Nyström methods with the composite midpoint and the composite modified
Simpson’s rule. We feel that these results can be extended to the iterated
collocation method with piecewise constant and piecewise linear polynomials.
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