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Abstract. In this paper we establish local existence of solutions for a new model
to describe the propagation of an internal wave propagating at the interface of two
immiscible fluids with constant densities, contained at rest in a long channel with a
horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme
to approximate the solutions of the corresponding Cauchy problem and perform a
complete error analysis of the semidiscrete scheme.
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1 Introduction

In this work we derive the following system written in dimensionless variables:

ζt −
(
(1− αζ)u

)
x

=
ε2

6
ζxxt,

ut + αuux +

(
1− ρ2

ρ1

)
ζx =

ρ2
ρ1
εH(uxt) +

ε2

6
uxxt,

ζ(x, 0) = ζ0(x), u(x, 0) = u0(x)

(1.1)

to describe the propagation of a weakly nonlinear internal wave propagating
at the interface of two immiscible fluids with constant densities ρ1, ρ2 with
ρ2/ρ1 > 1 (for stable stratification), contained at rest in a long channel with a
horizontal rigid top and bottom, and the thickness of the lower layer is assumed
to be effectively infinite (deep water limit). The constants α and ε are small
positive real numbers that measure the intensity of nonlinear and dispersive
effects, respectively. The variable x denotes the spatial position, the variable
t is the propagation time, u = u(x, t) represents the velocity monitored at the
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depth z = 1 −
√

2/3, the function ζ = ζ(x, t) is the wave amplitude at the
point x and time t, measured with respect to the rest level of the two-fluid
interface, and Hf(x) denotes the Hilbert transform defined by

Hf(x) =
1

π
p.v.

∫ ∞
−∞

f(y)

y − x
dy, (1.2)

where p.v.
∫

stands for the integration in the principal value sense. In the
last decades the phenomenon of propagation of waves at the interface between
two layers of immiscible fluids has attracted interest of many physicists and
mathematicians, for both well-posedness theory, and asymptotic theory due to
the challenging modelling, mathematical and numerical difficulties involved in
the analysis of this physical system. Some variants of system (1.1) have been
derived by Choi and Camassa in [8,9] for accounting different scaling regimes of
the problem, where the terms of order O(ε2) were neglected and α = O(ε). In
contrast, we assume that α = O(ε2). We also point out that following the ideas
from [10, 12, 13], the velocity at an intermediate depth is used as the velocity
variable in system (1.1), instead of the depth-average velocity used in previous
works. On the other hand, Bona et al. [7] proposed a general method to derive
in a systematic way, and for a wide class of scaling regimes, asymptotic models
for the propagation of internal waves under the following assumptions: the fluid
is ideal, incompressible, irotational, and under the only influence of gravity, the
bottom is flat, and the surface tension is negligible. They also proved that these
asymptotic systems are consistent with the full Euler equations. An extension
of these results to the case of unidimensional non-flat bottoms was presented
by Ruiz and Nachbin [17] and in the presence of surface tension by Anh in [2].
Furthermore, he developed in [3] a study of local well-posedness of solutions
of some new Boussinesq/Boussinesq and Boussinesq/Full dispersion systems
for modelling internal waves derived formally from the Full dispersion/Full
dispersion system introduced by Bona et al. [7]. However, we are not aware of
some result on regard to the existence and uniqueness of solutions of problem
(1.1) and our first purpose in the present paper is to initiate this study. Some
higher-order models where terms of order O(ε2) are not neglected have been
derived for instance in [18, p. 283] and in [8, p. 86].

The second goal of this paper is to introduce a numerical scheme that can
be used for approximating the solutions of system (1.1). It is important to
note that the presence of the nonlocal integral operator H in system (1.1)
makes the analytical and numerical investigation harder than the study of
equations with local terms. In this numerical method, the system is discretized
in space by the Fourier spectral method and in time by a second-order accurate
scheme. The linear terms are treated implicitly in order to improve numerical
stability. However, the scheme can be solved as efficiently as an explicit one
since the nonlinear terms are treated explicitly. We also establish a result on the
convergence of the semidiscrete scheme and the accuracy is checked using some
approximate solutions of the system. A potential application of this numerical
tool is to explore the range of velocity for which solitary wave solutions of the
system exist and to establish if they are orbitally stable/instable under small
disturbances. These are interesting problems that are open to our knowledge.
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Some numerical schemes for approximating solutions of scalar unidirectional
Benjamin–Ono type equations were proposed for instance by Pelloni and Dou-
galis [16] and Tomée and Vasudeva [19]. On the other hand, Choi and Ca-
massa [8] solved system (1.1) (without the correction terms ζxxt, uxxt) by using
the pseudospectral (collocation) method with periodic boundary conditions in
space and a second order leap-frog method for the time integration. The scheme
proposed in the present paper uses a Galerkin spectral approach in space for
approximating the solutions of system (1.1) which is straightforward to imple-
ment in a computer and an implicit–explicit scheme (IMEX) considered in [1,4]
for time integration. In contrast, the collocation method used in [8] requires
the definition of large differentiation matrices to evaluate nonlinear terms of
the form uux, (ζu)x.

This paper is organized as follows. In Section 2, we derive system (1.1)
from the general fluid dynamics equations for the upper and lower fluids. In
Section 3 we introduce notation and auxiliary results that will be employed
in the analytical results. In Section 4, we study existence, uniqueness and
regularity of solutions of system (1.1). Finally in Section 5, we present the
numerical solver that can be used for approximating the solutions of the Cauchy
problem (1.1).

2 Governing Equations

Let us consider a two-fluid system where the densities are ρi (i = 1 for the
upper fluid and i = 2 for the lower fluid), and ρ1 < ρ2 for stable stratification
(see Fig. 1). The fluids are contained at rest in a long channel with a horizontal
rigid top and bottom, and the thickness of the lower layer is assumed to be
effectively infinite (deep water limit).

ρ
2

h
1

h
2

ρ
1

x

Two−fluid interface

Solid wall

Solid wall

ζ(x,t)z

Figure 1. A typical internal wave propagating in a two-fluid system. The rest level of the
system is indicated with a dashed line. The system of two layers considered is constrained

to a region limited by horizontal rigid lids located at the top and at the bottom.

For inviscid and incompressible fluids, the velocity (ui, wi) and the pressure
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pi, i = 1, 2 at (x, z, t) satisfy the Euler equations

uix + wiz = 0, (2.1)

uit + uiuix + wiuiz = − 1

ρi
pix, (2.2)

wit + uiwix + wiwiz = − 1

ρi
piz − g, (2.3)

where g is the gravitational acceleration and subscripts with respect to space
and time x, t denote partial differentiation. The boundary conditions at the
fluid interface are

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2 (2.4)

at z = ζ(x, t). Let h1, h2 > 0 denote the undisturbed thickness of the upper
(lower) fluid layer. Then the boundary conditions at the upper and the lower
rigid surfaces are

w1(x, h1, t) = w2(x,−h2, t) = 0, t ≥ 0, (2.5)

respectively.

Let us denote by ε = h1/L (dispersion parameter) and α = a/h1 (nonlinear
parameter), where the parameters L, a correspond to the characteristic length
and amplitude, respectively. Further let U0 =

√
gh1 be the characteristic ve-

locity. We are interested in a regime such that α = O(ε2) with α, ε small.

For irotational fluids, equations (2.1)–(2.5) for the upper fluid layer can
be written in terms of the velocity potential φ = φ1 defined by (φ1x, φ1z) =
(u1, w1):

φxx + φzz = 0, ζ(x, t) < z < h1, (2.6)

ζt + φxζx = φz at z = ζ(x, t), (2.7)

φt +
1

2

(
φ2x + φ2z

)
+ gζ +

p1
ρ1

= C(t) at z = ζ(x, t), (2.8)

φz(x, h1, t) = 0, (2.9)

where C(t) is a constant that only depends on t.

We introduce the scaling

x = Lx̃, z = h1z̃, t =
L

U0
t̃,

ζ = aζ̃, φ1 =
gLa

U0
φ̃1, p1 = ρ1U

2
0 p̃1

(2.10)

to non-dimensionalize all physical variables in equations (2.6)–(2.9). Thus drop-
ping the tildes, the equations in dimensionless variables for the upper layer fluid
can be written as
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ε2φxx + φzz = 0, αζ(x, t) < z < 1, (2.11)

ζt + αφxζx =
1

ε2
φz at z = αζ(x, t), (2.12)

φt +
1

2

(
αφ2x +

α

ε2
φ2z

)
+ ζ +

1

α
p1 = C(t) at z = αζ(x, t), (2.13)

φz(x, 1, t) = 0. (2.14)

Let us consider a series expansion around the upper boundary z = 1, for the
velocity potential as in Whitham [20, p. 464]:

φ(x, z, t) =

∞∑
n=0

(1− z)nfn(x, t). (2.15)

Substituting in equation (2.11) and using the boundary condition (2.14), we
obtain that

φ(x, z, t) =

∞∑
n=0

(
−ε2

)n
(1− z)2n ∂

2n
x f

(2n)!

= f − ε2(1− z)2 fxx
2

+ ε4(1− z)4 fxxxx
4!

+O
(
ε6
)
, (2.16)

where f = f0.
Substituting φ(x, z, t) in the equations (2.12)–(2.13) for the fluid interface

z = αζ(x, t), and retaining up to terms of order O(α, ε2), we obtain the system

ζt −
(
(1− αζ)fx

)
x

+
ε2

6
∂4xf = 0, (2.17)

ft −
ε2

2
fxxt +

1

2
αf2x + ζ +

1

α
p1 = C(t). (2.18)

On the other hand, the equations satisfied by the potential φ = φ2, and the
pressure p2 in the lower fluid are given by

φxx + φzz = 0, −h2 < z < ζ(x, t), (2.19)

ζt + φxζx = φz at z = ζ(x, t), (2.20)

φt +
1

2

(
φ2x + φ2z

)
+ gζ +

p2
ρ2

= C(t) at z = ζ(x, t), (2.21)

φz(x,−h2, t) = 0. (2.22)

For the lower fluid we introduce the following scaling

x = Lx̃, z = Lz̃, t =
L

U0
t̃,

ζ = aζ̃, φ2 =
εgLa

U0
φ̃2, p2 = ρ1U

2
0 p̃2.

(2.23)

In dimensionless variables and dropping the tildes, the equations for the lower
fluid (2.19)–(2.22) transform into

Math. Model. Anal., 19(3):309–333, 2014.
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φxx + φzz = 0, −h2/L < z < αεζ(x, t), (2.24)

ζt + αεφxζx = φz, z = αεζ(x, t), (2.25)

αεφt +
1

2
α2ε2

(
φ2x + φ2z

)
+ αζ +

ρ1
ρ2
P = C(t), z = αεζ(x, t), (2.26)

φz(x,−h2/L, t) = 0, (2.27)

where we define P (x, t) := p1
(
x, αζ(x, t), t

)
= p2

(
x, αεζ(x, t), t

)
. Differentiat-

ing equation (2.26) with respect to x, we obtain the following expression for
the pressure P (x) at the fluid interface z = αεζ(x, t):

Px = −ρ2
ρ1
α(ζx + εφxt) +O

(
α2ε2

)
. (2.28)

Observe now that expanding the potential around z = 0 we have that

φx
(
x, αεζ(x, t), t

)
= φx(x, 0, t) +O(αε).

By virtue of equation (2.25) we have φz = ζt + O(αε), at z = 0. Using the
Fourier transform, we solve the Laplace equation (2.24) subject to the Newman-
type boundary condition (2.27) to obtain that

φx(x, 0, t) = T
(
φz(x, 0, t)

)
= T

(
ζt +O(αε)

)
,

where T denotes the operator

T (f) =
1

2h
p.v.

∫
f(x′)coth

(π(x′ − x)

2h

)
dx′

and h = h2/L. Therefore differentiating the equation above with respect to t,
we have

φxt(x, 0, t) = T
(
ζtt +O(αε)

)
.

Substituting this result in the equation for the pressure (2.28), we get

Px = −ρ2
ρ1
α
(
ζx + εT

(
ζtt +O(αε)

))
+O

(
α2ε2

)
.

From equation (2.17) we arrive at ζt = fxx +O
(
α, ε2

)
, which implies that

Px = −ρ2
ρ1
α
(
ζx + εT (fxxt)

)
+O

(
α2ε2

)
. (2.29)

After differentiating of the momentum equation (2.18) with respect to x and
substituting the expression for the pressure given in (2.29), we obtain by ne-
glecting terms of order O(α2ε2),

fxt −
ε2

2
∂3x∂tf +

1

2
α
(
f2x
)
x

+ ζx −
ρ2
ρ1

(
ζx + εT

(
∂2x∂tf

))
= 0. (2.30)

We then introduce the velocity u(x, t) monitored at a fixed depth z = Z0 with
αεζ < Z0 < 1. Since ζ is order 1, this inequality is satisfied for α, ε � 1.
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We point out that this idea was already applied in [13] to obtain a formally
equivalent Boussinesq approximation for the problem of water waves propagat-
ing over a shallow channel with slowly-variable depth. In [10,12] this idea was
applied when the channel’s depth is highly varying.

Using equation (2.16), we have that

u(x, t) = φx(x, Z0, t) = fx − ε2(1− Z0)2
∂3xf

2
+ ε4(1− Z0)4

∂5xf

4!
+O

(
ε6
)

and thus

fx = u+
ε2

2
(1− Z0)2∂3xf +O

(
ε4
)
, fxt = ut +

ε2

2
(1− Z0)2∂3x∂tf +O

(
ε4
)
,

fxx = ux +
ε2

2
(1− Z0)2∂4xf +O

(
ε4
)
, ∂4xf = ∂3xu+

ε2

2
(1− Z0)2∂6xf +O

(
ε4
)
.

Substituting these expressions in equations (2.17), (2.30) and retaining terms
up to order O(ε, ε2, α), we obtain that

ζt −
(
(1− αζ)u

)
x

= ε2
( (1− Z0)2

2
− 1

6

)
∂3xu,

ut + αuux +
(

1− ρ2
ρ1

)
ζx =

ρ2
ρ1
εT (uxt) +

ε2

2

(
1− (1− Z0)2

)
uxxt.

Observe that these equations give that ζt = ux +O
(
α, ε2

)
, and thus we get the

system

ζt −
(
(1− αζ)u

)
x

= ε2
( (1− Z0)2

2
− 1

6

)
ζxxt,

ut + αuux +
(

1− ρ2
ρ1

)
ζx =

ρ2
ρ1
εT (uxt) +

ε2

2

(
1− (1− Z0)2

)
uxxt.

In the deep water limit h = h2/L→∞, we have that

lim
h→∞

T (f) = H(f),

and thus the above system transforms into

ζt −
(
(1− αζ)u

)
x

= ε2
(

(1− Z0)2

2
− 1

6

)
ζxxt, (2.31)

ut + αuux +

(
1− ρ2

ρ1

)
ζx =

ρ2
ρ1
εH(uxt) +

ε2

2

(
1− (1− Z0)2

)
uxxt. (2.32)

We point out that neglecting the terms of order O(ε2), we recover a system
derived by Choi and Camassa in [8, 9]. When Z0 = 1 −

√
2/3, we obtain

system (1.1). Furthermore, for this choice of the parameter Z0 the third-order
dispersive terms of order ε2 become symmetric. In Section 4, we will see that
the presence of these terms enables the use of the Banach fixed point theorem
to establish existence and uniqueness of solutions of system (1.1).

Math. Model. Anal., 19(3):309–333, 2014.
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3 Notation and Preliminaries

In the following results on existence of solutions of system (1.1), we will only
require that 1−ρ2/ρ1 < 0. All other constants are positive since α, ε, ρ1, ρ2 > 0.
Thus that only for simplicity and without loss of generality, we consider system
(1.1) with 1− ρ2/ρ1 = −1 and all other coefficients equal to 1:

ζt −
(
(1− ζ)u

)
x

= ζxxt, x ∈ R, t > 0, (3.1)

ut + uux − ζx = H(uxt) + uxxt, (3.2)

subject to the initial conditions ζ(x, 0) = ζ0(x), u(x, 0) = u0(x). To analyze the
existence of solutions of system (3.1)–(3.2), we will use the standard notation.
For 1 ≤ p ≤ ∞ we will denote by Lp(R) (or simply Lp) the Banach space of
measurable functions in R such that

∫
R |f(x)|p dx < ∞ if 1 ≤ p < ∞, and

ess supR |f | <∞, if p =∞. We define the norm in Lp(R) for 1 ≤ p <∞ by

‖f‖Lp =

(∫
R

∣∣f(x)
∣∣p)1/p

and in L∞(R) by ‖f‖∞ = ess supR |f |. L2(R) is a Hilbert space for the scalar
product

〈f, g〉 =

∫
R
f(x)g(x) dx.

We set ‖f‖ = ‖f‖L2 . For a function f ∈ L1(R), the Fourier transform is defined
as

F(f)(y) = f̂(y) =

∫
R
f(x)e−ixy dx, y ∈ R

and the inverse Fourier transform is defined by

F−1(f)(y) = f̌(y) =
1

2π

∫
R
f(x)eixy dx, y ∈ R.

We will also denote by F(f) (or f̂) and F−1(f) (or f̌) the extensions of these
operators to L2(R). The convolution of two functions f, g ∈ L2(R) is defined
as

f ∗ g(x) =

∫
R
f(x− y)g(y) dy.

We recall that f̂ ∗ g(y) = f̂(y)ĝ(y). For s ∈ R, we define the Sobolev space
Hs(R) (sometimes written for simplicity Hs) as the completion of the Schwartz
space (rapidly-decaying functions) defined as

S(R) :=
{
f ∈ C∞(R) :

∥∥xν∂βxf∥∥∞ <∞, for any ν, β ∈ Z+
}

with respect to the norm

‖f‖Hs =

(∫
R

(
1 + y2

)s∣∣f̂(y)
∣∣2 dy)1/2

.
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For simplicity, we also denote this norm as ‖f‖s. The inner product in Hs(R)
is defined as

〈f, g〉s =

∫
R

(
1 + y2

)s
f̂(y)ĝ(y) dy.

The product norm in the space Hs(R)×Hs(R) is defined by∥∥(ζ, u)
∥∥
Hs×Hs = ‖ζ‖Hs + ‖u‖Hs

for (ζ, u) ∈ Hs(R)×Hs(R). For T > 0, we will denote by C([0, T ], Hs(R)) the
space of continuous functions f : [0, T ] → Hs(R), i.e. the space of continuous
functions t→ f(t, .) ∈ Hs(R), t ∈ [0, T ], with the supremum norm

‖f‖C(0,T ) = sup
t∈[0,T ]

∥∥f(t, .)
∥∥
Hs

and the product norm∥∥(ζ, u)
∥∥
C(0,T )2

= ‖ζ‖C(0,T ) + ‖u‖C(0,T )

for (ζ, u) ∈ C([0, T ], Hs(R)×Hs(R)).
An important property of the Hilbert transform which will be used in the

sequel is Ĥ(u)(y) = i sgn(y)û(y), where

sgn(y) =

{
|y|/y, y 6= 0,

0, y = 0.

4 Existence and Uniqueness of Solutions

In first place, taking the Fourier transform with respect to the variable x,
system (3.1)–(3.2) can be written as

ζ(x, t) = ζ0(x) +

∫ t

0

F−1
(

iy

1 + y2
(û− ζ̂u)

)
(x, t′) dt′,

u(x, t) = u0(x) +

∫ t

0

F−1
(

iy

1 + |y|+ y2

(
− û

2

2
+ ζ̂

))
(x, t′) dt′.

We will denote the Fourier and the inverse Fourier transforms of the vector-
valued function f = (f1, f2) as

F(f) = (Ff1,Ff2), F−1(f) =
(
F−1(f1),F−1(f2)

)
,

respectively.

Theorem 1. Let s > 1
2 , and U0 = (ζ0, u0)T ∈ Hs × Hs. Then there exists

T > 0 and a unique U ∈ C([0, T ];Hs × Hs), where U(t) = (ζ(t, ·), u(t, ·))T
which satisfies the integral equation

U(t) = U0 +

∫ t

0

F−1
(
F
(
U(t′)

))
dt′, (4.1)

where

F
(
U(t)

)
=

(
iy

1 + y2
(û− ζ̂u),

iy

1 + |y|+ y2

(
− û

2

2
+ ζ̂

))T
.

Math. Model. Anal., 19(3):309–333, 2014.
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Proof. Let M,T > 0, and define the integral operator

A
(
U(t)

)
= U0 +

∫ t

0

F−1
(
F
(
U(t′)

))
dt′ (4.2)

and

X(T ) =
{
U ∈ C

(
[0, T ];Hs ×Hs

)
:
∥∥U(t)− U0

∥∥
C(0,T )2

≤M
}
.

It is clear that a fixed point of the operator A corresponds to a solution of
the integral equation (4.1). In first place, we will show that if U ∈ X(T ) then
A(U) ∈ X(T ). Suppose that τ, t ∈ [0, T ] with τ > t ≥ 0. Thus

∥∥A(U(t)
)
−A

(
U(τ)

)∥∥
Hs×Hs =

∥∥∥∥∫ τ

t

F−1
(
F
(
U(t′)

))
dt′
∥∥∥∥
Hs×Hs

≤
∫ τ

t

(∫
R

(
1 + y2

)s∣∣∣∣ iy

1 + y2

∣∣∣∣2|û− ζu|2 dy)1/2

dt′

+

∫ τ

t

(∫
R

(
1 + y2

)s∣∣∣∣ iy

1 + |y|+ y2

∣∣∣∣2∣∣∣∣− û22 + ζ̂

∣∣∣∣2 dy)1/2

dt′

≤ |τ − t| sup
t∈[0,T ]

(∥∥u(t)− ζ(t)u(t)
∥∥
Hs

+

∥∥∥∥ζ(t)− u(t)2

2

∥∥∥∥
Hs

)
.

Using the fact that Hs is an algebra for s > 1/2, we conclude that A(U) belongs
to C([0, T ];Hs ×Hs).

Let us suppose now that

sup
t∈[0,T ]

∥∥U(t)− U0

∥∥
Hs×Hs ≤M.

Therefore ∥∥ζ(t)
∥∥
Hs

+
∥∥u(t)

∥∥
Hs
≤M + ‖U0‖Hs×Hs

for any t ∈ [0, T ]. As a consequence,

∥∥A(U(t)
)
− U0

∥∥
Hs×Hs ≤

∥∥∥∥∫ t

0

F−1
(
F
(
U(t′)

))
dt′
∥∥∥∥
Hs×Hs

≤ T sup
t∈[0,T ]

(∥∥u(t)− ζ(t)u(t)
∥∥
Hs

+

∥∥∥∥ζ(t)− u(t)2

2

∥∥∥∥
Hs

)
≤ T sup

t∈[0,T ]

(∥∥ζ(t)
∥∥
Hs

(
1 +

∥∥u(t)
∥∥
Hs

)
+
∥∥u(t)

∥∥
Hs

(
1 +

1

2

∥∥u(t)
∥∥
Hs

))
≤ T

(
M + ‖U0‖Hs×Hs

)(
1 +M + ‖U0‖Hs×Hs

)
< M,

provided that T > 0 is small enough. As a conclusion, we have that if U ∈ X(T )
then A(U) ∈ X(T ) for a small T > 0.

In second place, we establish that the operator A is a contraction from X(T )
in itself, provided T is small enough. Let U = (ζ1, u1)T and V = (ζ2, u2)T be
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in the set X(T ). Therefore

∥∥A(U(t)
)
−A

(
V (t)

)∥∥
Hs×Hs ≤

∥∥∥∥∫ t

0

F−1
(
U(t′)− V (t′)

)
dt′
∥∥∥∥
Hs×Hs

≤
∫ t

0

(∫
R

(
1 + y2

)s∣∣∣∣ iy

1 + y2

∣∣∣∣2∣∣(û1 − ζ̂1u1)− (û2 − ζ̂2u2)
∣∣2 dy)1/2

dt′

+

∫ t

0

(∫
R

(
1 + y2

)s∣∣∣∣ iy

1 + |y|+ y2

∣∣∣∣2∣∣∣∣(− û212 + ζ̂1

)
−
(
− û

2
2

2
+ ζ̂2

)
dy

)1/2

dt′

≤
∫ t

0

∥∥(u1(t′)− ζ1(t′)u1(t′)
)
−
(
u2(t′)− ζ2(t′)u2(t′)

)∥∥
Hs×Hs dt

′

+

∫ t

0

∥∥∥∥(−u1(t′)2

2
+ ζ1(t′)

)
−
(
−u2(t′)2

2
+ ζ2(t′)

)∥∥∥∥
Hs×Hs

dt′.

Therefore

∥∥A(U(t)
)
−A

(
V (t)

)∥∥ ≤ T sup
t∈[0,T ]

(
‖ζ1 − ζ2‖Hs +

1

2

(
‖u1‖Hs + ‖u2‖Hs

)
×
(
‖u1−u2‖Hs

)
+ ‖u1−u2‖Hs+‖ζ2‖Hs‖u1−u2‖Hs+‖u1‖Hs‖ζ1−ζ2‖Hs

)
≤ T sup

t∈[0,T ]

((
1 + ‖u1‖Hs

)
‖ζ1 − ζ2‖Hs +

(1

2

(
‖u1‖Hs + ‖u2‖Hs

)
+ 1 + ‖ζ2‖Hs

)
‖u1 − u2‖Hs

)
≤ T sup

t∈[0,T ]

((
1 +M + ‖U0‖Hs×Hs

)
‖ζ1 − ζ2‖Hs

+
(
1 + 2M + 2‖U0‖Hs×Hs

)
‖u1 − u2‖Hs

)
≤ T

(
1 + 2M + 2‖U0‖Hs×Hs

)
sup
t∈[0,T ]

∥∥U(t)− V (t)
∥∥
Hs×Hs .

We see that we can select T̃ ∈ (0, T ) (which depends on the initial condition U0)
such that

T̃
(
1 + 2M + 2‖U0‖Hs×Hs

)
< 1,

we have that the operator is a contraction from X(T̃ ) in itself. Then the
Banach’s contraction principle implies the existence of a unique solution in
X(T̃ ) of the integral equation (4.1). The uniqueness of the obtained solution
in the space C([0, T̃ ];Hs × Hs) can be established using Gronwall’s lemma.
This finishes the proof of the theorem. ut

Remark 1. As we mention above, the presence of the two dispersive O(ε2) terms
in system (3.1)–(3.2) allowed to use the Banach fixed point theorem to establish
local existence and uniqueness of solutions of system (1.1). In contrast, if for
instance we set Z0 = 1 −

√
1/3, then equations (1.1) reduces to the non-
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regularized system

ζt −
(
(1− αζ)u

)
x

= 0, (4.3)

ut + αuux +

(
1− ρ2

ρ1

)
ζx =

ρ2
ρ1
εH(uxt) +

ε2

3
uxxt, (4.4)

ζ(x, 0) = ζ0(x), u(x, 0) = u0(x).

Observe that equation (4.3) does not have the dispersive term of order O(ε2).
This has an effect on the smoothness properties of the corresponding nonlinear
operator A. We can not use directly the Banach fixed point principle to study
existence of solutions of this system, because the operator A does not map the
ball X(T ) ⊂ Hs in X(T ). This is also the case of previous models derived
in [8] and [18] where a kinematic equation in the form of equation (4.3) was
employed. Furthermore, the new formulation (2.31)–(2.32) was stated in terms
of the fluid velocity at a fixed depth Z0, which is easier of measuring than
the commonly used depth-averaged velocity employed for instance in [8, 9].
Regarding possible engineering applications, this is an important advantage of
the family of systems (2.31)–(2.32). Other important property of the particular
formulation (1.1) is the fact that solutions at time t can be bounded in terms of
the initial data, which enables the use of classical tools to extend these solutions
for any time t > 0. This will be shown in the following lemma.

Lemma 1. Let s > 1/2 and ζ, u ∈ C([0, T ], Hs) be the solution of problem
(3.1)–(3.2). Then∥∥ζ(t)

∥∥2
s

+
∥∥u(t)

∥∥2
s
≤ C

(
‖ζ0‖2s + ‖ζ0x‖2s + ‖u0x‖2s + ‖u0‖2Xs

)
for any 0 ≤ t ≤ T , where

‖u‖2Xs :=

∫
R

(
1 + y2

)s(
1 + |y|

)∣∣û(y)
∣∣2 dy.

Proof. Multiplying equation (3.1) by ζ, equation (3.2) by u, and using inte-
gration by parts, we obtain

〈ζt, ζ〉s +
〈
(1− ζ)u, ζx

〉
s

= −〈ζxt, ζx〉s,

〈u, ut〉s −
〈
ux,

u2

2

〉
s

+ 〈ux, ζ〉s = −
〈
ux,H(ut)

〉
s
− 〈ux, uxt〉s.

Therefore adding the equations above, we find

1

2
∂t‖ζ‖2s+

1

2
∂t‖ζx‖2s+

1

2
∂t‖u‖2s+

1

2
∂t‖ux‖2s+

〈
ux,H(ut)

〉
s
=〈ζu, ζx〉s+

〈
ux,

u2

2

〉
s
.

Thus using the Cauchy- Schwartz inequality and the embedding Hs ⊂ L∞, we
get for 0 ≤ t ≤ T ,

∂t
(
‖ζ‖2s + ‖ζx‖2s + ‖ux‖2s + ‖u‖2Xs

)
≤ 2
(
‖ζ‖∞‖u‖s‖ζx‖s + ‖u‖∞‖u‖s‖ux‖s

)
≤ C

(
‖ζ‖2s + ‖ζx‖2s + ‖ux‖2s + ‖u‖2Xs

)
.

The result follows as a consequence of the Gronwall’s lemma. ut
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Remark 2. As a consequence of Lemma 1, we have that the local solutions of
the integral equation (4.1) guaranteed by Theorem 1 can be extended to any
interval [0, T ].

5 Numerical Results

In this section we will describe a numerical scheme which can be used for
approximating the solution of system (2.31)–(2.32) with Z0 = 1−

√
2/3:

ζt −
(
(1− αζ)u

)
x

= ε2ζxxt/6,

ut + αuux + (1− ρr)ζx = ρrεH(uxt) + ε2uxxt/6,

ζ(x, 0) = ζ0(x), u(x, 0) = u0(x),

(5.1)

where ρr = ρ2/ρ1. To proceed, the spatial computational domain [0, L] is
discretized by N ∈ 2Z equidistant points, with spacing ∆x = L/N . Then, we
approximate the unknowns u and ζ as truncated Fourier series in space with
time-dependent coefficients:

u(x, t) =
∑
j

ûj(t)e
iwjx, ζ(x, t) =

∑
j

ζ̂j(t)e
iwjx (5.2)

with wj = 2πj/L, j = −N/2+1, . . . 0, . . . N/2. The time-dependent coefficients
ûj(t) for j = −N/2 + 1, . . . 0, . . . N/2 are calculated by means of the equation

ûj(t) =
1

L

∫ L

0

u(x, t)e−iwjx dx,

and similarly for ζ̂j(t). Actually, this Fourier strategy allows us to seek approxi-
mations of solutions to system (5.1) on a periodic domain [0, L]. However, since
in this paper we are mainly interested in solutions on (−∞,∞) which decay
rapidly to zero when |x| → ∞, such as solitary waves and Gaussian-type initial
data, we can take the length of the computational domain L > 0 large enough
in order to the solution does not reach the computational boundaries x = 0,
x = L. Thus we are able of computing the time evolution of solutions in these
non-periodic problems.

Projecting equations (5.1) with respect to the orthonormal basis φj =
L−1/2eiwjx and the inner product

〈f, g〉 =

∫ L

0

f(x)g(x) dx,

we derive that

〈ζt, φj〉 −
〈
(u− αζu)x, φj

〉
=
ε2

6
〈ζxxt, φj〉, (5.3)

〈ut, φj〉+
α

2

〈(
u2
)
x
, φj
〉

+ (1− ρr)〈ζx, φj〉 = ρrε
〈
H(uxt), φj

〉
+
ε2

6
〈uxxt, φj〉.
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Now substituting the Fourier expansions (5.2) into equations (5.3) and using
the orthogonal property of the basis φj and integration by parts, we obtain

ζ̂ ′j(t)− iwjPj
[
(u− αζu

]
= −ε

2

6
w2
j ζ̂
′
j , (5.4)

û′j(t) +
iαwj

2
Pj
[
u2
]

+ iwj(1− ρr)ζ̂j = ρrε
∑
s

iwsû
′
s(t)
〈
H(φs), φj

〉
− ε2

6
w2
j û
′
j ,

where Pj [.] is the operator defined by

Pj [g] =
1

L

∫ L

0

g(x)e−iwjx dx. (5.5)

Then using the properties of the Hilbert transform, system (5.4) reduces into

ζ̂ ′j(t)− iwjPj
[
(u− αζu

]
= −ε

2

6
w2
j ζ̂
′
j ,

û′j(t) +
iαwj

2
Pj
[
u2
]

+ iwj(1− ρr)ζ̂j = −ρrε|wj |û′j −
ε2

6
w2
j û
′
j .

Finally, we reach expressions for the Fourier coefficients of the unknowns u
and ζ:

ζ̂ ′j =
iwj

1 + ε2

6 w
2
j

Pj
[
(u− αζu)

]
,

û′j =
iwj(ρr − 1)ζ̂j

1 + ρrε|wj |+ ε2

6 w
2
j

− iαwjPj [u
2]

2(1 + ρrε|wj |+ ε2

6 w
2
j )
,

(5.6)

subject to ζ̂j(0) = ζ̂0j , ûj(0) = û0j . Equations (5.6) can be considered as
a system of ordinary differential equations for each frequency wj , which we
discretized numerically by the following second-order scheme proposed in [1, 4]:

ζ̂
(n+1)
j − ζ̂(n)j

∆t
=
iwj
2

(
û
(n+1)
j + û

(n)
j

1 + ε2

6 w
2
j

)
− 3

2

(
iwj

1 + ε2

6 w
2
j

)
Pj [αζu](n)

+
1

2

(
iwj

1 + ε2

6 w
2
j

)
Pj [αζu](n−1),

û
(n+1)
j − û(n)j

∆t
=
iwj(ρr − 1)(ζ̂

(n+1)
j + ζ̂

(n)
j )

2(1 + ρrε|wj |+ ε2

6 w
2
j )

− 3iαwjPj [u
2](n)

4(1 + ρrε|wj |+ ε2

6 w
2
j )

+
iαwjPj [u

2](n−1)

4(1 + ρrε|wj |+ ε2

6 w
2
j )
.

(5.7)

Here ∆t denotes the time step and û
(n)
j , ζ̂

(n)
j denote the numerical approxi-

mations of the Fourier coefficients ûj(t), ζ̂j(t), respectively, at time t = n∆t.
Also the notation Pj [g](n) means the value of Pj [g] when g is evaluated at time
t = n∆t. This implicit–explicit (IMEX) scheme is a combination of a second-
order Adams-Bashforth for the linear terms and a Crank-Nicholson for the non-
linear terms. The main idea behind the IMEX schemes is to integrate implicitly
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the linear terms for obtaining schemes with weak stability time-step restric-
tions. The convective terms are treated explicitly for ease of implementation.
Observe that scheme (5.7) deals with three levels in the temporal evolution.
To initiate the scheme we need the approximations of the pair solution (ζ, u)
at two different levels of time. It is clear that the first level is given by the ini-
tial conditions ζ0(x), u0(x). To compute the additional temporal level we may
use, for instance, a single-step method to integrate equations (5.6). An experi-
mental analysis of several IMEX schemes, including the one used in (5.7), was
carried out in [4] and [5]. Recently, the author also used this IMEX scheme to
approximate the solutions of a weakly-nonlinear, weakly-dispersive Boussinesq-
type system with highly-variable coefficients [11]. Furthermore, convergence of
the fully-discrete numerical solver was analyzed in that work.

5.1 Linear stability analysis

Let us consider the linear version of the solver (5.7) (i.e. with α = 0):

ζ̂
(n+1)
j = ζ̂

(n)
j + α1

(
û
(n+1)
j + û

(n)
j

)
,

û
(n+1)
j = β1

(
ζ̂
(n+1)
j + ζ̂

(n)
j

)
+ û

(n)
j ,

(5.8)

where

α1 =
iwj∆t

1 + ε2

6 w
2
j

, β1 =
iwj(ρr − 1)∆t

2(1 + ρrε|wj |+ ε2

6 w
2
j )
.

Therefore (
ζ̂
(n+1)
j

û
(n+1)
j

)
=

1

1− α1β1

(
1 + α1β1 2α1

2β1 1 + α1β1

)(
ζ̂
(n)
j

û
(n)
j

)
.

Since α1β1 < 0, we get that the eigenvalues of the matrix above are

λ± =
1 + α1β1 ± 2i

√
−α1β1

1− α1β1
.

Thus |λ±| = 1, which implies that the linear numerical scheme (5.8) is uncon-
ditionally stable (i.e. no upper limit on time step ∆t).

5.2 Error analysis of the semidiscrete scheme for the periodic prob-
lem

We will analyze the convergence of the numerical solver described above applied
to the system

ζt −
(
(1− ζ)u

)
x

= ζxxt,

ut + uux − ζx = H(uxt) + uxxt,
(5.9)

subject to the initial conditions ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), and ζ, u and
their derivatives are L-periodic with respect to the spatial variable x.

We set

L2(0, L) :=

{
f : (0, L)→ C, ‖f‖ =

[∫ L

0

∣∣f(x)
∣∣2 dx]1/2 <∞}
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with the inner product 〈f, g〉 =
∫ L
0
f(x)g(x) dx, and let C∞# (0, L) be the space

of all infinitely differentiable functions that are L-periodic so as all their deriva-
tives. Moreover, for any integer r ≥ 0, Hr

#(0, L) stands for the closure of
C∞# (0, L) in the Sobolev space

Hr(0, L) :=
{
f ∈ L2(0, L), ‖f‖r =

[ r∑
j=0

∥∥∂jf/∂xj∥∥2]1/2 <∞}.
Let SN be the finite dimensional space generated by φj = L−1/2e

2π
T jx, j =

−N/2, . . . N/2, N ∈ 2Z and PN : L2(0, L)→ SN be the orthogonal projection
on the space SN ,

PNg :=

N/2∑
j=−N/2+1

ĝjφj

with ĝj =
∫ L
0
g(x)φj(x) dx. For any φ ∈ SN , and g ∈ L2(0, L), we have that∫ L

0

(PNg − g)φdx = 0.

Furthermore, for all g ∈ L2(0, L), (PNg)N∈2N converges to g and for any inte-
gers r ≥ s, s ≥ 0 one has (see [15]) that

‖PNg − g‖s ≤ CNs−r‖g‖r (5.10)

for all g ∈ Hr
#(0, L). For T > 0 the weak formulation of problem (5.9) is to

find ζ, u ∈ C([0, T ], H1
#(0, L)) such that

〈ζt, φ〉+
〈
(1− ζ)u, φ′

〉
= −〈ζxt, φ′〉,

〈ut, ψ〉 −
〈
u2

2
, ψ′
〉

+ 〈ζ, ψ′〉 = −
〈
H(ut), ψ

′〉− 〈uxt, ψ′〉,
ζ(0) = ζ0, u(0) = u0

(5.11)

for all φ, ψ ∈ H1
#(0, L), 0 ≤ t ≤ T .

The semidiscrete Fourier–Galerkin spectral scheme to solve problem (5.11)
is to find ζN , uN ∈ C([0, T ], SN ) such that〈

ζNt, φ
〉

+
〈
(1− ζN )uN , φ

′〉 = −〈ζNxt, φ′〉,

〈uNt, ψ〉 −
〈
u2N
2
, ψ′
〉

+ 〈ζN , ψ′〉 = −
〈
H(uNt), ψ

′〉− 〈uNxt, ψ′〉,
ζN (0) = PN (ζ0), uN (0) = PN (u0)

(5.12)

for all φ, ψ ∈ SN , 0 ≤ t ≤ T .

Theorem 2. Let ζ, u ∈ C([0, T ], Hr
#(0, L)) be the solution of problem (5.11),

with r ≥ 2 integer. Then the semidiscrete problem (5.12) has a unique solu-
tion ζN , uN ∈ C([0, T ], SN ) and for N sufficiently large there exists a constant
C > 0, independent of N, t, such that∥∥ζ(t)− ζN

∥∥+
∥∥u(t)− uN (t)

∥∥ ≤ CN1−r

for any 0 ≤ t ≤ T .
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Proof. The first observation is that problem (5.12) is equivalent to the sys-
tem (5.6). From the classical theory of existence of solutions of ordinary differ-
ential equations, this system has a unique local solution ζN , uN ∈ C([0, T̃ ], SN )
for some T̃ > 0. This local solution can be extended to any interval [0, T ] due
to the estimate∥∥ζN (t)

∥∥2 +
∥∥uN (t)

∥∥2 ≤ C(∥∥ζN (0)
∥∥2 +

∥∥ζNx(0)
∥∥2 +

∥∥uNx(0)
∥∥2 +

∥∥uN (0)
∥∥2
X0

)
for 0 ≤ t ≤ T , which can be easily derived from equations (5.12), using a similar
technique as in Lemma 1. Here we remark the importance of the dispersive
terms of order O(ε2) for the validity of the previous inequality, which means
that the solution of the semidiscrete formulation at time t can be bounded in
terms of the initial data.

Here

‖u‖2X0 :=

∫ L

0

(
1 + |y|

)∣∣û(y)
∣∣2 dy.

Let

θ := PNζ − ζN , ξ := PNu− uN , ρ := ζ − PNζ, σ := u− PNu.

Using the properties of the orthogonal projection we have that〈
PNζt − PNux + PN

(
(ζu)x

)
, φ
〉

=
〈
PN (ζxxt), φ

〉
, (5.13)〈

ψ, PNut + PN (uux)− PN (ζx)
〉

=
〈
ψ,H

(
PN (uxt)

)
+ PN (uxxt)

〉
(5.14)

for any φ, ψ ∈ SN . Observe that the semidiscrete formulation (5.12) can also
be written as 〈

ζNt − uNx + (ζNuN )x, φ
〉

=
〈
ζNxxt, φ

〉
, (5.15)

〈ψ, uNt + uNuNx − ζNx〉 =
〈
ψ,H(uNxt) + uNxxt

〉
. (5.16)

Subtracting equations (5.13)–(5.15) and (5.14)–(5.16), we have that〈
∂t(PNζ − ζN ), φ

〉
− 〈PNux − uNx, φ〉+

〈
PN
(
(ζu)x

)
− (ζNuN )x, φ

〉
=
〈
∂t
(
PN (ζxx)− ζNxx

)
, φ
〉
,〈

ψ, ∂t(PNu− uN )
〉

+
〈
ψ, PN (uux)− uNuNx

〉
− 〈ψ, PNζx − ζNx〉

=
〈
ψ,H

(
PN (uxt)− uNxt

)〉
+
〈
ψ, PN (uxxt)− uNxxt

〉
.

Suppose that there exists a maximal temporal instance 0 < TN < T such that∥∥θ(t)∥∥∞ ≤ 1 (5.17)

for 0 ≤ t ≤ TN . Furthermore, since u, ζ ∈ C([0, T ], Hr
#(0, L)), r ≥ 2, we know

that ‖u(t)‖1 ≤M , ‖ζ(t)‖1 ≤M , 0 ≤ t ≤ T , for some constant M > 0.
We recall that θ, ξ belong to SN . Thus we can let φ = θ and ψ = ξ in the

equations above to find that

〈θt, θ〉 − 〈ξx, θ〉+
〈
PN
(
(ζu)x

)
− (ζNuN )x, θ

〉
= 〈θxxt, θ〉, (5.18)

〈ξ, ξt〉+
〈
ξ, PN (uux)− uNuNx

〉
− 〈ξ, θx〉 = 〈ξ,Hξxt〉+ 〈ξ, ξxxt〉. (5.19)
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Adding these equations and using integration by parts, we obtain that

1

2
∂t‖θ‖2 +

1

2
∂t‖θx‖2 +

1

2
∂t‖ξ‖2X0 +

1

2
∂t‖ξx‖2

= −
〈
PN
(
(ζu)x

)
− (ζNuN )x, θ〉 − 〈ξ, PN (uux)− uNuNx

〉
.

(5.20)

In order to bound the right side terms of equality (5.20), observe that

−
〈
PN
(
(ζu)x

)
− (ζNuN )x, θ

〉
= −

〈
(ζu)x − (ζNuN )x, θ

〉
= 〈ζu− ζNuN , θx〉

=
〈
u(ρ+ θ)− (ρ+ θ)(σ + ξ) + ζ(σ + ξ), θx

〉
= 〈uρ, θx〉+ 〈uθ, θx〉

− 〈ρσ, θx〉 − 〈ρξ, θx〉 − 〈θσ, θx〉 − 〈θξ, θx〉+ 〈ζσ, θx〉+ 〈ζξ, θx〉
≤ ‖u‖∞‖ρ‖‖θx‖+ ‖u‖∞‖θ‖‖θx‖+ ‖ρ‖∞‖σ‖‖θx‖+ ‖ρ‖∞‖ξ‖‖θx‖

+ ‖σ‖∞‖θ‖‖θx‖+ ‖θ‖∞‖ξ‖‖θx‖+ ‖σ‖∞‖ζ‖‖θx‖+ ‖ζ‖∞‖ξ‖‖θx‖,

and furthermore,〈
ξ, uNuNx − PN (uux)

〉
= 〈ξ, uNuNx − uux〉
=
〈
ξ, ξξx + σσx + (σξ)x − (uσ)x − (uξ)x

〉
= 〈ξ, σσx〉+

〈
ξ, (σξ)x

〉
−
〈
ξ, (uσ)x

〉
−
〈
ξ, (uξ)x

〉
≤ ‖σ‖∞‖σx‖‖ξ‖+ ‖σx‖∞‖ξ‖2 + ‖ux‖∞‖ξ‖‖σ‖

+ ‖u‖∞‖σx‖‖ξ‖+ ‖ux‖∞‖ξ‖2.

Using (5.10), we have that

‖ρ‖ ≤ ‖ρ‖1 ≤ CN1−r‖ζ‖r ≤ C,
‖σ‖ ≤ ‖σ‖1 ≤ CN1−r‖u‖r ≤ C,

(5.21)

where C is a constant independent of N . Furthermore, we know that due to
the embedding H1

# ⊂ L∞, we have that ‖ρ‖∞ ≤ C‖ρ‖1, ‖σ‖∞ ≤ C‖σ‖1. Thus
from inequality (5.20) and (5.17), we get that

1

2
∂t‖θ‖2 +

1

2
∂t‖θx‖2 +

1

2
∂t‖ξ‖2X0 +

1

2
∂t‖ξx‖2

≤ C
(
‖ρ‖2 + ‖θx‖2 + ‖θ‖2 + ‖σ‖2 + ‖ξ‖2 + ‖σ‖2∞ + ‖ξ‖2X0 + ‖σx‖2

)
.

Therefore by virtue of (5.21), we obtain that

∂t
(
‖θ‖2 + ‖θx‖2 + ‖ξ‖2X0 + ‖ξx‖2

)
≤ C

(
‖θ‖2 + ‖θx‖2 + ‖ξ‖2X0 + ‖ξx‖2

)
+ CN2−2r (5.22)

for 0 ≤ t ≤ TN , where C is a constant independent of N . Using Gronwall’s
lemma, we obtain that∥∥θ(t)∥∥2 +

∥∥θx(t)
∥∥2 +

∥∥ξ(t)∥∥2
X0 +

∥∥ξx(t)
∥∥2 ≤ CN2−2r,

0 ≤ t ≤ TN , and thus ∥∥θ(t)∥∥+
∥∥ξ(t)∥∥ ≤ CN1−r (5.23)
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for 0 ≤ t ≤ TN . Observe that due to θ ∈ SN ,∥∥θ(t)∥∥∞ ≤ CN 1
2 ‖θ‖ ≤ CN 1

2N1−r ≤ CN 3
2−r < 1

for N large enough and 0 ≤ t ≤ TN . Thus the maximality of TN is contradicted
and we may take TN = T . In this way, inequalities (5.21), (5.23) imply that∥∥ζ(t)− ζN (t)

∥∥+
∥∥u(t)− uN (t)

∥∥ ≤ ∥∥ζ(t)− PNζ(t)
∥∥

+
∥∥PNζ(t)− ζN (t)

∥∥+
∥∥u(t)− PNu(t)

∥∥+
∥∥PNu(t)− uN (t)

∥∥
=
∥∥ρ(t)

∥∥+
∥∥θ(t)∥∥+

∥∥σ(t)
∥∥+

∥∥ξ(t)∥∥ ≤ CN1−r

for 0 ≤ t ≤ T . ut

Remark 3. In the proof of Theorem 2, it is also important the presence of the
dispersive terms of order O(ε2) in system (5.9) to derive inequality (5.22) and
apply Gronwall’s lemma to deduce the error estimation.

5.3 Numerical experiments

We will check the numerical solver described above using an approximate soli-
tary wave solution of system (5.1). Following the strategy in [8], let us suppose
that the parameters α, ε are small and

ζ = A1u+A2αu
2 +A3εH(ut),

where A1, A2, A3 are constants to be calculated. Substituting into equations
(5.1) and neglecting second-order terms α2, αε, ε2, we have that

A1ut + 2A2αuut +A3εH(utt) + 2αA1uux − ux = 0, (5.24)

ut + αuux + (1− ρr)A1ux + 2A2α(1− ρr)uux + (1− ρr)A3εH(uxt)

= ρrεH(uxt). (5.25)

Equation (5.25) implies that ut = (ρr−1)A1ux+O(α, ε). Therefore neglecting
second-order terms, system (5.24)–(5.25) transforms into

−A1ut + 2A2α(1− ρr)A1uux +A3ε(1− ρr)A1H(uxt)− 2αA1uux + ux

= 0, (5.26)

ut + αuux + (1− ρr)A1ux + 2A2α(1− ρr)uux + (1− ρr)A3εH(uxt)

= ρrεH(uxt). (5.27)

Multiplying equation (5.26) by A1(1− ρr), it follows that

−A2
1(1− ρr)ut +A1(1− ρr)ux +

(
2A2A

2
1α(1− ρr)2 − 2αA2

1(1− ρr)
)
uux

+A3A
2
1(1− ρr)2H(uxt) = 0,

ut + αuux + (1− ρr)A1ux +
(
α+ 2A2α(1− ρr)

)
uux

+
(
(1− ρr)A3ε− ρrε

)
H(uxt) = 0.
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From these equations we conclude that

−A2
1(1− ρr) = 1, 2A2A

2
1α(1− ρr)2 − 2αA2

1(1− ρr) = α+ 2A2α(1− ρr),
A3A

2
1ε(1− ρr)2 = (1− ρr)A3ε− ρrε.

Therefore

A1 = − 1√
ρr − 1

, A2 = − 1

4(ρr − 1)
, A3 =

ρr
2(1− ρr)

.

Substituting these values in equation (5.27), we obtain that

ut +
√
ρr − 1 ux +

3α

2
uux −

ρr
2
εH(uxt) = 0.

Observe that ut = −
√
ρr − 1 ux + O(α, ε), and therefore we can change the

derivative uxt by uxx in the equation above

ut +
√
ρr − 1ux +

3α

2
uux +

ρr
2
ε
√
ρr − 1H(uxx) = 0. (5.28)

Using that u = −
√
ρr − 1 ζ + O(α, ε), we further obtain an equation for the

wave elevation

ζt +
√
ρr − 1 ζx −

3α

2

√
ρr − 1 ζζx +

ρr
2
ε
√
ρr − 1 H(ζxx) = 0. (5.29)

It is well known that equation (5.28) has an exact solution in the form

u(x, t) = a/
(

1 +
(x− ct− a0

λ

)2)
, (5.30)

where

λ =
4c2
ac1

, c = c0 +
c1
4
a, c0 =

√
ρr − 1, c1 =

3α

2
, c2 =

ρr
2
ε
√
ρr − 1.

Once the velocity is computed, the elevation is calculated as

ζ(x, t) = − 1√
ρr − 1

u(x, t). (5.31)

Benjamin–Ono equation (5.28) and its exact solitary wave solution (5.30) were
introduced by Benjamin [6] (1967) and Ono [14] (1975).

In the first numerical experiment the computational domain is the interval
[0, 100], the number of FFT points in the spatial domain is 210 and ∆t =
40/4000 is the time step. The model’s parameters are α = ε = 0.01, ρr = 1.5
and a = 1. To test the numerical method we will use the family of approximate
solutions (5.30)–(5.31) of system (5.1). Thus we solve numerically system (5.1)
with the following initial conditions for u, ζ:

u(x, 0) =
a

1 + (x−a0λ )2
, ζ(x, 0) = − 1√

ρr − 1
u(x, 0).
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Figure 2. In points: approximate solitary wave solution (5.30)–(5.31). In solid line:
solution (ζnum, unum) obtained with the numerical solver.
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Figure 3. Zoom of Figure 2. In points: approximate solitary wave solution (5.30)–(5.31).
In solid line: solution (ζnum, unum) obtained with the numerical solver.

We point out that the parameter a0 controls the initial position of the solitary
wave. In Figure 2 we compare the numerical solution with the approximations
(5.30)–(5.31) computed at time t = 40. In Figure 3 we show a zoom of Figure 2.
We see that they perfectly agree with good accuracy and neither numerical
dispersion nor dissipation are evidenced in the profiles of the fluid velocity and
wave elevation. The wave speed is approximately c ≈ 0.7109 and the initial
position is a0 = 40.
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Figure 4. E(t) = ‖ζ(t)− ζnum(t)‖∞ + ‖u(t)− unum(t)‖∞ as a function of time.

In Figure 4 we show the difference in the supremum norm between the
numerical solution and the approximate solitary wave solution given in (5.30)–
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(5.31). This experiment is in accordance with the convergence results estab-
lished in this paper.
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Figure 5. In points: approximate solitary wave solution (5.30)–(5.31). In solid line:
solution (ζnum, unum) obtained with the numerical solver.
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Figure 6. In points: approximate solitary wave solution (5.30)–(5.31). In solid line:
solution (ζnum, unum) obtained with the numerical solver.

In Figure 5 we show a new numerical experiment using the same parameters
as before but with ρr = 1.8. In Figure 6 is displayed a numerical experiment
in the case that α = 0.001, ε = 0.01 and ρr = 1.1.

In Figure 7 we show a numerical experiment showing the effect of the disper-
sive terms of order O(ε2) on solutions of system (1.1). In this case α = 0.001,
ε = 0.01, ρr = 1.1 and the initial pulse is a Gaussian disturbance in the form

ζ(x, 0) = exp
(
−σ(x− a0)2

)
, u(x, 0) = exp

(
−σ(x− a0)2

)
with σ = 100 and a0 = 40. Observe a discrepancy between the amplitudes of
the oscillatory parts of wave profiles. Finally in Figure 8 we repeat the previous
experiment but using the parameters a0 = 100, α = 0.01, ε = 0.1, ρr = 1.8 and
the computational domain is [0, 200]. We observe that the discrepancy between
the two profiles is more appreciable than in the previous simulation.

The last two experiments corroborate numerically that the terms of order
O(ε2) are corrections of previous models for the internal wave problem con-
sidered which alter the dispersive-wave mechanism and become important in
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Figure 7. In points: numerical solution of system (1.1) without terms of order O(ε2). In
solid line: numerical solution of full system (1.1).
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Figure 8. In points: numerical solution of system (1.1) without terms of order O(ε2). In
solid line: numerical solution of full system (1.1).

predicting the propagation of internal water waves in the physical regime ana-
lyzed by the present paper.

6 Conclusions

We introduced a new model for the propagation of an internal wave at the
interface of two immiscible fluids with constant densities, contained at rest in
a long channel with horizontal rigid top and bottom. This system includes
dispersive terms of second order O(ε2) which were neglected in previous works
for different regimes of the problem. These dispersive-type terms allowed us
to employ the Banach fixed point theorem to establish existence and unique-
ness of solutions of system (1.1). Other important property of the particular
formulation (1.1) is the fact that their solutions can be bounded in terms of
the initial data, enabling the use of classical techniques of functional analysis
to extend them for any time t > 0. Furthermore, the new formulation (2.31)–
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(2.32) was stated in terms of the fluid velocity at a fixed depth Z0, which is
easier of measuring than the commonly used depth-averaged velocity employed
for instance in [8, 9]. Regarding possible engineering applications, this is an
important advantage of the family of systems (2.31)–(2.32). We also intro-
duced a Galerkin spectral numerical scheme to approximate the solution of the
corresponding initial value problem and established a theory of convergence of
the semidiscrete numerical scheme for the spatial periodic case. The fact that
no differentiation matrices are used in this scheme makes the implementation
easier than in [8] where a pseudospectral scheme was applied to system (1.1)
neglecting terms of order O(ε2).
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