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1 Introduction

In this work we shall prove the existence of solutions of a functional differ-
ential inclusion. Our investigations will be situated in the Banach space of
real functions which are defined, continuous and bounded on the real axis
(−∞,+∞). We will use Bohnenblust–Karlin’s fixed theorem, combined with
the Corduneanu’s compactness criteria. More precisely we will consider the
following problem:

y′(t)−Ay(t) ∈ F (t, yρ(t,yt)), a.e. t ∈ J := [0,+∞), (1.1)

y(t) = φ(t), t ∈ (−∞, 0], (1.2)

where F : J ×B → P(E) is a multivalued map with nonempty compact values,
P(E) is the family of all nonempty subsets of E, A : D(A) ⊂ E → E is the
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infinitesimal generator of a strongly continuous semigroup T (t), t ∈ J, and
(E, | · |) is a real Banach space. B is the phase space to be specified later,
φ ∈ B, ρ : J × B → (−∞,+∞). For any function y defined on (−∞,+∞) and
any t ∈ J we denote by yt the element of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

Here yt(·) represents the history of the state from time t− r, up to the present
time t. We assume that the histories yt to some abstract phases B, to be
specified later.

For modeling scientific phenomena where the delay is either a fixed constant
or is given as an integral in which case is called distributed delay, we use
differential delay equations or functional differential equations ; see for instance
the books [24,30,37].

An extensive theory is developed for evolution equations [2, 3, 21]. Unique-
ness and existence results have been established recently for different evolution
problems in the papers by Baghli and Benchohra for finite and infinite delay
in [6, 7, 8, 9]. However, complicated situations in which the delay depends on
the unknown functions have been proposed in modeling in recent years. These
equations are frequently called equations with state-dependent delay. Over the
past several years it has become apparent that equations with state-dependent
delay arise also in several areas such as in classical electrodynamics [20], in
population models [10], in models of commodity price fluctuations [11,32], and
in models of blood cell productions [33]. Existence results and among other
things were derived recently for functional differential equations when the so-
lution is depending on the delay on a bounded interval [0, b] for impulsive
problems. We refer the reader to the papers by Abada et al. [1], Ait Dads and
Ezzinbi [16], Anguraj et al. [4], Hernandez et al. [27] and Li et al. [14,31]. See
also [5, 12,25,26,35,36].

To the best of our knowledge, there exist very few papers devoted to func-
tional evolution inclusions with state-dependent delay on unbounded intervals.
Those results are stated in the Fréchet space setting. So the present results
initiate the study of such problems in the Banach space setting.

2 Preliminaries

In this section we present briefly some notations and definition, and theorem
which are used throughout this work.

In this paper, we will employ an axiomatic definition of the phase space B
introduced by Hale and Kato in [23] and follow the terminology used in [28].
Thus, (B, ‖·‖B) will be a seminormed linear space of functions mapping (−∞, 0]
into E, and satisfying the following axioms:

(A1) If y : (−∞, b)→ E, b > 0, is continuous on J and y0 ∈ B, then for every
t ∈ J the following conditions hold:

(i) yt ∈ B;

(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B;

Math. Model. Anal., 19(4):524–536, 2014.
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(iii) There exist two functions L(·),M(·) : R+ → R+ independent of y
with L continuous and bounded, and M bounded such that:

‖yt‖B ≤ L(t) sup
{∣∣y(s)

∣∣ : 0 ≤ s ≤ t
}

+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .

(A3) The space B is complete.

Denote

L = sup
{
L(t) : t ∈ J

}
, M = sup

{
M(t) : t ∈ J

}
.

Remark 1. 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖ ·‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ−ψ‖B = 0
without necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence in the first remark, we can see that for all φ, ψ ∈ B
such that ‖φ− ψ‖B = 0 : We necessarily have that φ(0) = ψ(0).

By BUC we denote the space of bounded uniformly continuous functions
defined from (−∞, 0] to E.

By BC := BC (−∞,+∞) we denote the Banach space of all bounded and
continuous functions from (−∞,+∞) into E equipped with the standard norm

‖y‖BC = sup
t∈(−∞,+∞)

∣∣y(t)
∣∣.

Finally, by BC ′ := BC ′([0,+∞)) we denote the Banach space of all bounded
and continuous functions from [0,+∞) into E equipped with the standard norm

‖y‖BC ′ = sup
t∈[0,+∞)

∣∣y(t)
∣∣.

Let (E, d) be a metric space. We use the following notations:

Pcl(E) =
{
Y ∈ P(E) : Y closed

}
, Pcv(E) =

{
Y ∈ P(E) : Y convex

}
.

Consider Hd : P(E)× P(E) −→ R+ ∪ {∞}, given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b).

Definition 1. Let X, Y be Hausdorff topological spaces and F : X → P(Y )
is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set F (x)
is a nonempty closed subset of X and if for each open set N of X containing
F (x), there exists an open neighborhood N0 of x0 such that F (N0) ⊆ N .
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Let (E, ‖ · ‖) be a Banach space. A multivalued map A : E → P(E) has
convex (closed) values if A(x) is convex (closed) for all x ∈ E. We say that A
is bounded on bounded sets if A(B) is bounded in E for each bounded set B
of E, i.e.,

sup
x∈B

{
sup
{
‖y‖ : y ∈ A(x)

}}
<∞.

F is said to be completely continuous if F (B) is relatively compact for
every B ∈ Pb(E). If the multivalued map F is completely continuous with non
empty values, then F is u.s.c. if and only if F has a closed graph (i.e. xn → x∗,
yn → y∗, yn ∈ F (xn) implies y∗ ∈ F (x∗).

Definition 2. A function F : J×B −→ P(E) is said to be an L1− Carathéodo-
ry multivalued map if it satisfies:

(i) y 7→ F (t, y) is upper semicontinuous for almost all t ∈ J ;

(ii) t 7→ F (t, y) is measurable for each y ∈ B;

(iii) for every positive constant l there exists hl ∈ L1(J,R+)∥∥F (t, y)
∥∥ = sup

{
|v| : v ∈ F (t, y)

}
≤ hl

for all |y| ≤ l for almost all t ∈ J.

Lemma 1. Let E be a Banach space. Let F : J × E → Pcl,cv(E) be a L1−
Carathéodory multivalued map; and let Γ be linear continuous from L1(J ;E)
into C(J ;E), then the operator

Γ ◦ SF : C(J,E) −→ Pcp,cv
(
C(J,X)

)
,

y 7−→ (Γ ◦ SF )(y) := Γ (SF,y)

is a closed graph operator in C(J ;X)× C(J ;X).

Finally, we say that A has a fixed point if there exists x ∈ E such that
x ∈ A(x).

For each y : (−∞,+∞) → E let the set SF,y known as the set of selectors
from F defined by

SF,y =
{
v ∈ L1(J ;E) : v(t) ∈ F (t, yρ(t,yt)), a.e. t ∈ J

}
.

For more details on multivalued maps we refer to the books of Deimling [17],
Denkowski et al. [18, 19], Górniewicz [22] and Hu and Papageorgiou [29].

Theorem 1 [Bohnenblust–Karlin fixed point [13]]. Let B ∈ Pcl,cv(E).
And N : B → Pcl,cv(B) be an upper semicontinuous operator and N(B) is a
relatively compact subset of E. Then N has at least one fixed point in B.

Let us assume that Ω 6= ∅ is a subset of BC , and let N : Ω → Ω and
consider the solutions of the equation

y(t) ∈ (Ny)(t). (2.1)

Math. Model. Anal., 19(4):524–536, 2014.
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Lemma 2 [Corduneanu [15]]. Let D ⊂ BC ([0,+∞), E). Then D is relatively
compact if the following conditions hold:

(a) D is bounded in BC .

(b) The function belonging to D is almost equicontinuous on [0,+∞), i.e.,
equicontinuous on every compact subset of [0,+∞).

(c) The set D(t) := {y(t) : y ∈ D} is relatively compact subset on every
compact of [0,+∞).

(d) The function from D is equiconvergent, that is, given ε > 0, responds
T (ε) > 0 such that |u(t) − limt→+∞ u(t)| < ε, for any t ≥ T (ε) and
u ∈ D.

3 Existence of Mild Solutions

Now we give our main existence result for problem (1.1)–(1.2). Before stating
and proving this result, we give the definition of the mild solution.

Definition 3. We say that a continuous function y : (−∞,+∞) → E is a
mild solution of problem (1.1)–(1.2) if y(t) = φ(t) for all t ∈ (−∞, 0], and
the restriction of y(·) to the interval J is continuous and there exists f(·) ∈
L1(J ;E): f(t) ∈ F (t, yρ(t,yt)) a.e. in J such that y satisfies the following
integral equation

y(t) = T (t)φ(t)−
∫ t

0

T (t− s)f(s) ds for each t ∈ J. (3.1)

Set

R(ρ−) =
{
ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0

}
.

We always assume that ρ : J × B → R is continuous. Additionally, we
introduce the following hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a
continuous and bounded function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖ ≤ Lφ(t)‖φ‖ for every t ∈ R(ρ−).

Remark 2. The condition (Hφ), is frequently verified by functions continuous
and bounded. For more details, see for instance [28].

Lemma 3. [27, Lemma 2.4] If y : (−∞,+∞) → E is a function such that
y0 = φ, then

‖ys‖B ≤
(
M + Lφ

)
‖φ‖B + L sup

{∣∣y(θ)
∣∣; θ ∈ [0,max{0, s}

]}
, s ∈ R(ρ−) ∪ J,

where Lφ = supt∈R(ρ−) Lφ(t).
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Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
semigroup T (t), t ∈ J which is compact for t > 0 in the Banach space E.
Let M ′ = sup{‖T‖B(E) : t ≥ 0}.

(H2) The multifunction F : J × B −→ P(E) is Carathéodory with compact
and convex values.

(H3) There exists a continuous function k : J → [0,+∞) such that:

Hd

(
F (t, u), F (t, v)

)
≤ k(t)‖u− v‖B

for each t ∈ J and for all u, v ∈ B and

d
(
0, F (t, 0)

)
≤ k(t)

with

k∗ := sup
t∈J

∫ t

0

k(s) ds <∞. (3.2)

Theorem 2. Assume that (H1)–(H3), (Hφ) hold. If k∗M ′L < 1, then the
problem (1.1)–(1.2) has at least one mild solution on BC .

Proof. Transform the problem (1.1)–(1.2) into a fixed point problem. Consider
the multivalued operator N : BC → P(BC ) defined by:

N(y) :=

{
h ∈ BC : h(t) =

{
φ(t), if t ∈ (−∞, 0];

T (t)φ(0) +
∫ t
0
T (t− s)f(s) ds, if t ∈ J,

}
where f ∈ SF,yρ(s,ys) .

Let x(·) : (−∞,+∞)→ E be the function defined by:

x(t) =

{
φ(t), if t ∈ (−∞, 0];
T (t) φ(0), if t ∈ J.

Then x0 = φ. For each z ∈ BC with z(0) = 0, we denote by z the function

z(t) =

{
0, if t ∈ (−∞, 0];
z(t), if t ∈ J,

if y(·) satisfies (3.1), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which
implies yt = zt + xt for every t ∈ J and the function z(·) satisfies

z(t) =

∫ t

0

T (t− s)f(s) ds, t ∈ J,

where f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) . Set

BC ′0 =
{
z ∈ BC ′ : z(0) = 0

}
Math. Model. Anal., 19(4):524–536, 2014.
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and let

‖z‖BC ′0
= sup

{∣∣z(t)∣∣ : t ∈ J}, z ∈ BC ′0.

BC ′0 is a Banach space with the norm ‖ · ‖BC ′0
.

We define the operator A : BC ′0 → P(BC ′0) by:

A(z) :=

{
h ∈ BC ′0: h(t) =

{
0, if t ≤ 0;∫ t
0
T (t− s)f(s) ds, if t ∈ J,

}
where f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) .

The operator A maps BC ′0 into BC ′0, indeed the map A(z) is continuous
on [0,+∞) for any z ∈ BC ′0, h ∈ A(z) and for each t ∈ J we have

∣∣h(t)
∣∣ ≤M ′ ∫ t

0

∣∣f(s)
∣∣ ds

≤M ′
∫ t

0

(
k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B +

∣∣F (s, 0)
∣∣) ds

≤M ′
∫ t

0

k(s) ds+M ′
∫ t

0

k(s)
(
L
∣∣z(s)∣∣+

(
M + Lφ + LM ′H

)
‖φ‖B

)
ds

≤M ′k∗ +M ′
∫ t

0

k(s)
(
L
∣∣z(s)∣∣+

(
M + Lφ + LM ′H

)
‖φ‖B

)
ds.

Set C :=
(
M + Lφ + LM ′H

)
‖φ‖B. Then, we have

∣∣h(t)
∣∣ ≤M ′k∗ +M ′C

∫ t

0

k(s) ds+M ′
∫ t

0

L
∣∣z(s)∣∣k(s) ds

≤M ′k∗ +M ′Ck∗ +M ′L‖z‖BC ′0
k∗.

Hence, A(z) ∈ BC ′0. Moreover, let r > 0 be such that

r ≥ M ′k∗ +M ′Ck∗

1−M ′k∗L
,

and Br be the closed ball in BC ′0 centered at the origin and of radius r. Let
z ∈ Br and t ∈ [0,+∞). Then∣∣h(t)

∣∣ ≤M ′k∗ +M ′Ck∗ +M ′k∗Lr.

Thus ‖h‖BC ′0
≤ r, which means that the operator A transforms the ball Br

into itself. Now we prove that A : Br → P(Br) satisfies the assumptions of
Bohnenblust–Karlin’s fixed theorem. The proof will be given in several steps.

Step 1: We shall show that the operator A is closed and convex. This will
be given in several claims.

Claim 1. A(z) is closed for each z ∈ Br.
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Let (hn)n≥0 ∈ A(z) such that hn → h̃ in Br. Then for hn ∈ Br there exists
fn ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) such that for each t ∈ J,

hn(t) =

∫ t

0

T (t− s)fn(s) ds.

Using the fact that F has compact values and from hypotheses (H2), (H3) we
may pass a subsequence if necessary to get that fn converges to f ∈ L1(J,E)
and hence f ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) . Then for each t ∈ J,

hn(t)→ h̃(t) =

∫ t

0

T (t− s)f(s) ds.

So, h̃ ∈ A(z).

Claim 2. A(z) is convex for each z ∈ Br.

Let h1, h2 ∈ A(z), then there exists f1, f2 ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) such
that, for each t ∈ J we have:

hi(t) =

∫ t

0

T (t− s)fi(s) ds, i = 1, 2.

Let 0 ≤ δ ≤ 1. Then, we have for each t ∈ J :

(
δh1 + (1− δ)h2

)
(t) =

∫ t

0

T (t− s)
[
δf1(s) + (1− δ)f2(s)

]
ds.

Since F has convex values, one has δh1 + (1− δ)h2 ∈ A(z).

Step 2: A(Br) ⊂ Br this is clear.

Step 3: A(Br) is equicontinuous on every compact interval [0, b] of [0,+∞)
for b > 0. Let τ1, τ2 ∈ [0, b], h ∈ A(z) with τ2 > τ1, we have:

∣∣h(τ2)− h(τ1)
∣∣ ≤

∫ τ1

0

∥∥T (τ2 − s)− T (τ1 − s)
∥∥
B(E)

∣∣f(s)
∣∣ ds

+

∫ τ2

τ1

∥∥T (τ2 − s)
∥∥
B(E)

∣∣f(s)
∣∣ ds ≤ ∫ τ1

0

∥∥T (τ2 − s)− T (τ1 − s)
∥∥
B(E)

×
(
k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B +

∣∣F (s, 0)
∣∣) ds

+

∫ τ2

τ1

∥∥T (τ2 − s)
∥∥
B(E)

(
k(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B +

∣∣F (s, 0)
∣∣) ds

≤ C
∫ τ1

0

∥∥T (τ2 − s)− T (τ1 − s)
∥∥
B(E)

k(s) ds

+ rL

∫ τ1

0

∥∥T (τ2 − s)− T (τ1 − s)
∥∥
B(E)

k(s) ds

+

∫ τ1

0

∥∥T (τ2 − s)− T (τ1 − s)
∥∥
B(E)

k(s) ds

Math. Model. Anal., 19(4):524–536, 2014.
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+ C

∫ τ2

τ1

∥∥T (τ2 − s)
∥∥
B(E)

k(s) ds+ rL

∫ τ2

τ1

∥∥T (τ2 − s)
∥∥
B(E)

k(s) ds

+

∫ τ2

τ1

∥∥T (τ2 − s)
∥∥
B(E)

k(s) ds.

When τ2 → τ2, the right-hand side of the above inequality tends to zero, since
T (t) is a strongly continuous operator and the compactness of T (t) for t > 0,
implies the continuity in the uniform operator topology (see [34]), this proves
the equicontinuity.

Step 4: A(Br) is relatively compact on every compact interval of [0,∞).

Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For
z ∈ Br we define

hε(t) = T (ε)

∫ t−ε

0

T (t− s− ε)f(s) ds.

Note that the set {∫ t−ε

0

T (t− s− ε)f(s) ds : z ∈ Br
}

is bounded: ∣∣∣∣∫ t−ε

0

T (t− s− ε)f(s) ds

∣∣∣∣ ≤ r.
Since T (t) is a compact operator for t > 0, the set,

{
hε(t) : z ∈ Br

}
is precom-

pact in E for every ε, 0 < ε < t. Moreover, for every z ∈ Br we have

∣∣h(t)− hε(t)
∣∣ ≤M ′ ∫ t

t−ε

∣∣f(s)
∣∣ ds ≤M ′ ∫ t

t−ε
k(s) ds

+M ′C

∫ t

t−ε
k(s) ds+ rM ′

∫ t

t−ε
Lk(s) ds → 0 as ε→ 0.

Therefore, the set {h(t) : z ∈ Br} is precompact, i.e., relatively compact.

Step 5: A has closed graph.

Let {zn} be a sequence such that zn → z∗, hn ∈ A(zn) and hn → h∗. We
shall show that h∗ ∈ A(z∗). Note, that hn ∈ A(zn) means that there exists
fn ∈ SF,zn

ρ(s,zns +xs)
+xρ(s,zns +xs)

such that

hn(t) =

∫ t

0

T (t− s)fn(s) ds,

we must prove that there exists f∗

h∗(t) =

∫ t

0

T (t− s)f∗(s) ds.
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Consider the linear and continuous operator K : L1(J,E)→ Br defined by

K(v)(t) =

∫ t

0

T (t− s)v(s) ds,

we have∣∣K(fn)(t)−K(f∗)(t)
∣∣ =

∣∣hn(t)− h∗(t)
∣∣ ≤ ‖hn − h∗‖∞ → 0, as n→∞.

From Lemma 2.2 it follows that K ◦ SF is a closed graph operator and from
the definition of K has hn(t) ∈ K ◦ SF,zn

ρ(s,zns +xs)
+xρ(s,zns +xs)

. As zn → z∗ and

hn → h∗, there exists f∗ ∈ SF,z∗
ρ(s,z∗s+xs)

+xρ(s,z∗+xs)
such that:

h∗(t) =

∫ t

0

T (t− s)f∗(s) ds.

Hence the multivalued operator A is upper semi-continuous.

Step 6: A(Br) is equiconvergent.

Let z ∈ Br, we have, for h ∈ A(z):

∣∣h(t)
∣∣ ≤M ′ ∫ t

0

∣∣f(s)
∣∣ ds

≤M ′k∗ +M ′C

∫ t

0

k(s) ds+M ′r

∫ t

0

Lk(s) ds

≤M ′k∗ +M ′C

∫ t

0

k(s) ds+M ′rL

∫ t

0

k(s) ds.

Then by (4), we have∣∣h(t)
∣∣→ l ≤M ′k∗(1 + C + rL), as t→ +∞.

Hence, ∣∣h(t)− h(+∞)
∣∣→ 0, as t→ +∞.

As a consequence of Steps 1–6, with Lemma 2, we can conclude that A : Br →
P(Br) is continuous and compact. From Bohnenblust–Karlin’s fixed theorem,
we deduce that A has a fixed point z∗. Then y∗ = z∗+x is a fixed point of the
operator N, which is a mild solution of the problem (1.1)–(1.2). ut

4 An Example

Consider the following functional partial differential equation

∂

∂t
z(t, x)− ∂2

∂x2
z(t, x) ∈ F

(
t, z(t− σ

(
t, z(t, 0)

)
, x)
)
, (4.1)
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x ∈ [0, π], t ∈ [0,+∞),

z(t, 0) = z(t, π) = 0, t ∈ [0,+∞), (4.2)

z(θ, x) = z0(θ, x), t ∈ (−∞, 0], x ∈ [0, π], (4.3)

where F is a given multivalued map, and σ : (−∞,+∞)→ R+ is continuous.
Take E = L2[0, π] and define A : E → E by Aω = ω′′ with domain

D(A) =
{
ω ∈ E, ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0

}
.

Then

Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(s) =
√

2
π sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors

of A. It is well known (see [34]) that A is the infinitesimal generator of an
analytic semigroup T (t), t ≥ 0 in E and is given by

T (t)ω =

∞∑
n=1

exp
(
−n2t

)
(ω, ωn)ωn, ω ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant
M such that ∥∥T (t)

∥∥
B(E)

≤M.

Let B = BCU(R−;E) and φ ∈ B, then (Hφ), where ρ(t, ϕ) = t− σ(ϕ).
Then the problem (1.1)–(1.2) in an abstract formulation of the problem

(4.1)–(4.3), and if the conditions (H1)–(H3), (Hφ) are satisfied, Theorem 2
implies that the problem (4.1)–(4.3) has at least one mild solutions on BC .
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