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Abstract. In this paper we consider the problem for identifying an unknown steady
source in a space fractional diffusion equation. A truncation method based on a
Hermite function expansion is proposed, and the regularization parameter is chosen
by a discrepancy principle. An error estimate between the exact solution and its
approximation is given. A numerical implementation is discussed and corresponding
results are presented to verify the effectiveness of the method.
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1 Introduction

In recent years, fractional calculus and fractional differential equations have
attracted great attention in the scientific and engineering community. One of
the most successful applications of fractional calculus and fractional differential
equations is to effectively characterize the anomalous diffusion [11, 12]. The
anomalous diffusion is described by the nonlinear growth of the mean square
displacement x(t) of a diffusion particle over time t: 〈x2(t)〉 ∼ καt

α, where
κα is the diffusion coefficient, and α is the anomalous diffusion exponent. For
different α, the anomalous diffusion is classified into subdiffusion (0 < α < 1),
normal diffusion (α = 1), superdiffusion (α > 1), and ballistic diffusion (α = 2)
[11,18].

The space fractional diffusion equation we consider in this paper can de-
scribe the probability distribution of the particles having superdiffusion [18]
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∂u(x, t)

∂t
= −

∂Jαp,q(x, t)

∂x
+ f(x), (1.1)

where

Jαp,q(x, t) = −κα
{
p−∞D

α−1
x − qxDα−1

∞
}
u

with κα > 0, and p + q = 1 for p, q ≥ 0. The fractional derivatives −∞D
α
x

and xD
α
∞ are left and right Riemann–Liouville fractional derivatives of order

α (1 < α < 2) defined by

−∞D
α
xu(x, t) =

1

Γ (2− α)

d2

dx2

∫ x

−∞
(x− ς)1−αu(ς, t) dς

and

xD
α
∞u(x, t) =

(−1)dαe

Γ (2− α)

d2

dx2

∫ ∞
x

(ς − x)1−αu(ς, t) dς,

such that dαe is the smallest integer no less than α (for 1 < α < 2, we have
dαe = 2).

Our goal is to identify the source term f(x) in the equation (1.1) with the
boundary conditions

u(x, 0) = 0, u(x, T ) = g(x); (1.2)

that is, to determine the source f(x) in (1.1) from some observed boundary
data in (1.2): g → f . This problem is called the inverse source problem [9],
and it is one of the most important problems in many branches of engineering
sciences. Inverse source problems are well known to be ill posed and the data
g(x) usually contains error. Thus, the numerical simulation of these problems
is very difficult and some special regularization is required.

Some results on the inverse problem of time fractional diffusion equations
have been reported [3, 4, 10, 13]. However, there is limited work on space frac-
tional diffusion equation [14, 18, 21]. There are some discussions on special
cases of the inverse problem (1.1), namely α → 2, which refers to the side-
ways heat equation [2, 5, 6, 19, 24]. In the present paper, as an alternative way
of dealing with the problem, we introduce a truncation method based on a
Hermite expansion. The method is a very simple and effective method for solv-
ing some ill-posed problems and it has been successfully applied to numerical
differentiation [23] and numerical analytic continuation [22]. We choose a reg-
ularization strategy based on a discrepancy principle explained in [20]. The
theoretical analysis shows that the smoother the genuine solution, the higher
the convergence rate of the numerical solution by our method.

This paper is organized as follows. Some preliminary materials are in-
troduced in Section 2. In Section 3, the present method and corresponding
convergence results are given. Some numerical tests are given in Section 4 to
show the effectiveness of the new method.

Math. Model. Anal., 19(3):430–442, 2014.
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2 Formulation of Problem and Solution

Let ĥ denote the Fourier transform of h ∈ L2(R) defined by

ĥ(ξ) = F
[
h(x)

]
=

1√
2π

∫ ∞
−∞

h(x)e−iξx dx

and ‖ · ‖s denotes the norm in Sobolev space Hs(R)(s ≥ 0) defined by

‖h‖s :=

(∫ ∞
∞

(
1 + ξ2

)s∣∣ĥ(ξ)
∣∣2 dξ)1/2

.

When s = 0, ‖ · ‖0 =: ‖ · ‖ denotes the L2(R) norm. It is well known that the
Fourier transform of −∞D

α
x and xD

α
∞ can be given as [15]

F
{
−∞D

α
xu(x, t)

}
= (iξ)αû(ξ, t), F

{
xD

α
∞u(x, t)

}
= (−iξ)αû(ξ, t), ξ ∈ R.

Then we have

F
{
Jαp,q(x, t)

}
=
[
p(iξ)α + q(−iξ)α

]
û(ξ, t), ξ ∈ R. (2.1)

According to the definition of the complex power function, the principal value
of the Fourier coefficient in (2.1) is [18]

p(iξ)α + q(−iξ)α =

[
cos

(
πα

2

)
+ i(p− q) sgn(ξ) sin

(
πα

2

)]
|ξ|α,

where sgn(x) is the signum function.
Application of the Fourier transform to problem (1.1) with respect to the

variable x yields the following problem in the frequency space:
∂û(ξ, t)

∂t
= γα(ξ)û(ξ, t) + f̂(ξ), ξ ∈ R, 0 < t < T,

û(ξ, 0) = 0, û(ξ, T ) = ĝ(ξ), ξ ∈ R,
(2.2)

where
γα(ξ) = κα cos(

πα

2
)|ξ|α + i[κα(p− q) sin(±πα

2
)|ξ|α].

It is easy to see that the solution of problem (2.2) is

û(ξ, t) =
eγα(ξ)t − 1

γα(ξ)
f̂(ξ).

So we get [18] f̂(ξ) = λα(ξ)ĝ(ξ), where

λα(ξ) =
γα(ξ)

eγα(ξ)T − 1
,

or equivalently

f = F−1
[
λα(ξ)ĝ(ξ)

]
=

1√
2π

∫
R

γα(ξ)

eγα(ξ)T − 1
ĝ(ξ)eiξx dξ =: T g.
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Obviously, the data ĝ must decay faster than the rate |ξ|−α. However, in the
practical applications, the data g(x) is often obtained on the basis of reading of
a physical instrument which is denoted by gδ(x). In this case, such a decay is
not likely to occur in the Fourier transform of the measured noisy data gδ. So
T gδ can not give a reliable approximation for f . In the following, a truncation
method based on expanded Hermite functions is introduced to reconstruct a
new function ϕδ from the perturbed data gδ. Tϕδ will give a reliable approxi-
mation of f .

We first recall the definition of the Hermite functions and their well-known
properties which are subsequently used. The normalized Hermite functions
h`(x) are defined by

h`(x) =
(
2``!
√
π
)−1/2

e−
1
2x

2

H`(x),

where the H`(x) are the usual Hermite polynomials [17]. The set of Hermite
functions is the L2(R)-orthogonal system [16], i.e.,∫

R
h`(x)hm(x) dx = δ`,m,

where δ`,m is the Dirac delta function. For any φ ∈ L2(R), we may write
φ(x) =

∑∞
`=0 φ`h`(x), where

φ` =

∫
R
φ(x)h`(x) dx, ` = 0, 1, 2 . . . . (2.3)

Let N be any positive integer and

HN = span
{
h0(x), h1(x), . . . , hN (x)

}
.

We shall use c and cα to denote two generic positive constants independent
of any functions and the parameter N , but whose values may vary in each
occurrence.

Lemma 1. [7] For any ϕ ∈ HN and r ≥ 0,

‖ϕ‖r ≤ cN
r
2 ‖ϕ‖.

The L2(R)-orthogonal projection PN : L2(R) → HN is a mapping such
that, for any φ ∈ L2(R),

〈φ− PNφ, ϕ〉 = 0, ∀ϕ ∈ HN ,

or equivalently,

(PNφ)(x) =

N∑
l=0

φ`h`(x).

We define also

Ag(x) = Dxg(x) + xg(x).

Math. Model. Anal., 19(3):430–442, 2014.
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Analogously to [7], we introduce the space HmA (R) defined by

HmA (R) =
{
v | v is measurable on R and ‖v‖m,A <∞

}
and equipped with the norm ‖v‖m,A = ‖Amv‖. For any r > 0, the space
HrA(R) and its norm are defined by space interpolation [1].

Lemma 2. [7] For any g ∈ HrA(R) and 0 ≤ µ ≤ r ,

‖g − PNg‖µ ≤ cN
µ−r
2 ‖g‖r,A.

Lemma 3. [17] The Hermite functions are eigenfunctions of the Fourier trans-
form

ĥ`(ξ) = (−i)`h`(ξ), ` = 1, 2, . . . .

Suppose that the exact data g and the measured data gδ satisfy∥∥gδ − g∥∥ ≤ δ, ∥∥gδ∥∥ > τδ, (2.4)

where δ > 0 is a given constant called the error level and τ > 1. In this case,
the function ϕn,δ can be given as

gδ → ϕn,δ = Pngδ =

n∑
l=0

gδ`h`(x), (2.5)

where gδ` are produced using (2.3). The truncation parameter n plays an es-
sential role in the accuracy of these approximations. In this paper, we make
use of a discrepancy principle [20] as follows to choose an n(δ, gδ) a posteriori
such that: ∥∥(I − Pn)gδ

∥∥ ≤ τδ < ∥∥(I − Pn−1)gδ
∥∥. (2.6)

Then from Lemma 3

fn,δ(x) := T ϕn,δ = F−1
[
λ(ξ)ϕ̂n,δ(ξ)

]
= F−1

[
λ(ξ)

n∑
`=0

gδ` (−i)`ĥ`(ξ)
]

(2.7)

is used as an approximation of f(x).

3 Error Estimate of the Method

In this section, the error estimate of the truncation regularization method is
derived. First we give some auxiliary results.

Lemma 4. [18] For 1 < α < 2, there holds∣∣λα(ξ)
∣∣ ≤ cα(1 + |ξ|2

)α
2 .

Lemma 5. For any ϕ ∈ HN and r ≥ 0,

‖T ϕ‖r ≤ cαN
r+α
2 ‖ϕ‖.
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Proof. From Lemmas 1 and 4 and noting the fact that T̂ ϕ = λαϕ̂,

∥∥T ϕ∥∥
r

=

(∫
R

(
1 + ξ2

)r∣∣λα(ξ)ϕ̂(ξ)
∣∣2 dξ)1/2

≤ cα
(∫

R

(
1 + ξ2

)r+α∣∣ϕ̂(ξ)
∣∣2 dξ)1/2

= cα‖ϕ‖r+α ≤ cN
r+α
2 ‖ϕ‖. ut

Lemma 6. Given an r ≥ 0, for any g ∈ Hr+αA (R) and 0 ≤ µ ≤ r ,∥∥T (I − PN )g
∥∥
µ
≤ cαN

µ−r
2 ‖g‖r+α,A.

Proof. From Lemmas 2 and 4∥∥T (I − PN )g
∥∥
µ

=

∫
R

(
1 + |ξ|2

)µ ∣∣λα(ξ)
(
F(I − PN )g

)
(ξ)
∣∣2 dξ

≤ cα
∥∥(I − PN )g

∥∥
µ+α
≤ cαN

µ+α−r+α
2 ‖g‖r+α,A ≤ cαN

µ−r
2 ‖g‖r+α,A. ut

Lemma 7. If ‖T ϕ‖r is bounded, then we have

‖T ϕ‖ ≤
(
cα‖ϕ‖

) r
r+α ‖T ϕ‖

α
r+α
r .

Proof. By the Hölder inequality, Lemma 4 and noting that T̂ ϕ = λαϕ̂

‖T ϕ‖2 =

∫
R

∣∣λα(ξ)
∣∣2|ϕ̂|2 dξ =

∫
R

∣∣λα(ξ)
∣∣2|ϕ̂| 2α

r+α |ϕ̂|
2r
r+α dξ

≤
[∫

R

(∣∣λα(ξ)
∣∣2|ϕ̂| 2α

r+α
) r+α

α dξ

] α
r+α
[∫

R

(
|ϕ̂|

2r
r+α
) r+α

r dξ

] r
r+α

≤
[
c

2r
α
α

∫
R

(
1 + ξ2

)r|T̂ ϕ|2 dξ] α
r+α

‖ϕ‖
2r
r+α = c

2r
r+α
α ‖ϕ‖

2r
r+α ‖T ϕ‖

2α
r+α
r . ut

Theorem 1. Suppose that the condition (2.4) holds for some g and gδ, g ∈
Hr+α
A (R). fn,δ(x) is defined by (2.6) and (2.7), then∥∥fn,δ − f∥∥ = O

(
δ

r
r+α
)
.

Proof. By Lemmas 5 and 6,∥∥fn,δ − f∥∥
r

=
∥∥T ϕn,δ − T g∥∥

r
=
∥∥T Pngδ − T Png + T Png − T g

∥∥
r

≤
∥∥T Pn(gδ − g)∥∥r +

∥∥T (I − Pn)g
∥∥
r
≤ cn

r+α
2 δ + c‖g‖r+α,A. (3.1)

On the other hand,∥∥Pn−1g − g∥∥ =
∥∥(Pn−1gδ − gδ)− (I − Pn−1)

(
g − gδ

)∥∥
≥
∣∣∥∥Pn−1gδ − gδ∥∥− ∥∥(I − Pn−1)

(
g − gδ

)∥∥∣∣.
From (2.6), we have

∥∥Pn−1gδ − gδ∥∥ > τδ. And from (2.4)∥∥(I − Pn−1)
(
g − gδ

)∥∥ ≤ ∥∥(g − gδ)∥∥ ≤ δ.
Math. Model. Anal., 19(3):430–442, 2014.
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So ‖Pn−1g − g‖ ≥ (τ − 1)δ. From Lemma 2

(τ − 1)δ ≤ ‖Pn−1g − g‖ ≤ c(n− 1)−
r+α
2 ‖g‖r+α,A.

Thus we can get

n ≤
(
c‖g‖r+α,A
τ − 1

) 2
r+α

δ−
2

r+α + 1. (3.2)

By (3.1) and (3.2), there exists an bounded value Mα,δ such that∥∥fn,δ − f∥∥
r

=
∥∥T (ϕn,δ − g)∥∥

r
≤Mα,δ. (3.3)

Moreover, ∥∥ϕn,δ − g∥∥ ≤ ∥∥ϕn,δ − gδ∥∥+
∥∥gδ − g∥∥ ≤ (τ + 1)δ. (3.4)

The assertion of theorem can be obtained by (3.3), (3.4) and Lemma 7. ut

4 Numerical Tests

We first discuss the algorithm implementation, and then some numerical tests
is presented to verify the effectiveness of the method.

To reduce the impact of discretization errors, the discretization knots are
chosen as xj = σN,j , j = 0, 1, . . . , N , where σN,j (0 ≤ j ≤ N) are the zeros of
HN+1(x). We first get the data g = {g(xj)}Nj=0 representing values of g(x) on

the knots, then obtain the perturbation data gδ as follows

gδ(xi) = g(xi) + εi, |εi| < δ1,

where {ε}Ni=0 are generated by (2× rand(N + 1, 1)− 1)× δ1 in Matlab.
Let ωN,j be the corresponding Hermite–Gauss weights, namely

ωN,j = ρN,je
σ2
N,j ,

where ρN,j are the Christoffel numbers of the stand Hermite–Gauss interpola-
tion (see, for instance, [8]). Analogously to the method in Ref. [23], we can get
ϕn,δ by using Hermite-pseudospectral method with the discrete inner product
and the discrete norm

〈u, v〉N =

N∑
j=0

u(σN,j)v(σN,j)ωN,j , ‖v‖N = 〈v, v〉1/2N .

Usually it is difficult to get the analytic solution of the fractional partial differ-
ential equation (1.1) with some boundary conditions, so we have to obtain the
data g by numerical methods for a given f(x) at first. The numerical procedure
is described as follows:

Step 1: Calculating the Hermite interpolation of f

(INf)(x) =

N∑
j=0

fjhj(x),
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where fj = 〈f, hj〉N .

Step 2: Obtaining an approximation of the Fourier transform of g

ĝ(ξ) =
1

λα(ξ)
f̂(ξ) ≈ 1

λα(ξ)

N∑
j=0

(−i)jfjhj(ξ).

Step 3: Computing the values

g(xj) =
1√
2π

∫
R
ĝ(ξ)eiξxj dξ.

In the following, we present numerical results of two examples to check the
effectiveness of the method. The accuracy of results are measured by

Ef =
∥∥fn,δ − f∥∥

N
=

[ N∑
j=0

ωN,j
(
fn,δ(xj)− f(xj)

)2]1/2
.

For simplicity, all examples are computed by using Matlab with N = 256,
κα = 1, p = q = 0.5 and T = 1 (If we take N , κα, p, q and T with other values,
we can also obtain a satisfactory result).

Ef =
∥∥fn,δ − f∥∥

N
=

[ N∑
j=0

ωN,j
(
fn,δ(xj)− f(xj)

)2]1/2
.

Example 1. [18] First we consider the function

f(x) =

(
x3

4
− 3x

2

)
e−

x2

4 .

Fig. 1 shows the error of the exact solution f and the regularization solution
fn,δ for α = 1.1, 1.5, 1.9.

Figs. 2–3 exhibit the variation of Ef with the changes of α and δ1, respec-
tively.

Table 1. Ef for various α and δ.

δ1 α = 1.1 α = 1.5 α = 1.9

1e-1 0.0181 0.0366 0.0537
1e-2 0.0022 0.0072 0.0131
1e-3 2.41e-4 0.0014 0.0023
1e-4 4.04e-5 2.36e-4 3.91e-4

Table 1 lists error for different noise level δ1. We can see that when δ1
decreases from 0.1 to 0.0001, the relative errors become smaller.

Math. Model. Anal., 19(3):430–442, 2014.
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Figure 1. The error of the exact solution and its approximation (Example 1).

1 1.2 1.4 1.6 1.8 2
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

α

E
f

(a) δ1 = 0.1

1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

α

E
f

(b) δ1 = 0.01

Figure 2. The variation of Ef with α (Example 1).
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Figure 3. The variation of Ef with δ1 (Example 1).

Example 2. Consider a non-smooth

f(x) =


x+ 8, −8 ≤ x ≤ −4,
−x, −4 < x ≤ 4,
x− 8, 4 < x ≤ 8,
0, otherwise.

(4.1)

The errors are given in Table 2 and the error of the exact and computed func-
tions are shown in Fig. 4.

Table 2. Ef for various α and δ.

δ1 α = 1.1 α = 1.5 α = 1.9

1e-1 0.0271 0.1125 0.3106
1e-2 0.0066 0.0278 0.0674
1e-3 0.0026 0.0063 0.0179
1e-4 0.0016 0.0027 0.0092

The variation of Ef with the changes of α and δ1 are exhibited in Figs.
5–6, respectively. It is easy to see that the numerical effect of the method is
satisfactory. The numbers in Table 2 show that the convergence rate is slowly
than the one in Table 1, this accords with our theoretical results.

These examples demonstrate the potential effectiveness of our approxima-
tion scheme, for suitable problems.

5 Conclusion

We have proposed an effective numerical method for determining unknown
source in a space fractional diffusion equation. We have proved that the nu-
merical method is stable and an error estimate has been obtained. Numerical
tests indicate that the proposed method works well.

Math. Model. Anal., 19(3):430–442, 2014.



440 O. Xie, Z.Y. Zhao and L. You

−15 −10 −5 0 5 10 15

−0.1

−0.05

0

0.05

0.1

(a) δ1 = 0.1, α = 1.1.

−15 −10 −5 0 5 10 15

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(b) δ1 = 0.01, α = 1.1.

−15 −10 −5 0 5 10 15

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) δ1 = 0.1, α = 1.5.

−15 −10 −5 0 5 10 15

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(d) δ1 = 0.01, α = 1.5.

−15 −10 −5 0 5 10 15

−1

−0.5

0

0.5

1

(e) δ1 = 0.1, α = 1.9.

−15 −10 −5 0 5 10 15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(f) δ1 = 0.01, α = 1.9.

Figure 4. The error of the exact solution and its approximation (Example 2).
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Figure 5. The variation of Ef with α (Example 2).
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