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Abstract. In this paper, a mathematical model which describes the explicit time
dependent quasistatic frictional contact problems is introduced and studied. The
material behavior is described with a nonlinear viscoelastic constitutive law with
time-delay and the frictional contact is modeled with nonlocal Coulomb boundary
conditions. A variational formulation of the mathematical model is given, which is
called a quasistatic integro-differential variational inequality. Using the Banach’s fixed
point theorem, an existence and uniqueness theorem of the solution for the quasistatic
integro-differential variational inequality is proved under some suitable assumptions.
As an application, an existence and uniqueness theorem of the solution for the dual
variational formulation is also given.
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1 Introduction

Viscoelastic constitutive laws have been used in the engineering or mathemat-
ical literature to describe the deformed behavior of contact problems. Li and
Xu [14] discussed a process of hysteresis loop and energy dissipation of vis-
coelastic solid models. In 2005, Barboteu et al. [2] studied a class of abstract
evolutionary variational inequalities arising in the study of contact problems for
viscoelastic materials. Barboteu et al. [3] considered a frictionless viscoelastic
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piezoelectric contact problem. In this paper, they gave some numerical analy-
sis results for the variational problem. In the framework of viscoelastic model,
Argatov [1] used the asymptotic models for low and high rate loading to study
the articular cartilage layer. Denkowski et al. [9] discussed the dynamic bi-
lateral frictional contact problem. And the further Mathematical analysis and
numerical approximation in connection with the contact problems can be found
in the books [12,15,18], and in the special issue [21].

When the forces applied to a frictional contact system vary slowly in time,
the problem can be considered as quasistatic, in which the acceleration is negli-
gible and the effect of temperature changes due to energy dissipation on the de-
formation of the material is negligible, too. Recently, some kinds of quasistatic
frictional contact problems with viscoelastic materials have been considered
and investigated by several authors. By using arguments for time dependent
elliptic variational inequalities and fixed point theorem, Chau et al. [5] proved
some existence and uniqueness results for quasistatic problem and showed that
the solution of the viscoelastic problem converges to the solution of the rel-
evant elastic problem. Delost and Fabre [8] presented a valid approximation
method for a quasistatic abstract variational inequality with time independent
constraint, and applied these results to the approximation of the quasistatic
evolution of an elastic contact problem. The framework of quasistatic fric-
tional contact problems was constructed by Han and Sofonea in the book [12],
in which they provided the relevant mathematical analysis and numerical ap-
proximation. For more work concerned with quasistatic contact problems, we
refer to [11,23] and the references there in.

Elastic or viscoelastic contact problems with explicit time dependent op-
erators were investigated in a large number of papers. Using the theory of
evolutionary hemivariational inequality, Migórski et al. [16] proved that a non-
linear explicit time dependent elastic-viscoplastic frictional contact problem
exists a unique weak solution. In [17], Migórski et al. considered a class of qua-
sistatic contact models which describe the explicit time dependent viscoelastic
problems. Based on the fixed point theorem for multi-valued mappings and
variational-hemivariational inequality theory, Costea and Matei [7] proved the
existence of weak solution for the general and unified framework contact mod-
els. They also discussed the uniqueness, the boundedness and the stability of
the weak solution under some suitable conditions. In [13], Kulig and Migórski
dealt with a class of second order nonlinear evolution inclusions with explicit
time dependent operators and provided a theorem on the continuous depen-
dence of the solution to the inclusion with respect to the operators involved in
the problem.

Time-delay phenomena are frequently encountered in various technical sys-
tems, such as electric, pneumatic, hydraulic networks, and chemical processes.
Moreover, variational inequalities with time-delay have become a vital part of
optimal control problems. The description of models about time-delay phenom-
ena can be found in [19, 26] and the general results of variational inequalities
with time-delay can be found in [6, 25]. However, to the best of our knowl-
edge, there are only a few papers to study contact problems for viscoelastic
materials with time-delay. In the recent paper [24], Yao and Huang introduced
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and studied a mathematical model which describes an explicit time-dependent
quasistatic frictional contact problem between a deformable body and a founda-
tion, in which the contact is bilateral, the behavior of the material is described
with a viscoelastic constitutive law with time-delay, and the friction is modeled
with Tresca’s friction law with the friction bound depending on the total slip.

Motivated and inspired by the work mentioned above, in this paper, we
introduce and study a class of quasistatic problems for a mathematical model
of frictional contact between a deformable body and a foundation. The body
is assumed to have a nonlinear behavior, the friction is modeled with nonlocal
Coulomb friction law and the behavior of the body is described with a vis-
coelastic constitutive law with time-delay. We give a variational formulation
of the problem which is called a quasistatic integro-differential variational in-
equality. By using the Banach’s fixed-point theorem, we establish an existence
and uniqueness theorem of the solution to the quasistatic contact problems for
viscoelastic materials with nonlocal Coulomb friction and time-delay. As an
application, we show an existence and uniqueness theorem of the solution for
the dual variational formulation. The results presented in this paper generalize
and improve some known results in [12] and [22].

2 Preliminaries

Let d be a positive integer and Rd be a d-dimensional Euclidean space. Let Sd
denote the space of all second order symmetric tensors on Rd.

The canonical inner products and corresponding norms on Rd and Sd are
defined, respectively, as follows:

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u, v ∈ Rd,
σ · τ = σijτij , ‖τ‖ = (τ · τ)1/2 ∀σ, τ ∈ Sd.

Everywhere in the sequel the indices i and j run between 1 and d; the summa-
tion convention over repeated indices is implied.

Let Ω ⊂ Rd be open, connected and bounded with a Lipschitz boundary
Γ that is divided into three disjoint measurable parts Γ1, Γ2 and Γ3 such that
meas(Γ1) > 0. Let L2(Ω) be the Lebesgue space of 2-integrable functions and
W k,p(Ω) be the Sobolev space of functions whose weak derivatives of orders
less than or equal to k are p-integrable on Ω. Let T > 0 and let I

.
= (0, T )

be the bounded time interval of interest, I
.
= [0, T ]. We also introduce the

following spaces Hs(Ω) = W s,2(Ω), ”H−s, denoted the dual space of Hs, and
C1(I;X)

.
= {v ∈ C(I;X) | v(1) ∈ C(I;X)}.

Since the boundary is Lipschitz continuous, the outward unit normal vector
which is denoted by ν exists a.e. on Γ . As the body is clamped on Γ1, we know
that the displacement field vanishes there. Surface traction of density f2 acts
on Γ2 and a body force of density f0 is applied in Ω. The contact is bilateral,
i.e., the normal displacement uν vanishes on Γ3 at any time.

We introduce the spaces and the corresponding inner products as follows:

H =
{
v = (v1, v2, . . . , vd)

T
∣∣ vi ∈ L2(Ω), 1 ≤ i ≤ d

}
= L2(Ω)d,

Math. Model. Anal., 19(4):491–508, 2014.
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Q =
{
τ = (τij)

∣∣ τij = τji ∈ L2(Ω), 1 ≤ i, j ≤ d
}

= L2(Ω)d×ds ,

Q1 = {τ ∈ Q | Div τ ∈ H},
H1 =

{
v = (v1, v2, . . . , vd)

T
∣∣ vi ∈ H1(Ω), 1 ≤ i ≤ d

}
= H1(Ω)d,

V = {v ∈ H1 | v = 0 on Γ1}, V1 = {v ∈ V | vν = 0 on Γ3}.

It is easy to check that the spaces H, Q, H1 and Q1 are all Hilbert spaces
equipped with the inner products

(u, v)H =

∫
Ω

ui(x)vi(x) dx, (σ, τ)Q =

∫
Ω

σi,j(x)τi,j(x) dx,

(u, v)H1
= (u, v)H +

(
ε(u), ε(v)

)
Q
,

(σ, τ)Q1
= (σ, τ)Q + (Div σ,Div τ)H ,

where ε denotes the deformation operator defined by ε(u) = (εi,j(u)) with
εi,j(u) = 1

2 (ui,j + uj,i) and Div denotes the divergence operator defined by

Div σ = (σij,j) and recall that σij,j =
∂σij
∂xj

. The associated norms on the

spaces will be denoted by ‖ · ‖H , ‖ · ‖Q, ‖ · ‖H1
and ‖ · ‖Q1

, respectively.
Since V is a closed subspace of the space H1 and meas(Γ1) > 0, Korn’s

inequality holds: ∥∥ε(v)
∥∥
Q
≥ ι‖v‖H1

∀v ∈ V,

where ι denotes a positive constant depending only on Ω and Γ1. We define
the inner product (·, ·)V and the norm ‖ · ‖V on V by

(u, v)V =
(
ε(u), ε(v)

)
Q
, ‖v‖V =

∥∥ε(v)
∥∥
Q
∀u, v ∈ V. (2.1)

It follows that ‖ · ‖H1
and ‖ · ‖V are equivalent norms on V and so (V, ‖ · ‖V ) is

a real Hilbert space. It is easy to see that V1 is also a real Hilbert space with
the inner product of the space V given by (2.1).

For every element v ∈ H1, we use the notation v for the trace of v on Γ
and denote by vν and vτ the normal and the tangential components of v on Γ
given by vν = v · ν and vτ = v − vνν, respectively.

We also denote by σν and στ the normal and the tangential traces of a
function σ ∈ Q, respectively. We recall that, if σ is a regular function, e.g.,
σ ∈ C1(Ω)d×ds , then σν = (σν) · ν, στ = σν − σνν and the following Green’s
formula holds:(

σ, ε(v)
)
Q

+ (Div σ, v)H =

∫
Γ

σν · v da ∀v ∈ H1.

Let r and T be constants satisfying 0 < r < T . Let B be the Borel σ-
algebra of the interval [−r, 0] and µ(·) be a given finite signed measure defined
on ([−r, 0],B). Zhu [26] defined the time-delay operator G as follows: For any
h ∈ L2((−r,∞)×Ω)d,

(Gh)(t, x)
.
=

∫ 0

−r
h(t+ θ, x)µ(dθ) a.e. (t, x) ∈ (0,∞)×Ω. (2.2)
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In order for (2.2) to make sense, we always take a Borel correction of h as the
integrand.

The following lemma is a fundamental result for operator G:

Lemma 1. [26] For h ∈ L2((−r,∞) × Ω)d, we have Gh ∈ L2((0,∞) × Ω)d.
Furthermore, for any g ∈ L2((0,∞) × Ω)d, 0 ≤ s ≤ +∞ and 0 ≤ s0 ≤ r, the
following inequality holds:∣∣∣∣∫

Ω

dx

∫ s+s0

0

(Gh) · g dt
∣∣∣∣ ≤ 1

2
|µ|
(
[−r, 0]

)2 ∫
Ω

dx

∫ s

−r
‖h‖2 dt

+
1

2

∫
Ω

dx

∫ s+s0

0

‖g‖2 dt+
1

2
|µ|
(
[−r, 0]

)
|µ|
(
[−s0, 0]

) ∫
Ω

dx

∫ s+s0

−r
‖h‖2 dt.

Remark 1. Letting s0 = 0 and g = Gh in Lemma 1, it is easy to know that

‖G‖ ≤ |µ|
(
[−r, 0]

)
.

Now we take the contact problem into account. Based on (2.2), for h ∈
L2((−r,∞)×Ω)d×dS , we derive the time-delay operator G of the form

(Gh)
(
t, ε(u)

) .
=

∫ 0

−r
h
(
t+ θ, ε(u)

)
µ(dθ) a.e.

(
t, ε(u)

)
∈ (0,∞)× Sd. (2.3)

Remark 2. It is not hard to see that for any h ∈ L2((−r,∞) × Ω)d×dS , Gh in

L2((0,∞)×Ω)d×dS is independent of the choices of Borel corrections for h.

Remark 3. The simplest time-delay operator is the following discrete-type op-
erator,

G
(
t, y(·)

)
=
(
y(t− δ1), . . . , y(t− δk)

)
, ∀t ∈ I.

Another common time-delay operator is the integral-type operator which cor-
responds to the accumulation characteristics of memory in practical problems,
such as

G
(
t, y(·)

)
=

∫ t

t0

y(s− δ)µ(ds), ∀t ∈ I.

Remark 4. Operator G defined by (2.3) covers many interesting cases such as
finitely many or countably many discrete delays and finitely many distributed
delays.

Example 1. Let X = {a1, a2, . . . , an, · · · } and L = 2X . Let

µ1(A) =
∑
ai∈A

µ1(ai) =
∑
ai∈A

pi, ∀A ∈ L,

where µ1(ai) = pi ∈ R+ for i = 1, 2, . . . with µ1(∅) = 0. Then it is easy to see
that

(Gh)
(
t, ε(x)

)
=

∫ 0

−r
h
(
t+ θ, ε(x)

)
µ1(dθ) =

∑
ai∈(−r,0)

pih
(
t+ ai, ε(x)

)
,

which can be used to describe the countably many discrete delays.

Math. Model. Anal., 19(4):491–508, 2014.
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Example 2. Contact problems involving viscoelastic materials with long mem-
ory are a class of important problems, which have been studied by many au-
thors, such as in [4,10]. For more details on the long memory models, we refer
to [13,20].

Let Ω = R, L be a σ-algebra of Ω, m be a Lebesgue measure and f ≡ 1.
Then

µ(A) =

∫
A

1 dm = A, A ∈ L.

With variable substitution s = −θ, the time-delay operator defined by (2.3)
will turn to be the form of (Gh)(t, ε(u)) =

∫ r
0
h(t − s, ε(u)) ds. It implies that

the long memory operator is a special case of the time-delay operator for r = t,
µ(A) = A and the operator h(t− s, ε(u)) = C(t− s)ε(u(s)).

3 The Model and the Primal Variational Formulation

We assume that the contact is bilateral, and model the friction with a non-
local version of Coulomb’s law involving a normal regularization operator T :
H−

1
2 (Γ )→ L2(Γ ).
Under the previous assumptions, the formulation of the frictional contact

problem is as follows: Find a displacement field u : Ω × I → Rd and a stress
field σ : Ω × I → Sd such that

σ = A
(
t, ε
(
u̇(t)

))
+ B

(
t, ε
(
u(t)

))
+ Gh

(
t, ε(u)

)
in Ω × I, (3.1)

Div σ + f0 = 0 in Ω × I, (3.2)

u = 0 on Γ1 × I, (3.3)

σν = f1 on Γ2 × I, (3.4)

uν = 0, ‖στ‖ ≤ αp
(
t, |T σν |

)
,

‖στ‖ < αp
(
t, |T σν |

)
⇒ u̇τ = 0 on Γ3 × I, (3.5)

‖στ‖ = αp
(
t, |T σν |

)
⇒ ∃λ ≥ 0 s.t. στ = −λu̇τ .

u(0) = u0 in Ω. (3.6)

The condition (3.1) represents the viscoelastic constitutive law in which A,
B and G are given nonlinear operators, called the viscosity operator, elasticity
operator and time-delay operator, respectively. Note that the explicit depen-
dence of the viscosity, elasticity and time-delay operators A, B and G with
respect to the time variable allows one to model more general situations when
the properties of the material depend on the temperature, which plays the role
of a parameter, i.e., its evolution in time is prescribed. Equality (3.2) repre-
sents the equilibrium equation. Conditions (3.3) and (3.4) are the displacement
and traction boundary conditions, respectively. The condition (3.5) describes a
frictional bilateral contact process, in which p is a nonnegative valued function
and α ≥ 0 is the coefficient of friction. Since the trace of the stress tensor on
the boundary is too rough to be defined in the ordinary sense, we derive the
nonlocal smoothing operator T : H−

1
2 (Γ ) → L2(Γ ). Using the continuity of
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the regularization operator T and the continuity of the normal trace mapping
ξ 7→ ξν : Q1 → H−

1
2 (Γ ), we know that there exists a constant CT > 0 such

that

‖T ξν‖L2(Γ3) ≤ CT ‖ξ‖Q1 ∀ξ ∈ Q1, (3.7)

where CT relies on Ω,Γ1, Γ3 and T . In (3.6), u0 is the initial displacement.

In the following we provide an elementary example of the mechanical prob-
lem, in which the constitutive law equation (3.2) holds.

In order to study the mechanical problem defined by (3.1)–(3.6), we assume
that A, B, h and p satisfy the following conditions.

H(A): A : Ω × I × Sd → Sd is an operator such that

(i) ‖A(x, t1, ε1) − A(x, t2, ε2)‖Q ≤ LA(|t1 − t2| + ‖ε1 − ε2‖) for all t1, t2 ∈
I, ε1, ε2 ∈ Sd, x ∈ Ω with LA > 0;

(ii) ((A(x, t, ε1)−A(x, t, ε2)), (ε1 − ε2))Q ≥M‖ε1 − ε2‖2Q for all ε1, ε2 ∈ Sd,
a.e. (x, t) ∈ Ω × I with M > 0;

(iii) For any ε ∈ Sd, (x, t) 7→ A(x, t, ε) is measurable on Ω × I;

(iv) The mapping (x, t) 7→ A(x, t, 0) ∈ L2(Ω × I)d×d.

H(B): B : Ω × I × Sd → Sd is an operator such that

(i) ‖B(x, t, ε1)−B(x, t, ε2)‖Q ≤ LB‖ε1−ε2‖Q for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈
Ω × I with LB > 0;

(ii) For any ε ∈ Sd, (x, t) 7→ B(x, t, ε) is measurable on Ω × I;

(iii) The mapping (x, t) 7→ B(x, t, 0) ∈ L2(Ω × I)d×d.

H(h): h : Ω × I × Sd → Sd is an operator such that

(i) ‖h(x, t, ε1)−h(x, t, ε2)‖Q ≤ Lh‖ε1− ε2‖Q for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈
Ω × I with L4 > 0;

(ii) For any ε ∈ Sd, (x, t) 7→ h(x, t, ε) is measurable on Ω × I;

(iii) The mapping (x, t) 7→ h(x, t, 0) ∈ L2(Ω × I)d×d.

H(p): p : Γ3 × I ×R → R+ is an operator such that

(i) |p(x, t1, u1) − p(x, t2, u2)| ≤ Lp(|t1 − t2| + |u1 − u2|) for all t1, t2 ∈ I,
u1, u2 ∈ R, x ∈ Ω with Lp > 0;

Math. Model. Anal., 19(4):491–508, 2014.



498 S.-s. Yao and N.-j. Huang

(ii) For any u ∈ R, (x, t) 7→ p(x, t, u) is measurable on Ω × I;

(iii) The mapping (x, t) 7→ p(x, t, 0) ∈ L2(Γ3 × I).

We assume the force and traction densities have the smoothness

f0 ∈ C
(
I;L2(Ω)d

)
, f1 ∈ C

(
I;L2(Γ2)d

)
and the coefficient of friction α has the properties

α ∈ L∞(Ω), α ≥ 0 a.e. on Γ3. (3.8)

Denote by f(t) the element of V1 given by

(
f(t), v

)
V

=

∫
Ω

f0(t) · v dx+

∫
Γ2

f1(t) · v da

for all v ∈ V1 and t ∈ I and let j : I ×Q1 × V1 → R be the functional defined
by

j(t, τ ; v) =

∫
Γ3

αp
(
t, |T τν |

)
‖vτ‖ da. (3.9)

Since T σν lies in L2(Γ )d, from the assumption H(p) and (3.8), it follows that
the integral in (3.9) is well defined on I ×Q1×V1. In the rest of this paper we
always assume that u0 ∈ V1 and let Q1

.
= L2(I;Q1).

When u and σ are sufficiently regular functions satisfying (3.1)–(3.5), we
can get the variational formulation of the quasistatic contact problem defined
by (3.1)–(3.6) as follows:

Problem 1. Find a displacement field u : I → V1 and a stress field σ : I → Q1

such that (3.1), (3.6) hold and for all v ∈ V1, a.e. t ∈ I,(
σ(t), ε

(
v− u̇(t)

))
Q

+ j
(
t, σ(t); v

)
− j
(
t, σ(t); u̇(t)

)
≥
(
f(t), v− u̇(t)

)
V
, (3.10)

which is called a quasistatic integro-differential variational inequality.

In order to get the solvability of Problem 1, we first consider the following
elliptic variational inequality of the second kind as follows: Given f ∈ X, find
u ∈ V such that for all v ∈ V1, a.e. t ∈ I,(

A
(
t, u(t)

)
, v − u(t)

)
V

+ j(v)− j
(
u(t)

)
≥
(
f(t), v − u(t)

)
V
, (3.11)

where the operator A : I × V → V is defined by(
A
(
t, u(t)

)
, v − u(t)

)
V

=
(
A
(
t, ε
(
u(t)

))
, ε
(
v − u(t)

))
Q
.

Lemma 2. [24] Let V be a Hilbert space. Assume that H(A) holds and j : V →
R is a proper, convex and l.s.c. functional. Then for any f ∈ V , the variational
inequality (3.11) has a unique solution.
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Lemma 3. (Gronwall’s inequality) Assume that f, g ∈ C[a, b] satisfy

f(t) ≤ g(t) + c

∫ t

a

f(s) ds t ∈ [a, b],

where c > 0 is a constant. Then

f(t) ≤ g(t) + c

∫ t

a

g(s)ec(t−s) ds t ∈ [a, b].

Moreover, if g is nondecreasing, then

f(t) ≤ g(t)ec(t−a) t ∈ [a, b].

4 An Existence and Uniqueness Result

In this section, we present an existence and uniqueness result for Problem 1.
Throughout this section, we assume that H(A), H(B), H(g), H(h) and (3.8)
hold.

Theorem 1. There exists α0
.
= M

LALpc0CT
> 0 which depends only on Ω, Γ1,

Γ3, A and T such that Problem 1 has a unique solution (u, σ), if ‖α‖L∞(Γ3) <
α0. Moreover, the solution satisfies

u ∈ C1(I;V1), σ ∈ C(I;Q1). (4.1)

The proof of Theorem 1 is based on fixed point arguments, and is carried
out in several steps. Let η ∈ Q1 and ξ ∈ Q1 be arbitrarily given. We consider
the following auxiliary variational problem.

Problem 2. Find a velocity field vηζξ : I → V1 and a stress field σηζξ : I → Q1

such that (3.6) holds and(
σηζξ(t), ε

(
v − vηζξ(t)

))
Q

+ j
(
t, ξ(t); v

)
− j
(
t, ξ(t); vηζξ(t)

)
≥
(
f(t), v − vηζξ(t)

)
V

(4.2)

for all v ∈ V1 and a.e. t ∈ I, where

σηζξ(t) = A
(
t, ε
(
vηζξ(t)

))
+ η(t) + ζ(t). (4.3)

Lemma 4. There exists a unique solution vηζξ ∈ C(I;V1) of Problem 2.

Proof. Let t ∈ I. It follows from Lemma 2 that Problem 2 is uniquely solvable.
Let vηζξ(t) ∈ V1 be the unique solution of Problem 2. Now we show that
vηζξ(t) ∈ C(I, V1). Suppose that t1, t2 ∈ I. For simplicity we write vηζξ(ti) =
vi, η(ti) = ηi, ζ(ti) = ζi, f(ti) = fi and ξ(ti) = ξi with i = 1, 2. Using
(4.2),(4.3) for t = t1, t2, we have(

A
(
t1, ε(v1)

)
, ε(v − v1)

)
Q

+
(
η1, ε(v − v1)

)
Q

+ j(t1, ξ1; v)− j(t1, ξ1; v1)

≥ (f1, v − v1)V (4.4)
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and(
A
(
t2, ε(v2)

)
, ε(v − v2)

)
Q

+
(
η2, ε(v − v2)

)
Q

+ j(t2, ξ2; v)− j(t2, ξ2; v2)

≥ (f2, v − v2)V . (4.5)

By adding two inequalities with v = v2 in (4.4) and v = v1 in (4.5), we get(
A
(
t1, ε(v1)

)
−A

(
t2, ε(v2)

)
, ε(v1 − v2)

)
Q

≤
(
ζ1 − ζ2, ε(v2 − v1)

)
Q

+
(
η1 − η2, ε(v2 − v1)

)
Q

+ (f1 − f2, v1 − v2)V +D(t1, t2, ξ1, ξ2, v1, v2), (4.6)

where

D(t1, t2, ξ1, ξ2, v1, v2) = j(t1, ξ1; v2)− j(t1, ξ1; v1) + j(t2, ξ2; v1)− j(t2, ξ2; v2).

Thus, we have(
A
(
t1, ε(v1)

)
−A

(
t1, ε(v2)

)
, ε(v1 − v2)

)
Q

(4.7)

≤
(
η1 − η2, ε(v2 − v1)

)
Q

+
(
A
(
t2, ε(v2)

)
−A

(
t1, ε(v2)

)
, ε(v1 − v2)

)
Q

+
(
ζ1 − ζ2, ε(v2 − v1)

)
Q

+D(t1, t2, ξ1, ξ2, v1, v2) + (f1 − f2, v1 − v2)V .

In terms of hypotheses H(A) on A, we get(
A
(
t1, ε(v1)

)
−A

(
t1, ε(v2)

)
, ε(v1 − v2)

)
Q
≥M‖v1 − v2‖2V , (4.8)

and ∥∥A(t1, ε(v2)
)
−A

(
t2, ε(v2)

)∥∥
Q
≤ LA|t1 − t2|. (4.9)

Constituting a trace operator γ : V → L2(Γ3)
d

with γv = v|Γ3 , since γ is a
linear continuous operator, it implies that there exists a constant c0 > 0 such
that

‖v‖L2(Γ3)
d ≤ c0‖v‖V . (4.10)

It follows from (3.7), (3.9), (4.10) and H(p) that

D(t1, t2, ξ1, ξ2, v1, v2) ≤ c1‖ξ1−ξ2‖Q‖v1−v2‖V +
c1
CT
|t1−t2|‖v1−v2‖V , (4.11)

where c1 = ‖α‖L∞(Γ3)c0CT Lp. By (4.7)–(4.9) and (4.11), we have

‖v1 − v2‖V ≤
1

M

(
‖f1 − f2‖V + ‖η1 − η2‖Q + ‖ζ1 − ζ2‖Q + c1‖ξ1 − ξ2‖Q

+
(
LA +

c1
CT

)
|t1 − t2|

)
,

which implies vηξ ∈ C(I;V1). The proof is completed. ut
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In order to get the unique solution of Problem 1, we consider the operator
Ληζ : C(I;Q1)→ C(I;Q1) defined by

Ληζξ = σηζξ ∀ξ ∈ C(I;Q1). (4.12)

For any η, ζ ∈ C(I;Q) and any given ξ̃ ∈ C(I;Q), we write vηζ = vηζξ̃.

Let uηζ : I → V1 be the function given by

uηζ(t) =

∫ t

0

vηζ(s) ds+ u0 a.e. t ∈ I. (4.13)

Lemma 5. If ‖α‖L∞(Γ3) < α0, for any η, ζ ∈ C(I;Q1), then the operator Ληζ
has a unique fixed point ξηζ ∈ C(I;Q1).

Proof. For any η, ζ ∈ C(I;Q) and ξ1, ξ2 ∈ C(I;Q1). We denote by vi = vηζξi
the solution of Problem 2 with ξ = ξi for i = 1, 2. We write σηζξi = σi. By
using the similar arguments in obtaining (4.6), we deduce(

σ1(t)− σ2(t), ε
(
v1(t)− v2(t)

))
Q
≤ D(t; ξ1, ξ2, v1, v2) a.e. t ∈ I,

where

D(t; ξ1, ξ2, v1, v2) = j
(
t, ξ1(t); v2(t)

)
− j
(
t, ξ1(t); v1(t)

)
+ j
(
t, ξ2(t); v1(t)

)
− j
(
t, ξ2(t); v2(t)

)
.

By (4.3) and H(A),(
σ1(t)− σ2(t), ε

(
v1(t)− v2(t)

))
Q
≥M

∥∥v1(t)− v2(t)
∥∥2
V

a.e. t ∈ I. (4.14)

Using (3.7), (3.9), (4.10) and H(p), we have

D(t; ξ1, ξ2, v1, v2) ≤ c1
∥∥ξ1(t)− ξ2(t)

∥∥
Q

∥∥v1(t)− v2(t)
∥∥
V

a.e. t ∈ I. (4.15)

It follows from (4.14) and (4.15) that∥∥v1(t)− v2(t)
∥∥ ≤ c1

M

∥∥ξ1(t)− ξ2(t)
∥∥
Q

a.e. t ∈ I

and so for a.e. t ∈ I∥∥Ληζξ1(t)− Ληζξ2(t)
∥∥
Q

=
∥∥σ1(t)− σ2(t)

∥∥
Q
≤ c2

∥∥ξ1(t)− ξ2(t)
∥∥
Q
,

where c2 = c1LA
M . Since ‖α‖L∞(Γ3) < α0, the operator Ληζ is a contraction

on the space C(I;Q1). Therefore, the operator Ληζ has a unique fixed point
ξηζ ∈ C(I;Q1). The proof is completed. ut

In what follows, for any η ∈ Q1 and any given ζ ∈ Q1, we write vη = vηζξηζ .
By Ληζξηζ = ξηζ and (4.12), we have σηζξηζ = ξηζ . For any η ∈ Q1, let

uη : I → V1 be the function given by

uη(t) =

∫ t

0

vη(s) ds+ u0 a.e. t ∈ I. (4.16)
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In addition, we define the operator Λζ : Q1 → Q1 by

Λζη(t) = B
(
t, ε
(
uη(t)

))
∀η ∈ Q1, a.e. t ∈ I. (4.17)

Lemma 6. If ‖α‖L∞(Γ3) < α0, then the operator Λζ has a unique fixed point
η∗ ∈ Q1.

Proof. For any η1, η2 ∈ Q1, let ui = uηi , ξηiζ = ξi, vi = vηi and σηiζξηiζ = σi
with i = 1, 2. Using (4.1) and arguments similar to ones used in obtaining
(4.6), for a.e. t ∈ I

M
∥∥v1(t)− v2(t)

∥∥
V
≤ (1 + c1)

∥∥η1(t)− η2(t)
∥∥
Q

+ c1LA
∥∥v1(t)− v2(t)

∥∥
V

and so ∥∥v1(t)− v2(t)
∥∥
V
≤ c3

∥∥η1(t)− η2(t)
∥∥
Q

a.e. t ∈ I, (4.18)

where c3 = 1+c1
M−c1LA .

For the operator Λζ defined by (4.17), it follows from (4.16), (4.18) and
H(B) that∥∥Λζη1(t)− Λζη2(t)

∥∥2
Q

=
∥∥B(t, ε(u1(t)

))
− B

(
t, ε
(
u2(t)

))∥∥2
Q

≤
(
LB
∥∥u1(t)− u2(t)

∥∥
V

)2 ≤ c4 ∫ t

0

∥∥η1(s)− η2(s)
∥∥2
Q
ds a.e. t ∈ I, (4.19)

where c4 = c23L
2
B. Iterating the last inequality p times, we obtain

∥∥Λpζη1(t)− Λpζη2(t)
∥∥2
Q
≤ cp4t

p−1

(p− 1)!

∫ t

0

∥∥η1(s)− η2(s)
∥∥2
Q
ds a.e. t ∈ I,

which leads to ∥∥Λpζη1 − Λpζη2∥∥Q1
≤ cp4T

p

p!
‖η1 − η2‖Q1

. (4.20)

Since limp→∞
cp4T

p

p! = 0, (4.20) implies that, for p large enough, a power Λpζ
of Λζ is a contraction. It follows from the Banach’s fixed point theorem that
there exists a unique element η∗ ∈ V1 such that Λpζη

∗ = η∗. It is clear that

Λpζ(Λζη
∗) = Λζ(Λ

p
ζη
∗) = Λζη

∗ and so Λζη
∗ is also a fixed point of the operator

Λpζ . Therefore,

Λζη
∗ = η∗. (4.21)

This shows that η∗ is a fixed point of Λζ . The uniqueness of the fixed point of
Λζ results straightforward from the uniqueness of the fixed point of Λpζ . The
proof is completed. ut

In what follows, for any ζ ∈ Q1, we write vζ = vη∗ζξη∗ζ . For η∗, it follows
from (4.12) and Lemma 5 that

ση∗ζξη∗ζ = ξη∗ζ .
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For any ζ ∈ Q1, let uζ : I → V1 be the function given by

uζ(t) =

∫ t

0

vζ(s) ds+ u0 a.e. t ∈ I. (4.22)

In addition, we define the operator Λ : Q1 → Q1 by

Λζ(t) = Gh(t, ε(uζ)) ∀ζ ∈ Q1, a.e. t ∈ I. (4.23)

Lemma 7. If ‖α‖L∞(Γ3) < α0, then the operator Λ has a unique fixed point
ζ∗ ∈ Q1.

Proof. For any ζ1, ζ2 ∈ Q1, let ui = uζi , ξη∗ζi = ξi, vi = vζi and ση∗ζξη∗ζi = σi
with i = 1, 2. Using (4.1) and arguments similar to ones used in obtaining
(4.18), we have∥∥v1(t)− v2(t)

∥∥
V
≤ c3

∥∥ζ1(t)− ζ2(t)
∥∥
Q

a.e. t ∈ I. (4.24)

For the operator Λ defined in (4.23), by (4.22), (4.24) and H(h), one has

∥∥Λζ1(t)− Λζ2(t)
∥∥2
Q

=

∥∥∥∥∫ 0

−r

[
h
(
t+ θ, ε(u1)

)
− h
(
t+ θ, ε(u2)

)]
µ(dθ)

∥∥∥∥2
Q

≤
(
Lh|µ|

(
[−r, 0]

)
‖u1 − u2‖V

)2
≤ c5

∫ t′

0

∥∥ζ1(s)− ζ2(s)
∥∥2
Q
ds a.e. t ∈ I, (4.25)

where c5 = (c3Lh|µ|([−r, 0]))2. By using the similar arguments for obtaining
(4.21), we have Λζ∗ = ζ∗. It is easy known that Λ has a unique fixed point ζ∗.
The proof is completed. ut

Now we prove Theorem 1.

Proof of Theorem 1. Let η∗ ∈ Q1 be the fixed point of Λζ and ζ∗ ∈ Q1 be
the fixed point of Λ. Let uη∗ζ∗ ∈ C1(I;Q) be the function defined by (4.13) for
η = η∗, ζ = ζ∗. It follows from u̇η∗ζ∗ = vη∗ζ∗ that(
A
(
t, ε
(
vη∗ζ∗(t)

))
, ε
(
v − vη∗ζ∗(t)

))
Q

+
(
η∗(t), ε

(
v − vη∗ζ∗(t)

))
Q

+
(
ζ∗(t), ε

(
v − vη∗ζ∗(t)

))
Q

+ j
(
t, ξη∗ζ∗(t); v

)
− j
(
t, ξη∗ζ∗(t); vη∗ζ∗(t)

)
≥
(
f(t), v − vη∗ζ∗(t)

)
V
∀v ∈ V1, a.e. t ∈ I.

Now inequality (3.10) follows from (4.12), (4.17) and (4.23). Moreover, since
(4.13) implies uη∗ζ∗(0) = u0, we conclude that uη∗ζ∗ is a solution of Problem 1.

Let u1, u2 ∈ C(I;V1) be two solutions of Problem 1. Letting vi = u̇i and

σi(t) = A
(
t, ε
(
u̇i(t)

))
+ B

(
t, ε
(
ui(t)

))
+ Gh

(
t, ε(ui)

)
for i = 1, 2, we have

ui(t) =

∫ t

0

vi(s) ds+ u0 a.e. t ∈ I.
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For a.e. t ∈ I, by using the similar arguments for obtaining (4.6), we get(
A
(
t, ε
(
v1(t)

))
−A

(
t, ε
(
v2(t)

))
, ε
(
v1(t)− v2(t)

))
Q

≤
(
B
(
t, ε
(
u1(t)

))
− B

(
t, ε
(
u2(t)

))
, ε
(
v2(t)− v1(t)

))
Q

+D(t; v1, v2)

+
(
Gh
(
t, ε
(
u1(t)

))
− Gh

(
t, ε
(
u2(t)

))
, ε
(
v2(t)− v1(t)

))
Q
,

where

D(t; v1, v2) = j
(
t, σ1(t); v2(t)

)
− j
(
t, σ1(t); v1(t)

)
+ j
(
t, σ2(t); v1(t)

)
− j
(
t, σ2(t); v2(t)

)
.

Using (3.8), (3.9), (4.10) and H(p), we deduce that, for a.e. t ∈ I,

D(t; v1, v2) ≤ c1
∥∥σ1(t)− σ2(t)

∥∥
Q

∥∥v1(t)− v2(t)
∥∥
V
. (4.26)

Therefore, from the assumption H(A), H(B), H(h) and (4.13) and (4.26), we
know that∥∥v1(t)− v2(t)

∥∥
V
≤ c6

∫ t

0

∥∥v1(s)− v2(s)
∥∥
V
ds a.e. t ∈ I, (4.27)

where c6 = (1 + c1) (LB + Lh|µ|([−r, 0]))/(M − c1LA). Now (4.27) implies
v1 = v2 with an application of the Gronwall inequality. It follows from (4.13)
that u1 = u2. If ‖α‖L∞(Γ3) < α0, then (u, σ) with u = uη∗ζ∗ and σ = ση∗ζ∗ξη∗ζ∗
is the unique solution of Problem 1 satisfying the regularity condition, which
completes the proof. ut

Remark 5. When G = 0 and the viscosity and elasticity operators A and B are
implicit time dependent, Theorem 1 reduces to Theorem 13.3 of [12]. Further-
more, Theorem 1 is also a generalization of Theorem 3.1 of [22].

5 Dual Variational Formulation

By defining the admissible stress fields set Σ(t, τ), the results presented in
Section 4 can be extended to the study of the dual problem. Reformulating
the contact model as a variational inequality for the displacements, we can
get the weak solution for such kind of problems. However, in practice, the
main interest lies in the contact stress and the distribution of the stress is
more important than the displacements. For this reason, it is meaningful to
straightforward derive and analyze a variational formulation of the contact
problem in terms of the stress, that is, the so-called dual variational formulation
associated with (3.6) and (3.10). We show the equivalence between the prime
variational formulation and the dual variational formulation. By Theorem 1
we get the corresponding existence and uniqueness result.

We define the admissible stress fields set Σ(t, τ) as follows: for all τ ∈ Q
and a.e. t ∈ I,

Σ(t, τ) =
{
ξ ∈ Q

∣∣ (ξ, ε(v)
)
Q

+ j(t, τ ; v) ≥
(
f(t), v

)
V
, ∀v ∈ V1

}
.
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By adding two inequalities with v = 2u̇(t) and v = 0 in (3.10), we deduce(
σ(t), ε

(
u̇(t)

))
Q

+ j
(
t, σ(t); u̇(t)

)
=
(
f(t), u̇(t)

)
V

a.e. t ∈ I, (5.1)

which implies, for a.e. t ∈ I

σ(t) ∈ Σ
(
t, σ(t)

)
,
(
τ − σ(t), ε

(
u̇(t)

))
Q
≥ 0 ∀τ ∈ Σ

(
t, σ(t)

)
. (5.2)

Therefore, (3.1), (3.6) and (5.2) lead to the following dual variational formula-
tion.

Problem 3. Find a displacement u : I → V1 and a stress field σ : I → Q1 such
that (3.1), (3.6) hold and for a.e. t ∈ I

σ(t) ∈ Σ
(
t, σ(t)

)
,
(
τ − σ(t), ε

(
u̇(t)

))
Q
≥ 0 ∀τ ∈ Σ

(
t, σ(t)

)
. (5.3)

The following theorem shows that prime variational formulation (Prob-
lem 1) and the dual variational formulation (Problem 3) are equivalent.

Theorem 2. Let conditions H(A), H(B), H(h), H(p) and (3.9) hold and as-
sume (u, σ) satisfies (4.1). Then, (u, σ) is a solution of Problem 1 if and only
if it is a solution of Problem 3.

Proof. Let (u, σ) ∈ C1(I;V × Q1). We only need to show the equivalence
between (3.10) and (5.3).

(I) (3.10) ⇒ (5.3). Choosing v = 2u̇(t) and v = 0 in (3.10), we know that
(5.1) holds. It follows from (3.10) and (5.1) that(

σ(t), ε(v)
)
Q

+ j
(
t, σ(t); v

)
≥
(
f(t), v

)
V
∀v ∈ V1, a.e. t ∈ I,

which implies that σ(t) ∈ Σ(t, σ(t)). Letting τ ∈ Σ(t, τ(t)), we have(
τ, ε
(
u̇(t)

))
Q

+ j
(
t, σ(t); u̇(t)

)
≥
(
f(t), u̇(t)

)
V

a.e. t ∈ I. (5.4)

Subtracting (5.1) from (5.4), we obtain(
τ − σ(t), ε

(
u̇(t)

))
Q
≥ 0, ∀τ ∈ Σ

(
t, σ(t)

)
, a.e. t ∈ I,

which implies that (5.3) holds.
(II) (5.3) ⇒ (3.10). The subdifferentiability of the function j(t, σ(t); ·) :

V → R implies that there exists f̃(t) ∈ V such that

j
(
t, σ(t); v

)
− j
(
t, σ(t); u̇(t)

)
≥
(
f̃(t), v − u̇(t)

)
V
∀v ∈ V1, a.e. t ∈ I.

It follows that(
f(t)− f̃(t), v − u̇(t)

)
V

+ j
(
t, σ(t); v

)
− j
(
t, σ(t); u̇(t)

)
≥
(
f(t), v − u̇(t)

)
V

∀v ∈ V1, a.e. t ∈ I. (5.5)

Choosing v = 2u̇(t) and v = 0 in (5.5), we have(
f(t)− f̃(t), u̇(t)

)
V

+ j
(
t, σ(t); u̇(t)

)
=
(
f(t), u̇(t)

)
V

a.e. t ∈ I, (5.6)
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which implies that

ε
(
f(t)− f̃(t)

)
∈ Σ

(
t, σ(t)

)
.

It follows from (2.1), (5.3) and (5.6) that(
f(t)− f̃(t), u̇(t)

)
V
≥
(
σ(t), ε

(
u̇(t)

))
Q

a.e. t ∈ I. (5.7)

Adding j(t, σ(t); u̇(t)) to (5.7) and taking (5.6) into account, we obtain(
f(t), u̇(t)

)
V
≥
(
σ(t), ε

(
u̇(t)

))
Q

+ j
(
t, σ(t); u̇(t)

)
a.e. t ∈ I. (5.8)

Noting σ(t) ∈ Σ(t, σ(t)) and u̇(t) ∈ V , we have(
σ(t), ε

(
u̇(t)

))
Q

+ j
(
t, σ(t); u̇(t)

)
≥
(
f(t), u̇(t)

)
V

a.e. t ∈ I (5.9)

and (
σ(t), ε(v)

)
Q

+ j
(
t, σ(t); v

)
≥
(
f(t), v

)
V
∀v ∈ V1, a.e. t ∈ I. (5.10)

Therefore, (5.8)–(5.10) lead to the inequality (3.10), which completes the proof.
ut

Corollary 1. Let conditions H(A), H(B), H(h), H(p) and (3.9) hold and let
α0 > 0 be defined as in Theorem 1. If ‖α‖L∞(Γ3) < α0, then Problem 3 has a
unique solution (u, σ) satisfying (4.1).

6 Conclusions

In this paper, we have introduced and studied a mathematical model which
describes the frictional contact between a viscoelastic body and a foundation.
The problem is quasistatic, the contact is bilateral and is associated to the
Coulomb’s law of dry friction. In our model, the material’s behavior is described
with a nonlinear viscoelastic constitutive law with time-delay, which is quite
different from previous one. We have formulated the frictional contact problem
as a quasistatic integro-differential variational inequality. By employing the
Banach fixed point theorem and the variational inequality technique, we have
proved an existence and uniqueness of the solution for the problem. We have
also derived a dual formulation of the problem in term of stress and given an
equivalence theorem.

Although giving numerical results is not the purpose of this paper, it is inter-
esting and important to study the numerical analysis for the frictional contact
problem. As future work, we intend to investigate the numerical approxima-
tion for the quasistatic variational inequality problem with some possible ap-
plications to various technical systems, such as electric, pneumatic, hydraulic
networks, and chemical processes.
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