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Abstract. Taking advantage of the attractive features of Hestenes–Stiefel and Dai–
Yuan conjugate gradient methods, we suggest two globally convergent hybridizations
of these methods following Andrei’s approach of hybridizing the conjugate gradient
parameters convexly and Powell’s approach of nonnegative restriction of the conjugate
gradient parameters. In our methods, the hybridization parameter is obtained based
on a recently proposed hybrid secant equation. Numerical results demonstrating the
efficiency of the proposed methods are reported.
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1 Introduction

Conjugate gradient (CG) methods comprise a class of unconstrained optimiza-
tion algorithms characterized by low memory requirements and strong global
convergence properties [9]. CG methods have played significant roles in solving
large-scale nonlinear optimization problems.
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Generally, a CG method is designed to solve the following unconstrained
optimization problem,

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a smooth nonlinear function and its gradient is available.
The iterative formula of a CG method is given by

x0 ∈ Rn,
xk+1 = xk + sk, sk = αkdk, k = 0, 1, . . . , (1.2)

where αk is a steplength to be computed by a line search procedure and dk is
the search direction defined by

d0 = −g0,
dk+1 = −gk+1 + βkdk, k = 0, 1, . . . , (1.3)

where gk = ∇f(xk) and βk is a scalar called the CG (update) parameter.
The steplength αk is usually chosen to satisfy certain line search conditions

[19, 21]. Among them, the so-called (standard) Wolfe line search conditions
[19, 21] have attracted special attention in the convergence analysis and the
implementations of CG methods, requiring that

f(xk + αkdk)− f(xk) ≤ δαk∇f(xk)T dk, (1.4)

∇f(xk + αkdk)T dk ≥ σ∇f(xk)T dk, (1.5)

where 0 < δ < σ < 1. Also, the strong Wolfe line search conditions consist
of (1.4) and the following strengthened version of (1.5),∣∣∇f(xk + αkdk)T dk

∣∣ ≤ −σ∇f(xk)T dk. (1.6)

Different choices for the CG parameter lead to different CG methods. Let
‖ · ‖ denotes the Euclidean norm and define yk = gk+1 − gk. The essential CG
methods can be divided into two categories. In the first category, all the CG
parameters have the common numerator gTk+1yk. These methods have been
proposed by Hestenes and Stiefel (HS), Polak, Ribière and Polyak (PRP), and
Liu and Storey (LS) with the following CG parameters [14],

βHS
k =

gTk+1yk

dTk yk
, βPRP

k =
gTk+1yk

‖gk‖2
, βLS

k = −
gTk+1yk

dTk gk
.

In the second category, all the CG parameters have the common numerator
‖gk+1‖2. These methods have been proposed by Fletcher and Reeves (FR),
Fletcher (conjugate descent or CD), and Dai and Yuan (DY) with the following
CG parameters [14],

βFR
k =

‖gk+1‖2

‖gk‖2
, βCD

k = −‖gk+1‖2

dTk gk
, βDY

k =
‖gk+1‖2

dTk yk
.

There are some advantages and disadvantages for the CG methods in each
category. For example, in spite of the global convergence property of the FR
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method for general functions [29], this method numerically performs much
worse than the HS, PRP and LS methods [1]. The poor numerical perfor-
mance of the FR method is related to the jamming phenomenon [11], that is,
the algorithm could take many short steps without making significant progress
to the minimum. However, the methods with the common numerator gTk+1yk
possess an automatic approximate restart feature which avoids jamming. More
exactly, when the step sk is small, the factor yk in the numerator tends to
zero. Therefore, βk becomes small and the new search direction dk+1 is ap-
proximately the steepest descent direction. On the other hand, Powell [20]
constructed a three dimensional counter example and showed that the PRP
and HS methods could cycle infinitely without convergence to a solution; that
is, they lack global convergence in certain circumstances. Based on the insight
gained by his counter example, Powell [20] proposed a modified PRP method
with the following CG parameter,

βPRP+
k = max

{
βPRP
k , 0

}
.

Then, Gilbert and Nocedal [11] studied the theoretical effectiveness and numer-
ical efficiency of the PRP+ method for general objective functions. A similar
study has been done on the HS+ method [11], i.e., a CG method with the
following CG parameter,

βHS+
k = max

{
βHS
k , 0

}
.

Generally, the FR, CD and DY methods have strong global convergence
properties [8, 9, 11], but they may have modest computational performance [1].
Meanwhile, the methods of HS, PRP and LS may not always be convergent,
but they often have better computational performance [1]. A nice review of
different CG methods can be found in [14].

To attain good computational performance and to maintain the attrac-
tive feature of strong global convergence, researchers paid special attention to
hybridize the CG methods of the two categories (see [14] and the references
therein). Recently, Andrei proposed several efficient hybrid CG methods based
on convex combinations of the CG parameters of the two categories (see [3] and
the references therein). Specially, in [3], using an acceleration scheme, Andrei
proposed another hybridization of HS and DY methods in which the hybridiza-
tion parameter is computed based on the modified secant equation proposed by
Li et al. [16]. In recent efforts following Andrei’s approach, Babaie-Kafaki et al.
[5, 6] proposed efficient hybridizations of HS and DY methods in which the hy-
bridization parameters are computed based on the modified secant equations
proposed by Yuan [25], and Li and Fukushima [15], and another scaled secant
equation newly proposed based on the search direction of the Hager-Zhang CG
method [13].

Among the different hybrid CG methods, hybridizations of HS and DY
methods have shown promising numerical performance [1]. The HS method has
the nice property of satisfying the conjugacy condition dTk+1yk = 0, for all k ≥ 0,
independent of the line search conditions and the objective function convexity.
On the other hand, the DY method has remarkable convergence properties
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in contrast to the other CG methods [8]. For example, in addition to the
generation of descent search directions, the DY method has been proved to have
a certain self-adjusting property independent of the line search conditions and
the objective function convexity. More exactly, if there exist positive constants
γ1 and γ2 such that γ1 ≤ ‖gk‖ ≤ γ2, for all k ≥ 0, then, for any p ∈ (0, 1),
there exists a positive constant τ such that the sufficient descent condition
gTi di ≤ −τ‖gi‖2 holds for at least bpkc indices i ∈ [0, k], where bjc denotes the
largest integer less than or equal to j. Also, under mild assumptions on the
objective function, the DY method was shown to be globally convergent under
a variety of line search conditions.

Here, to take advantage of the attractive features of HS and DY methods,
following Andrei’s approach of hybridizing the CG parameters convexly [3] and
Powell’s nonnegative restriction of the CG parameters [20], we propose two
hybridizations of these methods using a hybrid secant equation proposed by
Babaie-Kafaki [4]. We then discuss the global convergence property of the
proposed methods and report comparative testing results. The remainder of
this work is organized as follows. In Section 2, we propose our hybrid CG
methods. The global convergence property of our methods is discussed in
Section 3. In Section 4, we numerically compare the proposed methods with
the two recently proposed hybrid CG methods of [3] and [5], as well as the
efficient CG methods HS+, PRP+, DPRP-W proposed by Yu et al. [24],
and CG Descent proposed by Hager and Zhang [13]. Finally, we provide our
concluding remarks.

2 Two Hybrid CG Methods

Here, after a brief discussion on the Andrei’s approach of hybridizing the CG
parameters [3] and the hybrid secant equation proposed by Babaie-Kafaki [4],
we propose a modified hybrid CG parameter. Then, by a nonnegative restric-
tion of the proposed hybrid CG parameter based on the Powell’s approach [20]
in order to achieve the global convergence for general objective functions, we
propose another hybrid CG parameter.

As pointed out in Section 1, Andrei has recently proposed several efficient
hybridizations of HS and DY methods using convex combinations of βHS

k and
βDY
k [2, 3]. More exactly, in the hybrid CG methods proposed in [2, 3], the CG

parameter, namely βCk , is in the following form,

βCk = (1− θk)βHS
k + θkβ

DY
k = (1− θk)

gTk+1yk

dTk yk
+ θk

gTk+1gk+1

dTk yk
, (2.1)

where θk, namely the hybridization parameter, is a scalar parameter satisfying
0 ≤ θk ≤ 1. Note that βCk can be included in the two-parameter family of CG
parameters proposed by Nazareth [18]. Now, from (1.3) we have

dk+1 = −gk+1 + (1− θk)
gTk+1yk

dTk yk
dk + θk

gTk+1gk+1

dTk yk
dk,
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or equivalently,

dk+1 = −gk+1 + (1− θk)
gTk+1yk

sTk yk
sk + θk

gTk+1gk+1

sTk yk
sk. (2.2)

As known, if the point xk+1 is close enough to a local minimizer x∗, then a good
direction to follow is the Newton direction, that is, dk+1 = −∇2f(xk+1)−1gk+1.
Motivated by this, Andrei [2, 3] rewrote (2.2) as follows:

−∇2f(xk+1)−1gk+1 = −gk+1 + (1− θk)
gTk+1yk

sTk yk
sk + θk

gTk+1gk+1

sTk yk
sk.

After some algebraic manipulations one obtains

θk =
sTk∇2f(xk+1)gk+1 − sTk gk+1 −

gTk+1yk

sTk yk
sTk∇2f(xk+1)sk

gTk+1gk

sTk yk
sTk∇2f(xk+1)sk

. (2.3)

Due to the essential property of low memory requirements for the CG meth-
ods, Andrei applied the secant equations in order to avoid the exact computa-
tion of ∇2f(xk+1).

Secant equations play essential roles for approximation of the Hessian of an
objective function in each iteration of the quasi-Newton methods, an efficient
family of iterative methods for solving unconstrained optimization problems.
The iterative quasi-Newton formula has the form (1.2) in which the search
direction dk is calculated by solving the following linear system of equations,

Bkdk = −gk,

where Bk is an approximation of ∇2f(xk). The quasi-Newton methods are
characterized by the fact that Bk is effectively updated to obtain a new matrix
Bk+1 as an approximation of ∇2f(xk+1) in the following form,

Bk+1 = Bk +∆Bk,

where ∆Bk is a correction matrix. The matrix Bk+1 is imposed to satisfy some
suitable equations, namely secant equations, which include the second order
information. The most popular equation is the standard secant equation, that
is,

Bk+1sk = yk. (2.4)

The standard secant equation only uses the gradient values available at the
current iteration and ignores the function values. So, efforts have been made
in order to modify the standard secant equation to employ more available in-
formation and consequently, to provide a better approximation for the Hessian
(see [4] and the references therein). In a recent effort, Babaie-Kafaki [4] pro-
posed a hybridization of the modified secant equations proposed by Yuan [25]
and Wei et al. [22], using a convex combination of these equations. The BFGS
method based on the hybrid secant equation proposed in [4] showed a promising
numerical performance.
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Assume that the objective function f is smooth enough. If we expand the
function f at xk = xk+1 − sk using Taylor’s theorem, then for small values of
‖sk‖ we have

fk = fk+1 − sTk gk+1 +
1

2
sTk∇2f(xk+1)sk −

1

6
sTk (Tk+1sk)sk +O

(
‖sk‖4

)
,

with

sTk (Tk+1sk)sk =

n∑
i,j,l=1

∂3f(xk+1)

∂xi∂xj∂xl
siks

j
ks
l
k,

which yields the following approximation,

sTk∇2f(xk+1)sk ≈ sTk yk + ηk, (2.5)

where

ηk = 2(fk − fk+1) + sTk (gk + gk+1). (2.6)

Since in the quasi-Newton methods a matrix Bk+1 is required to approximate
∇2f(xk+1), by considering (2.5) a modified secant equation can be proposed
as follows:

Bk+1sk = zk, zk = yk +
ηk
sTk uk

uk, (2.7)

where uk ∈ Rn is a vector parameter satisfying sTk uk 6= 0. The modified secant
equation (2.7) is justified by the following theorem.

Theorem 1. [22] If f is sufficiently smooth and ‖sk‖ is small enough, then the
following estimating relations hold,

sTk
(
∇2f(xk+1)sk − yk

)
=

1

2
sTk (Tk+1sk)sk +O

(
‖sk‖4

)
,

sTk
(
∇2f(xk+1)sk − zk

)
=

1

3
sTk (Tk+1sk)sk +O

(
‖sk‖4

)
.

For a quadratic objective function f , we have ηk = 0 and consequently, the
modified secant equation (2.7) reduces to the standard secant equation (2.4).
A comprehensive study has been made on the properties of the modified secant
equation (2.7) by Wei et al. [22].

Different choices for the vector parameter uk in (2.7) lead to different mod-
ified secant equations. The particular choice uk = sk has been considered by
Wei et al. [22]. Also, if the steplength αk is computed such that the (strong)
Wolfe line search conditions hold, then from (1.5) or (1.6) we have

sTk yk = sTk gk+1 − sTk gk ≥ −(1− σ)sTk gk > 0. (2.8)

So, using the (strong) Wolfe line search conditions, the particular choice uk = yk
was firstly proposed by Yuan [25] and then adopted by Wei et al. [22].

Here, in order to apply the interesting features of the modified secant equa-
tions proposed in [22] and [25], we suggest a hybridization of these equations
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by considering the vector parameter uk in (2.7) as a convex combination of the
vectors sk and yk, i.e.,

uk = (1− λk)yk + λksk, λk ∈ [0, 1]. (2.9)

Note that the choices λk = 1 and λk = 0 in (2.9) convert equation (2.7) to
the modified secant equations proposed in [22] and [25], respectively. Hence,
our hybrid secant equation, i.e., the modified secant equation (2.7) with the
vector parameter uk defined by (2.9), can be considered as an extension of the
modified secant equations proposed in [22] and [25]. Next, we suggest a formula
for computing λk based on an effective modified secant equation proposed by
Li and Fukushima [15].

To increase the accuracy of our hybrid secant equation, here λk is computed
making use of the information from two previous steps. More precisely, based
on the proposal of [4], using the modified secant equation proposed by Li and
Fukushima [15] which is effective even for nonconvex functions, we compute λk
such that in addition to the secant equation (2.7), at the (k − 1)th iteration
the following secant equation is implicitly satisfied,

Bk+1sk−1 = z̄k−1, (2.10)

with z̄k−1 = yk−1 +hk−1‖gk−1‖rsk−1, where r > 0, and hk−1 > 0 is defined by

hk−1 = C + max

{
−
sTk−1yk−1

‖sk−1‖2
, 0

}
‖gk−1‖−r, (2.11)

with some positive constant C (see also [5, 28]). Taking the inner product of
(2.10) with sk and using the modified secant equation (2.7), after some algebraic
manipulations, we get

λk =
wTk yk

wTk (yk − sk)
, (2.12)

where wk = sk−1 − δksk, with δk =
(
sTk z̄k−1 − sTk−1yk

)
/ηk. The parameter λk

computed by (2.12) may be outside the interval [0, 1]. Thus, in order to have
a convex combination in (2.9), if λk < 0, then we let λk = 0, and if λk > 1,
then we let λk = 1. It is remarkable that if (wTk yk)(wTk sk) < 0, then we have
λk ∈ (0, 1).

Now, in order to make the hybridization parameter θk defined by (2.3) more
effective by avoiding the exact computation of the Hessian∇2f(xk+1), we follow
Andrei’s approach using our hybrid secant equation. More precisely, we replace
the expression∇2f(xk+1)sk in (2.3) with the approximation suggested by (2.7),
that is, Bk+1sk = yk + ηk

sTk uk
uk, with the vector parameter uk defined by (2.9).

So, after some algebraic manipulations, we have

θk =

ηk

(gTk+1uk

sTk uk
−
gTk+1yk

sTk yk

)
− sTk gk+1

gTk+1gk + ηk
gTk+1gk

sTk yk

, (2.13)
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in which uk is defined by (2.9). It is remarkable that the choices λk = 1 and
λk = 0 convert θk given by (2.13) to the hybridization parameters proposed in
[3] and [5], respectively. So, the hybrid CG method in the form of (1.2)–(1.3)
with the hybrid CG parameter βCk defined by (2.1), in which the hybridization
parameter θk is computed by (2.13), can be considered as an extension of the
hybrid CG parameters proposed in [3, 5]. The hybridization parameter θk given
by (2.13) may be outside the interval [0, 1]. Here, in order to have a convex
combination in (2.1), similar to the advocation in [3, 5] if θk < 0, then we let
θk = 0, and if θk > 1, then we let θk = 1; that is, θk is restricted to [0, 1].

If the objective function f is quadratic, then ηk, defined by (2.6), is zero.
Thus, for quadratic objective functions, the hybridization parameter θk defined
by (2.13) reduces to a hybridization parameter proposed by Andrei [2], that is,

θk = −s
T
k gk+1

gTk+1gk
.

In this case, if σ in the strong Wolfe line search condition (1.6) tends to zero,
then sTk gk+1 → 0, and consequently, θk → 0. Therefore, the numerical behavior
of our hybrid CG method approaches to the numerical behavior of the HS
method. More precisely, under these conditions our method has an automatic
approximate restart feature which avoids jamming, as discussed in Section 1.

In the next section, we will show that our hybrid CG method with the hy-
bridization parameter θk defined by (2.13) is globally convergent for uniformly
convex functions. In order to achieve the global convergence for general func-
tions, we adopt the nonnegative restriction of the CG parameters, originally
proposed in [20] and then further studied in [11], and propose a new hybrid
CG parameter as follows:

βC+
k = (1− θk) max

{
βHS
k , 0

}
+ θkβ

DY
k , θk ∈ [0, 1]. (2.14)

From (2.8), the Wolfe line search conditions guarantee that βC+
k ≥ 0 which, as

will be shown in the next section, is necessary to achieve the global convergence
for general functions. It is remarkable that for the quadratic objective func-
tions, if σ in the strong Wolfe line search condition (1.6) tends to zero, then
βC+
k ≈ βHS+

k . In other words, in such situations the numerical behavior of our
second hybrid CG method tends to the numerical behavior of the efficient HS+
method.

3 Convergence Analysis

Here, after a brief discussion on the uniformly convex functions and some nec-
essary results, we show that our hybrid CG method with the CG parameter βCk
defined by (2.1), in which the hybridization parameter θk is computed by (2.13),
is globally convergent for uniformly convex functions and also, our hybrid CG
method with the CG parameter βC+

k defined by (2.14) is globally convergent
for general functions.
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Definition 1. [21] Let S ⊂ Rn be a nonempty convex set and consider the
function f : S → R. If there exists a positive constant % such that, for any
x, y ∈ S and for all α ∈ (0, 1),

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y)− 1

2
%α(1− α)‖x− y‖2,

then f is called a uniformly (or strongly) convex function on S.

We make the following basic assumptions on the objective function, com-
monly used in the convergence analysis of the CG methods.

Assumptions 1.

1. The level set L = {x | f(x) ≤ f(x0)}, with x0 to be the starting point of
the algorithm, is bounded.

2. In a neighborhoodN of L, f is continuously differentiable and its gradient
is Lipschitz continuous; that is, there exists a positive constant L such
that ∥∥∇f(x)−∇f(y)

∥∥ ≤ L‖x− y‖, ∀x, y ∈ N . (3.1)

Definition 2. We say that the search direction dk is a descent direction (or
equivalently, satisfies the descent condition) if and only if

dTk gk < 0. (3.2)

Also, we say that the search directions {dk}k≥0 satisfy the sufficient descent
condition if and only if

dTk gk ≤ −c‖gk‖2, ∀k ≥ 0, (3.3)

where c is a positive constant.

The following important result plays an essential role in proving the global
convergence theorems of the CG methods.

Lemma 1. [9] Suppose that Assumptions 1 hold. Consider any CG method in
the form of (1.2)–(1.3), where for which at the kth iteration, k = 0, 1, . . . , the
search direction dk is a descent direction and the steplength αk is computed so
that the strong Wolfe line search conditions (1.4) and (1.6) are satisfied. If∑

k≥0

1

‖dk‖2
=∞,

then we have

lim inf
k→∞

‖gk‖ = 0. (3.4)

To prove our global convergence theorems, the following results are also
needed.
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Lemma 2. [5] Under Assumptions 1, there exists a positive constant γ such
that ∥∥∇f(x)

∥∥ ≤ γ, ∀x ∈ N . (3.5)

Theorem 2. [21] Let S ⊂ Rn be a nonempty open convex set and consider the
differentiable function f : S → R. The function f is uniformly convex on S if
and only if its gradient is uniformly monotone on S, i.e., there exists a positive
constant µ such that(

∇f(x)−∇f(y)
)T

(x− y) ≥ µ‖x− y‖2, ∀x, y ∈ S.

Theorem 3. [21] Let S ⊂ Rn be a nonempty open convex set and consider
the twice continuously differentiable function f : S → R. The function f is
uniformly convex if and only if its Hessian matrix is uniformly positive definite
at each point of S, i.e., there exists a positive constant µ̄ such that

uT∇2f(x)u ≥ µ̄‖u‖2, ∀x ∈ S, ∀u ∈ Rn.

Lemma 3. Suppose that for a CG method in the form of (1.2)–(1.3) Assump-
tions 1 and the descent condition (3.2) hold. If f is twice continuously dif-
ferentiable and uniformly convex, then there exist positive constants m and M
such that

m‖sk‖2 ≤ sTk yk + ηk ≤M‖sk‖2,
with ηk as defined by (2.6).

Proof. Using Taylor’s theorem, we can write

fk = f(xk+1 − sk) = fk+1 − sTk gk+1 +
1

2
sTk∇2f

(
ζxk + (1− ζ)xk+1

)
sk,

or equivalently,

fk − fk+1 + sTk gk+1 =
1

2
sTk∇2f

(
ζxk + (1− ζ)xk+1

)
sk, (3.6)

for some ζ ∈ (0, 1). Because of the descent condition (3.2) and (1.4) (the first
condition of the strong Wolfe line search conditions), the sequence {xk}k≥0
generated by the considered CG method is a subset of L. On the other hand,
since f is a continuous and convex function, the level set L is a closed convex
subset of Rn, and consequently ζxk + (1− ζ)xk+1 ∈ L. Also, because ∇2f is a
continuous function on the closed and bounded set L, for some x̄ ∈ L we have∥∥∇2f(x̄)

∥∥ = max
x∈L

∥∥∇2f(x)
∥∥. (3.7)

Now, from (3.6), Theorem 3 and (3.7), we have

µ̄‖sk‖2 ≤ sTk yk + ηk = 2
(
fk − fk+1 + sTk gk+1

)
= sTk∇2f

(
ζxk + (1− ζ)xk+1

)
sk ≤

∥∥∇2f(x̄)
∥∥‖sk‖2.

Therefore, to complete the proof it is enough to let m = µ̄ and M =
‖∇2f(x̄)‖. ut
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Lemma 4. Under Assumptions 1, for uk defined by (2.9) we have

‖uk‖ ≤ (L+ 1)‖sk‖.

Proof. From (3.1) and since λk ∈ [0, 1], we have

‖uk‖ =
∥∥(1− λk)yk + λksk

∥∥ ≤ ‖yk‖+ ‖sk‖ ≤ L‖sk‖+ ‖sk‖ = (L+ 1)‖sk‖. ut

Lemma 5. Under Assumptions 1, if f is a uniformly convex function on N ,
then there exists a positive constant ρ such that for uk defined by (2.9) we have

sTk uk ≥ ρ‖sk‖2.

Proof. From Theorem 2, we have

sTk uk = (1− λk)sTk yk + λks
T
k sk

≥ (1− λk)µ‖sk‖2 + λk‖sk‖2 =
[
(1− λk)µ+ λk

]
‖sk‖2. (3.8)

So, from (3.8), to complete the proof it is enough to let ρ = min{µ, 1}. ut

Lemma 6. Under Assumptions 1, if f is twice continuously differentiable and
uniformly convex, then we have |ηk| ≤ M‖sk‖2, with the positive constant M
as given in Lemma 3 and ηk as defined by (2.6).

Proof. From Taylor’s theorem, we can write

fk − fk+1 + gTk+1sk =
1

2
sTk∇2f(xς)sk,

fk − fk+1 + gTk sk = −1

2
sTk∇2f(xι)sk,

where xς = ςxk + (1 − ς)xk+1, xι = ιxk + (1 − ι)xk+1, for some ς, ι ∈ (0, 1).
Therefore, from Lemma 3 we have

|ηk| =
∣∣2(fk − fk+1) + (gk + gk+1)T sk

∣∣
=

1

2

∣∣sTk (∇2f(xς)−∇2f(xι)
)
sk
∣∣ ≤ 1

2

∥∥∇2f(xς)−∇2f(xι)
∥∥‖sk‖2

≤ 1

2

(∥∥∇2f(xς)
∥∥+

∥∥∇2f(xι)
∥∥)‖sk‖2 ≤M‖sk‖2. ut

Now, we can prove the following global convergence theorems for our hybrid
CG method with the CG parameter (2.1).

Theorem 4. Suppose that Assumptions 1 hold. Consider a CG method in the
form of (1.2)–(1.3) with the CG parameter βCk defined by (2.1) and the hy-
bridization parameter θk ∈ [0, 1], in which, for all k ≥ 0, the descent condition
(3.2) holds and the steplength αk is computed such that the strong Wolfe line
search conditions (1.4) and (1.6) are satisfied. If f is uniformly convex and
there exists a positive constant ξ such that

‖gk+1‖2 ≤ ξ‖sk‖, (3.9)

then the method converges in the sense that (3.4) holds.
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Proof. From (2.2) and since θk ∈ [0, 1], we have

‖dk+1‖ ≤ ‖gk+1‖+

( |gTk+1yk|
|sTk yk|

+
‖gk+1‖2

|sTk yk|

)
‖sk‖. (3.10)

From (3.1), Lemma 2 and Theorem 2, we have

‖gk+1‖ ≤ γ,
|gTk+1yk|
|sTk yk|

≤ Lγ‖sk‖
µ‖sk‖2

=
Lγ

µ‖sk‖
. (3.11)

From (3.9) and Theorem 2, we have

‖gk+1‖2

|sTk yk|
≤ ξ‖sk‖
µ‖sk‖2

=
ξ

µ‖sk‖
. (3.12)

Now, from (3.10), (3.11) and (3.12), we have

‖dk+1‖ ≤ γ +
Lγ

µ
+
ξ

µ
. (3.13)

So, from (3.13) and Lemma 1 the proof is complete. ut

Note that if ‖gk‖ → 0, then near the optimal solution we may have
‖gk+1‖2 ≈ 0. Therefore, the inequality (3.9) may be satisfied for large enough
values of ξ.

Theorem 5. Suppose that Assumptions 1 hold. Consider a CG method in
the form of (1.2)–(1.3) with the CG parameter βCk defined by (2.1) and the
hybridization parameter θk defined by (2.13), in which, for all k ≥ 0, the descent
condition (3.2) holds and the steplength αk is computed such that the strong
Wolfe line search conditions (1.4) and (1.6) are satisfied. If θk ∈ (0, 1) and
f is twice continuously differentiable and uniformly convex, then the method
converges in the sense that (3.4) holds.

Proof. Since θk ∈ (0, 1), from (2.2) and (2.13), we have

dk+1 = −gk+1 +
gTk+1yk − sTk gk+1 + ηk

gTk+1uk

sTk uk

sTk yk + ηk
sk,

and hence,

‖dk+1‖ ≤ ‖gk+1‖+
|gTk+1yk − sTk gk+1 + ηk

gTk+1uk

sTk uk
|

|sTk yk + ηk|
‖sk‖. (3.14)

From (3.1) and Lemma 2, we have

‖gk+1‖ ≤ γ,
∣∣gTk+1yk

∣∣ ≤ ‖gk+1‖L‖sk‖ ≤ Lγ‖sk‖,
∣∣sTk gk+1

∣∣ ≤ γ‖sk‖. (3.15)
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From Lemmas 4, 5 and 6, we have

|ηk|
|gTk+1uk|
|sTk uk|

≤M‖sk‖2
‖gk+1‖‖uk‖
ρ‖sk‖2

≤M (L+ 1)γ‖sk‖
ρ

. (3.16)

Now, from (3.14), (3.15) and (3.16), and Lemma 3, we have

‖dk+1‖ ≤ γ +
Lγ‖sk‖+ γ‖sk‖+M (L+1)γ‖sk‖

ρ

m‖sk‖2
‖sk‖

=⇒ ‖dk+1‖ ≤ γ
(

1 + (L+ 1)
ρ+M

ρm

)
. (3.17)

So, from (3.17) and Lemma 1 the proof is complete. ut

To prove the global convergence of our hybrid CG method with the CG
parameter (2.14), the following important result, established by Zoutendijk [29]
and Wolfe [19, 21], is needed.

Theorem 6. Suppose that Assumptions 1 hold and consider any iterative me-
thod in the form of (1.2) for solving the unconstrained optimization problem
(1.1), in which, for all k ≥ 0, the search direction dk is a descent direction
and the steplength αk satisfies the Wolfe line search conditions (1.4) and (1.5).
Then

∞∑
k=0

cos2 φk‖gk‖2 <∞, cosφk = − gTk dk
‖gk‖‖dk‖

. (3.18)

Definition 3. [11] Inequality (3.18) is called the Zoutendijk condition.

In our analysis, the following property, namely Property (∗), plays a signif-
icant role. This property, which ensures that βk is small when the step sk is
small, has been proposed by Gilbert and Nocedal [11].

Property (∗). Consider a method of the form (1.2)–(1.3), and suppose that

0 < γ̄ ≤ ‖gk‖ ≤ γ, (3.19)

for all k ≥ 0. Under this assumption, we say that the method has Property (∗)
if there exist constants b > 1 and λ > 0 such that for all k,

|βk| ≤ b, (3.20)

and

‖sk‖ ≤ λ =⇒ |βk| ≤
1

2b
. (3.21)

Theorem 7. [11] Suppose that Assumptions 1 hold. Consider the method
(1.2)–(1.3) with the following three properties: (i) βk ≥ 0, for all k ≥ 0; (ii) the
line search satisfies {xk}k≥0 ⊂ L, the sufficient descent condition (3.3) and
the Zoutendijk condition (3.18); (iii) Property (∗) holds. Then, the method
converges in the sense that (3.4) holds.
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Now, we can state the global convergence theorem of our hybrid CG method
with the CG parameter (2.14).

Theorem 8. Suppose that Assumptions 1 hold. Consider the CG method
(1.2)–(1.3) with the CG parameter βC+

k defined by (2.14), in which, for all
k ≥ 0, the sufficient descent condition (3.3) holds and the steplength αk is
computed such that the Wolfe line search conditions (1.4) and (1.5) are satis-
fied. If there exists a positive constant $ so that

|θk| ≤ $‖sk‖, (3.22)

then the method converges in the sense of establishing (3.4).

Proof. First, note that because of the (sufficient) descent condition and (1.4),
the sequence {xk}k≥0 is a subset of the level set L. Also, from Theorem 6 the
Zoutendijk condition holds. Therefore, considering Theorem 7, to complete the
proof it is enough to show that the method has Property (∗). In this context,
from (2.8), (3.3) and (3.19), we can write

dTk yk ≥ −(1− σ)dTk gk ≥ c(1− σ)‖gk‖2 ≥ c(1− σ)γ̄2, (3.23)

and from (3.5), we have∣∣gTk+1yk
∣∣ ≤ ‖gk+1‖‖gk+1 − gk‖ ≤ 2γ2. (3.24)

Therefore, since θk ∈ [0, 1], from (2.14), (3.5), (3.23) and (3.24), we have

βC+
k = (1− θk) max

{
βHS
k , 0

}
+ θkβ

DY
k ≤

|gTk+1yk|
dTk yk

+
gTk+1gk+1

dTk yk

≤ 2γ2

c(1− σ)γ̄2
+

γ2

c(1− σ)γ̄2
=

3γ2

c(1− σ)γ̄2
. (3.25)

Also, from (3.1), (3.5), (3.22) and (3.23), we have

βC+
k ≤

|gTk+1yk|
dTk yk

+ θk
gTk+1gk+1

dTk yk

≤ Lγ‖sk‖
c(1− σ)γ̄2

+$‖sk‖
γ2

c(1− σ)γ̄2
=
Lγ +$γ2

c(1− σ)γ̄2
‖sk‖. (3.26)

Therefore, from (3.25) and (3.26), if we let

b =
3γ2

c(1− σ)γ̄2
and λ =

c(1− σ)γ̄2

2b(Lγ +$γ2)
,

then (3.20) and (3.21) hold. Therefore, the method has Property (∗). ut

Note that near the optimal solution the objective function is approximately
similar to a convex quadratic function. So, as mentioned in Section 2, in some
neighborhood of the optimal solution we have ηk ≈ 0. Now, if |gTk+1gk| ≥ γ̄2,

which seem to be reasonable when (3.19) holds [6], then from (2.13) and (3.5)
we have

|θk| ≈
∣∣∣∣−sTk gk+1

gTk+1gk

∣∣∣∣ ≤ γ

γ̄2
‖sk‖.

Thus, in such situation inequality (3.22) may be satisfied.
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4 Numerical Experiments

Here, we present some numerical comparisons made by applying MATLAB and
C++ implementations of our hybrid CG methods and several efficient nonlinear
CG methods proposed in [3, 5, 11, 13, 20, 24]. All the experiments were done
on a computer, Intel(R) Core(TM)2 Duo CPU 2.00 GHz, with 1 GB of RAM.
In this section, a CG method in the form of (1.2)–(1.3) with βk = βCk defined by
(2.1) and the hybridization parameter θk defined by (2.13) is called a hybrid CG
method. Note that different hybrid CG methods are characterized by different
choices for λk in (2.9).

Efficiency comparisons were made using the performance profile of Dolan
and Moré [10] on the running time and the total number of function and gra-
dient evaluations (NT ) defined by [13]

NT = Nf + 3Ng,

where Nf and Ng respectively are the number of function and gradient eval-
uations. Performance profile gives, for every ω ≥ 1, the proportion p(ω) of
the test problems that each considered algorithmic variant has a performance
within a factor of ω of the best.

Since CG methods show their efficiency on large-scale problems, our experi-
ments have been done on a set of 100 unconstrained optimization test problems
of the CUTEr collection [12] with the minimum dimension being equal to 100,
as specified in Table 1.

In our MATLAB implementations, if

gTk dk > −10−10‖gk‖‖dk‖,

then we considered dk as an uphill search direction. Although the descent con-
dition (3.2) may not always hold, the uphill search direction seldom occurred
in our numerical experiments. When encountered with an uphill search direc-
tion, we restarted the algorithm with dk = −gk [5]. We used the strong Wolfe
line search conditions (1.4) and (1.6) with δ = 0.01 and σ = 0.1 [5, 16], and
computed the steplength αk using Algorithm 3.5 in [19]. It is important that
the choice of the initial trial value may remarkably affect the numerical results,
so that its improper setting would cause a significant increase in the number
of function and gradient evaluations to achieve a required accuracy [5]. Here,
for the first iteration, we set the initial trial value to 1/‖g0‖∞, and for the
subsequent iterations, we set it to ‖sk−1‖/‖dk‖. Also, all attempts to solve
the test problems were limited to reaching a maximum of 10 000 iterations or
achieving a solution with ‖gk‖∞ < 10−6.

The first part of our numerical experiments is devoted to provide a numerical
support for our choice of λk. In this context, similar to the methodology
suggested in [17], our first hybrid CG method with λk defined by (2.12), here
called M1, is compared with the two other hybrid CG methods M1B and M1W,
respectively with the best choice λk = 0.96 and the worst choice λk = 0.20
among the different constant values λk ∈ {0.01k}99k=1. For computing λk by
(2.12) in M1, among the different values for C ∈ {10−k}10k=0 in (2.11), we set
C = 10−8 because of its promising numerical results. Furthermore, similar to
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Table 1. The test problems and their dimensions.

Function n Function n

ARGLINA 100 DIXMAANL 3000
ARGLINA 200 DIXMAANL 9000
ARWHEAD 100 DQDRTIC 500
ARWHEAD 1000 DQRTIC 1000
BROWNAL 100 DQRTIC 5000
BROWNAL 200 EG2 1000
BROYDN7D 500 ENGVAL1 100
BROYDN7D 1000 EXTROSNB 100
BRYBND 1000 EXTROSNB 1000
BRYBND 5000 FLETCBV2 1000
BRYBND 10 000 FLETCBV2 5000
CHAINWOO 100 FLETCBV2 10 000
CHAINWOO 4000 FMINSRF2 5625
COSINE 100 FMINSRF2 10 000
COSINE 1000 FMINSRF2 15 625
COSINE 10 000 GENROSE 100
CURLY10 10 000 GENROSE 500
CURLY20 10 000 LIARWHD 1000
CURLY30 10 000 LIARWHD 5000
DIXMAANA 1500 LIARWHD 10 000
DIXMAANA 3000 NONDIA 1000
DIXMAANA 9000 NONDIA 5000
DIXMAANB 1500 NONDIA 10 000
DIXMAANB 3000 PENALTY1 100
DIXMAANB 9000 PENALTY1 500
DIXMAANC 1500 PENALTY1 1000
DIXMAANC 3000 QUARTC 1000
DIXMAANC 9000 QUARTC 5000
DIXMAAND 1500 QUARTC 10 000
DIXMAAND 3000 SCHMVETT 100
DIXMAAND 9000 SCHMVETT 500
DIXMAANE 1500 SCHMVETT 1000
DIXMAANE 3000 SPARSQUR 1000
DIXMAANE 9000 SPARSQUR 5000
DIXMAANF 1500 SPARSQUR 10 000
DIXMAANF 3000 SPMSRTLS 1000
DIXMAANF 9000 SPMSRTLS 4999
DIXMAANG 1500 SPMSRTLS 10 000
DIXMAANG 3000 SROSENBR 1000
DIXMAANG 9000 SROSENBR 5000
DIXMAANH 1500 SROSENBR 10 000
DIXMAANH 3000 TOINTGSS 1000
DIXMAANH 9000 TOINTGSS 5000
DIXMAANI 1500 TOINTGSS 10 000
DIXMAANI 3000 VAREIGVL 100
DIXMAANI 9000 VAREIGVL 500
DIXMAANJ 1500 VAREIGVL 1000
DIXMAANJ 3000 WOODS 1000
DIXMAANJ 9000 WOODS 4000
DIXMAANL 1500 WOODS 10 000

the approach of [28], we set r = 1, if ‖gk−1‖ > ε, and r = r0, otherwise, in
which among the different values for ε ∈ {0.01, 0.1, 0.2, . . . , 0.9, 1} and r0 ∈

Math. Model. Anal., 18(1):32–52, 2013.



48 S. Babaie-Kafaki and N. Mahdavi-Amiri

1 1.2 1.4 1.6 1.8 2

0.5

0.6

0.7

0.8

0.9

1

ω

p
(ω

)

 

 

M1

M1B

M1W

1 1.2 1.4 1.6 1.8 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

p
(ω

)

 

 

M1

M1B

M1W

(a) (b)

Figure 1. (a) Total number of function and gradient evaluations and (b) the CPU time
performance profiles for M1, M1B and M1W.

{1, 2, . . . , 6}, we set ε = 0.1 and r0 = 2 because of their better numerical
results. Figures 1(a) and 1(b) show the comparison results. As shown in
Figure 1(a), M1 and M1B are competitive with respect to the total number
of function and gradient evaluations. Also, Figure 1(b) shows that M1B and
M1W are often preferable to M1 with respect to the running time. This seems
reasonable because of the additional time spent for the computation of λk by
(2.12) in M1. Therefore, the formula (2.12) for computation of λk seems to be
practically effective with respect to the total number of function and gradient
evaluations. Also, M1 in 24%, M1B in 31%, and M1W in 16% of the cases
solved the test problems with the least total number of function and gradient
evaluations. In addition, M1 in 19%, M1B in 49%, and M1W in 32% of the
cases solved the test problems with the least running time.
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Figure 2. (a) Total number of function and gradient evaluations and (b) the CPU time
performance profiles for M1, M2 and M3.

The second part of our numerical experiments is devoted to compare the
CG method M1 with two other hybrid CG methods with λk = 1 as proposed
in [3] and λk = 0 as proposed in [5], here respectively called M2 and M3, which
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Figure 3. (a) Total number of function and gradient evaluations and (b) the CPU time
performance profiles for M1+, PRP+ and HS+.

are globally convergent for uniformly convex objective functions. Figures 2(a)
and 2(b) show the comparison results. As shown in these figures, although M1
outperforms M2 and M3 both with respect to the total number of function
and gradient evaluations and the running time, M3 at times is preferable to
M1 with respect to the running time. Also, M1 in 28%, M2 in 29%, and M3
in 25% of the cases solved the test problems with the least total number of
function and gradient evaluations. In addition, M1 in 29%, M2 in 46%, and
M3 in 25% of the cases solved the test problems with the least running time.

The third part of our numerical experiments is devoted to compare our
second hybrid CG method with the CG parameter βk = βC+

k defined by (2.14)
and the hybridization parameter θk defined by (2.13) with λk defined by (2.12),
here called M1+, with the CG methods PRP+ and HS+, which are globally
convergent for general objective functions. Figures 3(a) and 3(b) show the
comparison results. As shown in Figure 3(a), M1+ outperforms PRP+ and
HS+ with respect to the total number of function and gradient evaluations.
Moreover, with respect to the running time, as shown in Figure 3(b), although
PRP+ outperforms M1+, at times M1+ is preferable to HS+. Also, M1+ in
41%, PRP+ in 25%, and HS+ in 28% of the cases solved the test problems with
the least total number of function and gradient evaluations. In addition, M1+
in 16%, PRP+ in 33%, and HS+ in 51% of the cases solved the test problems
with the least running time.

The final part of our numerical experiments, made by a C++ implementa-
tion, is devoted to compare our second hybrid CG method M1+ with the CG
methods of CG Descent proposed by Hager and Zhang [13], and DPRP-W pro-
posed by Yu et al. [24]. Here, for M1+, similar to the CG Descent algorithm,
we used the approximate Wolfe conditions proposed by Hager and Zhang [13] in
the line search procedure, with all the parameter values suggested in [13]. Fig-
ures 4(a) and 4(b) show the comparison results. As shown in Figure 4(a), M1+
is preferable to CG Descent and DPRP-W with respect to the total number
of function and gradient evaluations. In addition, in a reasonable agreement
with the numerical results of [24], DPRP-W outperforms CG Descent with re-

Math. Model. Anal., 18(1):32–52, 2013.



50 S. Babaie-Kafaki and N. Mahdavi-Amiri

1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

p
(ω

)

 

 

M1+

CG_Descent

DPRP−W

1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

p
(ω

)

 

 

M1+

CG_Descent

DPRP−W

(a) (b)

Figure 4. (a) Total number of function and gradient evaluations and (b) the CPU time
performance profiles for M1+, CG Descent and DPRP-W.

spect to the total number of function and gradient evaluations. Moreover, with
respect to the running time, as shown in Figure 4(b), although M1+ outper-
forms DPRP-W, CG Descent is often preferable to M1+. Also, M1+ in 36%,
CG Descent in 27%, and DPRP-W in 30% of the cases solved the test problems
with the least total number of function and gradient evaluations. In addition,
M1+ in 26%, CG Descent in 51%, and DPRP-W in 23% of the cases solved
the test problems with the least running time.

5 Conclusions

Based on Andrei’s approach of hybridizing the conjugate gradient (CG) meth-
ods by a convex combination of the CG parameters, we proposed a hybridiza-
tion of Hestenes–Stiefel and Dai–Yuan methods which is globally convergent
for uniformly convex functions. Then, in order to achieve the global conver-
gence for general functions, we applied the Powell’s nonnegative restriction of
the CG parameters [20] on our hybrid CG parameter and proposed another
modified hybrid CG method. In our methods, the hybridization parameter
is obtained by using a recently proposed hybrid secant equation. Numerical
comparisons of the implementations of our first method (M1) with two hybrid
CG methods proposed by Andrei (M2) [2] and Babaie-Kafaki et al. (M3) [5],
being special cases of our first hybrid CG method and globally convergent for
uniformly convex functions, and our second hybrid CG method (M1+) with
the efficient CG methods of PRP+ and HS+ proposed by Gilbert and Nocedal
[11], DPRP-W proposed by Yu et al. [24], and CG Descent proposed by Hager
and Zhang [13], being globally convergent for general functions, were made on
a set of unconstrained optimization test problems from the CUTEr collection,
using the Dolan-Moré performance profile [10]. The results showed a promising
numerical performance for our hybrid CG methods, specially with respect to
the total number of function and gradient evaluations.

As a future work, it would be interesting to develop a new formula for the
hybridization parameter θk using the modified secant equation proposed by
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Zhang et al. [26], or updating the CG parameters βHS
k and βDY

k based on the
suggested hybrid secant equation (or its revised form which can be obtained
based on the approach of [16]), and numerically compare the performance of
the corresponding hybrid CG methods with the methods proposed here. Also,
the approaches of [7, 17, 23, 27] can be possibly applied on the proposed hybrid
CG methods in order to develop descent CG methods.
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