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Abstract. In this paper, we discuss some properties on hyperbolic-harmonic func-
tions in the unit ball of Cn. First, we investigate the relationship between the weighted
Lipschitz functions and the hyperbolic-harmonic Bloch spaces. Then we establish the
Schwarz–Pick type theorem for hyperbolic-harmonic functions and apply it to prove
the existence of Landau-Bloch constant for functions in α-Bloch spaces.
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1 Introduction and Preliminaries

Let Cn denote the complex Euclidean n-space. For z = (z1, . . . , zn) ∈ Cn,
the conjugate of z, denoted by z, is defined by z = (z1, . . . , zn). For z and
w = (w1, . . . , wn) ∈ Cn, the standard Hermitian scalar product on Cn and the

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2013.756834
mailto:shlchen1982@yahoo.com.cn
mailto:samy@iitm.ac.in
mailto:xtwang@hunnu.edu.cn


On Hyperbolic-Harmonic Functions 67

Euclidean norm of z are given by

〈z, w〉 :=
n∑
k=1

zkwk and |z| := 〈z, z〉1/2 =
(
|z1|2 + · · ·+ |zn|2

)1/2
,

respectively. For a ∈ Cn, Bn(a, r) = {z ∈ Cn : |z − a| < r} is the (open) ball
of radius r with center a. Also, we let Bn(r) := Bn(0, r) and use Bn to denote
the unit ball Bn(1), and D = B1. We can interpret Cn as the real 2n-space
R2n so that a ball in Cn is also a ball in R2n. We use the following standard
notations. For a ∈ Rn, we may let BnR(a, r) = {x ∈ Rn : |x − a| < r} so that
BnR(r) := BnR(0, r) and BnR = BnR(1) denotes the open unit ball in Rn centered
at the origin.

Definition 1. A twice continuously differentiable complex-valued function f =
u + iv on Bn is called a hyperbolic-harmonic (briefly, h-harmonic, in the fol-
lowing) if and only if the real-valued functions u and v satisfy ∆hu = ∆hv = 0
on Bn, where

∆h :=
(
1− |z|2

)2 n∑
k=1

(
∂

∂x2k
+

∂

∂y2k

)
+ 4(n− 1)

(
1− |z|2

) n∑
k=1

(
xk

∂

∂xk
+ yk

∂

∂yk

)
denotes the Laplace–Beltrami operator and zk = xk + iyk for k = 1, . . . , n.

Obviously, when n = 1, all h-harmonic functions are planar complex-valued
harmonic functions (see [12]). We refer to [5, 13, 14, 25] for more details of
h-harmonic functions.

By [5, P284], it turns out that if ψ ∈ C(∂Bn), then the Dirichlet problem{
∆hf = 0 in Bn,
f = ψ on ∂Bn

has unique solution in C(Bn) and can be represented by

f(z) =

∫
∂Bn

Ph(z, ζ)ψ(ζ) dσ(ζ),

where dσ is the unique normalized surface measure on ∂Bn and Ph(z, ζ) is the
hyperbolic Poisson kernel defined by

Ph(z, ζ) =

(
1− |z|2

|z − ζ|2

)2n−1 (
z ∈ Bn, ζ ∈ ∂Bn

)
.

Here C(Ω) stands for the set of all continuous functions on Ω. A planar
complex-valued harmonic function f in D is called a harmonic Bloch function
if and only if

βf = sup
z,w∈D, z 6=w

|f(z)− f(w)|
ρ(z, w)

<∞.
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Here βf is the Lipschitz number of f and

ρ(z, w) =
1

2
log

(
1 + | z−w1−zw |
1− | z−w1−zw |

)
= arctanh

∣∣∣∣ z − w1− zw

∣∣∣∣
denotes the hyperbolic distance between z and w in D. It can be proved that

βf = sup
z∈D

{(
1− |z|2

)[∣∣fz(z)∣∣+
∣∣fz(z)∣∣]}.

We refer to [11, Theorem 2] (see also [8, Theorem 1] and [9, Theorem A]) for
a proof of the last fact.

For a complex-valued h-harmonic function f on Bn, we introduce

Df =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
and Df =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

Definition 2. The h-harmonic Bloch space HB consists of complex-valued h-
harmonic functions f defined on Bn such that

‖f‖HB = sup
z∈Bn

{(
1− |z|2

)[∣∣Df (z)
∣∣+
∣∣Df (z)

∣∣]} <∞.
Obviously, when n = 1, ‖f‖HB = βf . For a pair of distinct points z and w

in Bn, let

Lf (z, w) =
(1− |z|2)

1
2

(
1− |w|2

) 1
2 |f(z)− f(w)|

|z − w|
denote the weighted Lipschitz function of a given h-harmonic function f : Bn →
C. The relationship between weighted Lipschitz functions and (analytic) Bloch
spaces has attracted much attention (cf. [1, 2, 11, 15, 16, 21]). Our first aim
is to characterize the functions in h-harmonic Bloch spaces in terms of their
corresponding weighted Lipschitz functions. This is done in Theorem 1 which
is indeed a generalization of [11, Theorem 1] and [15, Theorem 3].

Throughout, H(Bn,Cn) denotes the set of all continuously differentiable
functions f from Bn into Cn with f = (f1, . . . , fn) and fj(z) = uj(z) +
ivj(z) (1 ≤ j ≤ n), where uj and vj are real-valued functions on Bn. For
f ∈ H(Bn,Cn), the real Jacobian matrix of f is given by

Jf =



∂u1

∂x1

∂u1

∂y1
∂u1

∂x2

∂u1

∂y2
· · · ∂u1

∂xn

∂u1

∂yn

∂v1
∂x1

∂v1
∂y1

∂v1
∂x2

∂v1
∂y2

· · · ∂v1
∂xn

∂v1
∂yn

...
...

∂un

∂x1

∂un

∂y1
∂un

∂x2

∂un

∂y2
· · · ∂un

∂xn

∂un

∂yn

∂vn
∂x1

∂vn
∂y1

∂vn
∂x2

∂vn
∂y2

· · · ∂vn
∂xn

∂vn
∂yn


.

A vector-valued function f ∈ H(Bn,Cn) is said to be h-harmonic, if each
component fj (1 ≤ j ≤ n) is a h-harmonic function from Bn into C. We
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denote by Hh(Bn,Cn) the set of all vector-valued h-harmonic functions from
Bn into Cn.

For each f = (f1, . . . , fn) ∈ H(Bn,Cn), denote by fz = (Df1 , . . . , Dfn)T

the matrix formed by the complex gradients Df1 , . . . , Dfn , and let denote by
fz = (Df1 , . . . , Dfn)T , where T means the matrix transpose.

For an n× n matrix A = (aij)n×n, the operator norm of A is given by

|A| = sup
z 6=0

|Az|
|z|

= max
{
|Aθ| : θ ∈ ∂Bn

}
.

Then for f ∈ H(Bn,Cn), we use the standard notations:

Λf (z) = max
θ∈∂Bn

∣∣fz(z)θ + fz(z)θ
∣∣ and λf (z) = min

θ∈∂Bn

∣∣fz(z)θ + fz(z)θ
∣∣. (1.1)

We see that (see for instance [6])

Λf = max
θ∈∂B2n

R

|Jfθ| and λf = min
θ∈∂B2n

R

|Jfθ|. (1.2)

Let PH(Bn,Cn) denote the set of all f = (f1, . . . , fn) ∈ H(Bn,Cn) such
that all partial derivatives ∂fj/∂zk and ∂fj/∂zk (1 ≤ j, k ≤ n) are h-harmonic
in Bn.

We remark that when n = 1, every complex-valued harmonic function from
D to C belongs to PH(D,C). The converse is not true as the function f(z) =
|z|2 shows.

Definition 3. For α > 0, the vector-valued h-harmonic α-Bloch space HBn(α)
consists of all functions in PH(Bn,Cn) such that

‖f‖HBn(α) = sup
z∈Bn

{(
1− |z|2

)α[∣∣fz(z)∣∣+
∣∣fz(z)∣∣]} <∞.

Obviously, HB1(α) contains the harmonic α-Bloch space as a proper subset
(see [9]). One of the long standing open problems in function theory is to
determine the precise value of the univalent Landau-Bloch constant for analytic
functions of D. In recent years, this problem has attracted much attention, see
[4, 18, 20] and references therein. For general holomorphic functions of more
than one complex variable, no Landau-Bloch constant exists (cf. [26]). In
order to obtain some analogs of Landau-Bloch’s theorem for functions with
several complex variables, it became necessary to restrict the class of functions
considered (cf. [3, 6, 10, 17, 22, 24, 26]).

Based on Heinz’s Lemma and Colonna’s Distortion Theorem ([11, The-
orem 3]) for planar complex-valued harmonic functions, in [6], the authors
established the Schwarz–Pick type theorem for bounded pluriharmonic map-
pings and pluriharmonic K-mappings. As a consequence of it, the authors
in [6] obtained Landau-Bloch theorem as generalizations of the main results
[7, Theorems 1–7]. It is known that every pluriharmonic mapping f defined in
Bn admits a decomposition f = h + g, where h and g are holomorphic in Bn.
This decomposition property is no longer valid for functions in HBn(α). Hence
the methods of proof used in [6, Theorem 4] and [6, Theorem 5] are no longer

Math. Model. Anal., 18(1):66–79, 2013.
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applicable for functions in Hh(Bn,Cn) and HBn(α). In view of this reason-
ing, in this article, we use entirely a different approach and prove Schwarz–Pick
type theorem for functions in Hh(Bn,Cn) and then establish the Landau-Bloch
theorem for functions in HBn(α) (see Theorems 2 and 3). It is worth pointing
out that Theorems 2 and 3 are indeed generalizations of [11, Theorem 1] and
[9, Theorem 2.4], respectively.

2 Characterization of Mappings in h-Harmonic Bloch
Spaces

Consider the group Aut(Bn) consisting of all biholomorphic mappings of Bn
onto itself. Then for each a ∈ Bn, φa defined by [23]:

φa(z) =
a− Paz − (1− |a|2)

1
2 (z − Paz)

1− 〈z, a〉

belongs to Aut(Bn), where Paz = a〈z, a〉/〈a, a〉. Moreover, we find that

1−
∣∣φa(z)

∣∣2 =
(1− |z|2)(1− |a|2)

|1− 〈z, a〉|2
. (2.1)

Using arguments similar to those in the proof of [19, Lemma 2.5], we have

Lemma 1. Suppose f : BnR(a, r) → R is a continuous, and h-harmonic in
BnR(a, r). Then

∣∣∇f(a)
∣∣ ≤ 2(n− 1)

√
n

nV (n)rn

∫
∂Bn

R (a,r)

∣∣f(a)− f(t)
∣∣ dσ(t),

where ∇f = ( ∂f∂x1
, . . . , ∂f∂xn

), dσ denotes the surface measure on ∂BnR(a, r) and
V (n), the volume of the unit ball in Rn.

Proof. Without loss of generality, we may assume that a = 0 and f(0) = 0.
Let

K(x, t) =
1

nrn−1V (n)

(
r2 − |x|2

|x− t|2

)n−1
.

Then by the assumption on f , we see that [5]

f(x) =

∫
∂Bn

R (r)

K(x, t)f(t) dσ(t), x ∈ BnR(r).

Further, a computation shows that

∂

∂xi
K(x, t) =

−2(n− 1)(r2 − |x|2)n−2

nrn−1V (n)
· [|x− t|2xi + (r2 − |x|2)(xi − ti)]

|x− t|2n
,

which yields
∂

∂xi
K(0, t) =

2(n− 1)ti
nV (n)rn+1

,
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whence∣∣∇f(0)
∣∣ =

[ n∑
i=1

∣∣∣∣ ∫
∂Bn

R (r)

∂

∂xi
K(0, t)f(t) dσ(t)

∣∣∣∣2] 1
2

≤
n∑
i=1

∣∣∣∣ ∫
∂Bn

R (r)

∂

∂xi
K(0, t)f(t) dσ(t)

∣∣∣∣ ≤ ∫
∂Bn

R (r)

∣∣f(t)
∣∣ n∑
i=1

∣∣∣∣ ∂∂xiK(0, t)

∣∣∣∣ dσ(t)

≤
√
n

∫
∂Bn

R (r)

∣∣f(t)
∣∣( n∑

i=1

∣∣∣∣ ∂∂xiK(0, t)

∣∣∣∣2) 1
2

dσ(t)

=
2(n− 1)

√
n

nV (n)rn

∫
∂Bn

R (r)

∣∣f(t)
∣∣ dσ(t),

from which the lemma follows. ut

Lemma 2. Let f = u + iv be a continuously differentiable function from Bn
into C, where u and v are real-valued functions. Then for z ∈ Bn,∣∣Df (z)

∣∣+
∣∣Df (z)

∣∣ ≤ ∣∣∇u(z)
∣∣+
∣∣∇v(z)

∣∣, (2.2)

where ∇u = ( ∂u∂x1
, ∂u∂y1 , . . . ,

∂u
∂xn

, ∂u∂yn ) and ∇v = ( ∂v∂x1
, ∂v∂y1 , . . . ,

∂v
∂xn

, ∂v∂yn ).

Proof. By a basic change of variables, for each k = 1, 2, . . . , n, we have

fzk(z) =
1

2

(
fxk

(z)− ifyk(z)
)

and fzk(z) =
1

2

(
fxk

(z) + ifyk(z)
)
,

which implies

fzk(z) =
1

2

[
uxk

(z) + vyk(z) + i(vxk
(z)− uyk(z))

]
,

fzk(z) =
1

2

[
uxk

(z)− vyk(z) + i
(
vxk

(z) + uyk(z)
)]
.

The classical Cauchy–Schwarz inequality gives

∣∣Df (z)
∣∣ =

1

2

√√√√ n∑
k=1

[(
uxk

(z) + vyk(z)
)2

+
(
vxk

(z)− uyk(z)
)2]

≤ 1

2

(∣∣∇u(z)
∣∣+
∣∣∇v(z)

∣∣)
and similarly,

∣∣Df (z)
∣∣ =

1

2

√√√√ n∑
k=1

[(
uxk

(z)− vyk(z)
)2

+
(
vxk

(z) + uyk(z)
)2]

≤ 1

2

(∣∣∇u(z)
∣∣+
∣∣∇v(z)

∣∣),
from which we obtain the desired inequality (2.2). ut

Math. Model. Anal., 18(1):66–79, 2013.
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Example 1. Consider f(z) = z2 + z = u(x, y) + iv(x, y) so that u(x, y) = x2 +
x− y2 and v(x, y) = 2xy − y. It is easy to see that∣∣fz(0)

∣∣+
∣∣fz(0)

∣∣ = 1 and
∣∣∇u(0)

∣∣+
∣∣∇v(0)

∣∣ = 2,

showing that strict inequality in (2.2) is possible.

Theorem 1. f ∈ HB if and only if supz,w∈Bn,z 6=w Lf (z, w) <∞.

Proof. First we prove the necessity. For each pair of distinct points z and w
in Bn, we have

|f(z)− f(w)| =
∣∣∣∣∫ 1

0

df

dt

(
zt+ (1− t)w

)
dt

∣∣∣∣
=

∣∣∣∣ n∑
k=1

(zk − wk)

∫ 1

0

df

dςk(t)

(
zt+ (1− t)w

)
dt

+

n∑
k=1

(zk − wk)

∫ 1

0

df

dςk(t)

(
zt+ (1− t)w

)
dt

∣∣∣∣
≤

n∑
k=1

|zk − wk| ·
∣∣∣∣∫ 1

0

df

dςk(t)

(
zt+ (1− t)w

)
dt

∣∣∣∣
+

n∑
k=1

|zk − wk| ·
∣∣∣∣∫ 1

0

df

dςk(t)

(
zt+ (1− t)w

)
dt

∣∣∣∣,
where ς(t) = (ς1(t), . . . , ςn(t)) = zt+ (1− t)w. Hence we see that

∣∣f(z)−f(w)
∣∣ ≤ ( n∑

k=1

|zk−wk|2
) 1

2
{[ n∑

k=1

(∫ 1

0

∣∣∣∣ ∂f

∂ςk(t)

(
zt+ (1− t)w

)∣∣∣∣ dt)2] 1
2

+

[ n∑
k=1

(∫ 1

0

∣∣∣∣ ∂f

∂ςk(t)

(
zt+ (1− t)w

)∣∣∣∣ dt)2] 1
2
}

≤
√
n|z − w|

∫ 1

0

[∣∣Df

(
tz + (1− t)w

)∣∣+
∣∣Df

(
tz + (1− t)w

)∣∣] dt.
This gives

|f(z)− f(w)|
|z − w|

≤
√
n

∫ 1

0

[|Df (ς(t))|+ |Df (ς(t))|](1− |ς(t)|2)

1− |ς(t)|2
dt

≤
√
n‖f‖HB

∫ 1

0

dt

1− |ς(t)|2
≤
√
n‖f‖HB

∫ 1

0

dt

[(1− t)(1− |z|)] 1
2 [t(1− |w|)] 1

2

=
π
√
n‖f‖HB

(1− |z|) 1
2 (1− |w|) 1

2

.

Thus,
sup

z,w∈Bn, z 6=w
Lf (z, w) ≤ π

√
n‖f‖HB.
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Next we prove the sufficiency part. Let f = u + iv, where u and v are
real h-harmonic functions. Fix r ∈ (0, 1). In view of (2.1) and the fact that
|〈z, a〉| ≤ |z| |a|, we easily have∣∣φa(z)

∣∣ ≤ |z − a|
|1− 〈z, a〉|

≤ |z − a|
1− |a|

, (2.3)

whence for a ∈ Bn,

Bn
(
a,
r(1− |a|2)

2

)
⊂ E(a, r),

where E(a, r) = {z ∈ Bn : |φa(z)| < r}. By Lemma 1, we have(
1− |z|2

)∣∣∇u(z)
∣∣ ≤ (2n− 1)

√
2n(1− |z|2)

nV (2n)[ r(1−|z|
2)

2 ]2n

∫
∂Bn(z,

r(1−|z|2)
2 )

∣∣u(ζ)− u(z)
∣∣ dσ(ζ)

= M
(
|z|, r

) ∫
∂Bn(z,

r(1−|z|2)
2 )

∣∣u(ζ)− u(z)
∣∣ dσ(ζ),

where V (2n) denotes the volume of the unit ball in R2n (or Cn) and

M
(
|z|, r

)
=

22n(2n− 1)
√

2n

nV (2n)(1− |z|2)2n−1r2n
.

Similarly, we obtain(
1− |z|2

)∣∣∇v(z)
∣∣ ≤M(|z|, r) ∫

∂Bn(z,
r(1−|z|2)

2 )

∣∣v(ζ)− v(z)
∣∣ dσ(ζ).

By Lemma 2, we have(
1− |z|2

)(∣∣Df (z)
∣∣+
∣∣Df (z)

∣∣)
≤
(
1− |z|2

)(∣∣∇u(z)
∣∣+
∣∣∇v(z)

∣∣)
≤M

(
|z|, r

) ∫
∂Bn(z,

r(1−|z|2)
2 )

(∣∣u(ζ)− u(z)
∣∣+
∣∣v(ζ)− v(z)

∣∣) dσ(ζ)

≤
√

2M
(
|z|, r

)
M1

∫
∂Bn(z,

r(1−|z|2)
2 )

dσ(ζ) =
4
√
n(2n− 1)

r
M1,

where M1 = sup
{∣∣f(z)− f(w)

∣∣ : w ∈ E(z, r)
}

.

Hence for all w ∈ Bn(z, r(1−|z|
2)

2 ) ⊂ E(z, r), it follows from (2.1) and (2.3)
that

(1− |z|2)
1
2 (1− |w|2)

1
2

|z − w|
=

(1− |z|2)
1
2 (1− |w|2)

1
2

|1− 〈z, w〉|
· |1− 〈z, w〉|
|z − w|

=

√
1−

∣∣φz(w)
∣∣2 · |1− 〈z, w〉|

|z − w|

Math. Model. Anal., 18(1):66–79, 2013.
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≥
√

1− r2 · |1− 〈z, w〉|
|z − w|

≥
√

1− r2
r

.

Therefore, there exists a positive constant M2(n, r) such that(
1− |z|2

)(∣∣Df (z)
∣∣+
∣∣Df (z)

∣∣) ≤M2(n, r) sup
w∈E(z,r), w 6=z

Lf (z, w),

from which we see that f ∈ HB. ut

3 Schwarz–Pick Type Theorem and Landau–Bloch The-
orem

The following result is a Schwarz–Pick type theorem for h-harmonic functions
in Hh(Bn,Cn).

Theorem 2. Let f ∈ Hh(Bn,Cn) with |f(z)| ≤ M for z ∈ Bn, where M is a
positive constant. Then∣∣∣∣f(z)− (1− |z|)2n−1

(1 + |z|)2n−1
f(0)

∣∣∣∣ ≤M[1− (1− |z|)2n−1

(1 + |z|)2n−1

]
(3.1)

and

Λf ≤
2(2n− 1)M

(1− |z|)2
. (3.2)

Proof. We first prove (3.1). Without loss of generality, we assume that f is
also h-harmonic on ∂Bn. The hyperbolic Poisson integral formula states that

f(z) =

∫
∂Bn

Ph(z, ζ)f(ζ) dσ(ζ),

∫
∂Bn

Ph(z, ζ) dσ(ζ) = 1. (3.3)

As Ph(0, ζ) = 1 and |Ph(z, ζ)| ≤ 1 for ζ ∈ ∂Bn and all z ∈ Bn, the representa-
tion (3.3) immediately yields∣∣∣∣f(z)− (1− |z|)2n−1

(1 + |z|)2n−1
f(0)

∣∣∣∣ =

∣∣∣∣ ∫
∂Bn

[
(1− |z|2)2n−1

|z − ζ|2(2n−1)
− (1− |z|)2n−1

(1 + |z|)2n−1

]
f(ζ) dσ(ζ)

∣∣∣∣
≤
∫
∂Bn

[
(1− |z|2)2n−1

|z − ζ|2(2n−1)
− (1− |z|)2n−1

(1 + |z|)2n−1

]∣∣f(ζ)
∣∣ dσ(ζ)

≤M
[
1− (1− |z|)2n−1

(1 + |z|)2n−1

]
and the proof of (3.1) follows.

Next, we prove (3.2). Let f = (f1, . . . , fn) and θ = (θ1, . . . , θn)T ∈ ∂Bn.
Without loss of generality, we assume that f is also h-harmonic on ∂Bn. If we
consider the formula (3.3) for f componentwise and then the partial derivatives
with respect to the variables zk and zk, we see that(
fj(z)

)
zk

=

∫
∂Bn

−(2n− 1)(1− |z|2)2n−2[zk|ζ − z|2 + (1− |z|2)(zk − ζk)]

|z − ζ|4n
fj(ζ) dσ(ζ)
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and(
fj(z)

)
zk

=

∫
∂Bn

−(2n− 1)(1− |z|2)2n−2[zk|ζ − z|2 + (1− |z|2)(zk − ζk)]

|z − ζ|4n
fj(ζ) dσ(ζ),

which hold clearly for each j, k ∈ {1, . . . , n}. Now, we introduce

Γfj =
n∑
k=1

(
fj(z)

)
zk
· θk +

n∑
k=1

(
fj(z)

)
zk
· θk.

Then the classical Cauchy–Schwarz inequality yields

|Γfj |2

(2n− 1)2(1− |z|2)4n−4

=

∣∣∣∣ n∑
k=1

∫
∂Bn

[zk|ζ − z|2 + (1− |z|2)(zk − ζk)]θk
|z − ζ|4n

fj(ζ) dσ(ζ)

+
n∑
k=1

∫
∂Bn

[zk|ζ − z|2 + (1− |z|2)(zk − ζk)]θk
|z − ζ|4n

fj(ζ) dσ(ζ)

∣∣∣∣2
≤ 4

[ ∫
∂Bn

[|z||ζ − z|2 + (1− |z|2)|ζ − z|]|fj(ζ)|
|z − ζ|4n

dσ(ζ)

]2
≤ 4

[ ∫
∂Bn

[|z||ζ − z|+ (1− |z|2)]2

|z − ζ|4n−2
dσ(ζ)

][ ∫
∂Bn

|fj(ζ)|2

|z − ζ|4n
dσ(ζ)

]
,

whence

|Λf |2

(2n− 1)2(1− |z|2)4n−4
=

maxθ∈∂Bn(
∑n
j=1 |Γfj |2)

(2n− 1)2(1− |z|2)4n−4

≤ 4

[ ∫
∂Bn

[|z||ζ − z|+ (1− |z|2)]2

|z − ζ|4n−2
dσ(ζ)

][ ∫
∂Bn

∑n
j=1 |fj(ζ)|2

|z − ζ|4n
dσ(ζ)

]

≤ 4M2

(1− |z|)2(1− |z|2)2n−1

[ ∫
∂Bn

(1 + |z|)2

|z − ζ|4n−2
dσ(ζ)

]
≤ 4M2(1 + |z|)2

(1− |z|)2(1− |z|2)2n−1

[ ∫
∂Bn

1

|z − ζ|4n−2
dσ(ζ)

]
≤ 4M2(1 + |z|)2

(1− |z|)2(1− |z|2)4n−2
.

Hence

|Λf |2 ≤
4(2n− 1)2M2

(1− |z|)4
,

from which the inequality (3.2) follows. ut

Definition 4. A matrix-valued function A(z) =
(
ai,j(z)

)
n×n is called h-har-

monic if each of its entries ai,j(z) is a h-harmonic function from an open subset
Ω ⊂ Cn into C.
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As an application of Theorem 2, we get

Lemma 3. Suppose that A(z) = (ai,j(z))n×n is a matrix-valued h-harmonic
function of Bn(r) such that A(0) = 0 and |A(z)| ≤M in Bn(r). Then∣∣A(z)

∣∣ ≤M[1− (r − |z|)2n−1

(r + |z|)2n−1

]
.

Proof. For an arbitrary θ = (θ1, . . . , θn)T ∈ ∂Bn, we introduce

Pθ(z) = A(z)θ =
(
p1(z), . . . , pn(z)

)
and let Fθ(ζ) = Pθ(rζ) for ζ ∈ Bn. By Theorem 2, we see that∣∣∣∣Fθ(ζ)− (1− |ζ|)2n−1

(1 + |ζ|)2n−1
Fθ(0)

∣∣∣∣ ≤M[1− (1− |ζ|)2n−1

(1 + |ζ|)2n−1

]
, ζ ∈ Bn,

which is equivalent to∣∣Pθ(z)∣∣ ≤M[1− (r − |z|)2n−1

(r + |z|)2n−1

]
, z ∈ Bn(r).

The arbitrariness of θ yields the desired inequality. ut

We recall the following result which is crucial for the proof of our next
theorem.

Lemma A. [[6, Lemma 1] or [17, Lemma 4]] Let A be an n × n com-
plex (real) matrix and |A| 6= 0. Then for θ ∈ ∂Bn, the inequality |Aθ| ≥
|detA| |A|1−n holds.

Theorem 3. Suppose that f ∈ HBn(α), f(0) = 0, det Jf (0) = 1 and

‖f‖HBn(α) ≤M,

where M is a positive constant. Then f is univalent in Bn(ρ/2), where

ρ =
3α

(2M)2n(3α + 4α)
. (3.4)

Moreover, the range f(Bn(ρ/2)) contains a univalent ball Bn(R), where

R ≥ ρ

4M2n−1 .

Proof. For ζ ∈ Bn, let F (ζ) = 2f( 1
2ζ). Then∣∣Fζ(ζ)

∣∣+
∣∣Fζ(ζ)

∣∣ ≤ M

(1− |ζ|
2

4 )α
≤ 4α

3α
M,

which gives ∣∣Fζ(ζ)− Fζ(0)
∣∣ ≤ ∣∣Fζ(ζ)

∣∣+
∣∣Fζ(0)

∣∣ ≤ (1 +
4α

3α

)
M.
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Lemma 3 implies that∣∣Fζ(ζ)− Fζ(0)
∣∣

≤
(

1 +
4α

3α

)
M

[
1− (1− |ζ|)2n−1

(1 + |ζ|)2n−1

]
=

2M(3α + 4α)

3α
(C1

2n−1|ζ|+ C3
2n−1|ζ|3 + · · ·+ C2n−1

2n−1 |ζ|2n−1)

(1 + |ζ|)2n−1

≤ 22n−1(3α + 4α)M

3α(1 + |ζ|)2n−1
|ζ| ≤ 22n−1(3α + 4α)M

3α
|ζ|, (3.5)

where Ckn =
(
n
k

)
(k = 1, 2, . . . , n) denote the binomial coefficients. Similarly,

∣∣Fζ(ζ)− Fζ(0)
∣∣ ≤ 22n−1(3α + 4α)M

3α
|ζ|. (3.6)

On the other hand, for θ ∈ ∂Bn, we infer from (1.1), (1.2) and Lemma A that

λF (0) ≥ det JF (0)

Λ2n−1
F (0)

≥ 1

M2n−1 . (3.7)

In order to prove the univalence of F in Bn(ρ), we choose two distinct points
ζ ′ and ζ ′′ in Bn(ρ) with ζ ′ − ζ ′′ = |ζ ′ − ζ ′′|θ, and let [ζ ′, ζ ′′] denote the line
segment with endpoints ζ ′ and ζ ′′, where

ρ =
3α

(2M)2n(3α + 4α)
.

Set dζ = (dζ1, . . . , dζn)T and dζ = (dζ1, . . . , dζn)T . Then we infer from (3.5),
(3.6) and (3.7) that

∣∣F (ζ ′)− F (ζ ′′)
∣∣ ≥ ∣∣∣∣ ∫

[ζ′,ζ′′]

Fζ(0) dζ + Fζ(0) dζ

∣∣∣∣
−
∣∣∣∣ ∫
[ζ′,ζ′′]

(
Fζ(ζ)− Fζ(0)

)
dζ +

(
Fζ(ζ)− Fζ(0)

)
dζ

∣∣∣∣
≥
∣∣Fζ(0)θ + Fζ(0)θ

∣∣ ∫
[ζ′,ζ′′]

|dζ| − 22n(3α + 4α)M

3α

∫
[ζ′,ζ′′]

|ζ| |dζ|

> |ζ ′ − ζ ′′|
{
λF (0)− 22n(3α + 4α)M

3α
ρ

}
≥ |ζ ′ − ζ ′′|

{
1

M2n−1 −
22n(3α + 4α)M

3α
ρ

}
= 0,

where θ = dζ
|dζ| . Thus, F is univalent in Bn(ρ) which is equivalent to saying

that f is univalent in Bn(ρ/2).
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Furthermore, for each z with |ζ| = ρ, we have∣∣F (ζ)− F (0)
∣∣ ≥ ∣∣∣∣ ∫

[0,ζ]

Fζ(0) dζ + Fζ(0) dζ

∣∣∣∣
−
∣∣∣∣ ∫
[0,ζ]

(
Fζ(ζ)− Fζ(0)

)
dζ +

(
Fζ(ζ)− Fζ(0)

)
dζ

∣∣∣∣
≥ ρ
{

1

M2n−1 −
22n−1(3α + 4α)Mρ

3α

}
=

ρ

2M2n−1 (by (3.4)),

showing the range f(Bn(ρ/2)) contains a univalent ball Bn(R), where R ≥
ρ/(4M2n−1). The proof of this theorem is complete. ut
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