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Abstract. A fully discrete high order method is constructed and justified for a class
of Fredholm integral equations of the second kind with kernels that may have bound-
ary and logarithmic diagonal singularities. The method is based on the improving
the boundary behaviour of the kernel with the help of a change of variables, and on
“central part” interpolation by polynomials on the uniform grid.
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1 Introduction

In the present paper we treat a fully discrete method of accuracy order O(hm)
for the integral equation

u(x) =

∫ 1

0

[
a(x, y) log |x− y|+ b(x, y)

]
u(y) dy + f(x), 0 ≤ x ≤ 1, (1.1)

with the logarithmic diagonal singularity in the kernel. The coefficient func-
tions a, b ∈ Cm([0, 1] × (0, 1)) and the free term f ∈ C[0, 1] ∩ Cm(0, 1) may
have certain boundary singularities characterised in Lemma 1 and Lemma 2 be-
low. The method is based on a smoothing change of variables (see for example
[3, 4, 6, 7, 10]) and a product integration method based on the “central part”
interpolation on the uniform grid, which has also been used in [8] for solving
weakly singular integral equation. We rely on the fact that the “central part”
interpolation of smooth functions by polynomials and by high order polynomial
splines on uniform grids has excellent accuracy and stability properties com-
parable with the accuracy and stability properties of Chebyshev interpolation
[16]. The use of data only on uniform grids is preferable also from the algo-
rithmical point of view due to better numerical stability. See Section 3 for the
details about the “central part” interpolation. In Section 2 we reduce problem
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(1.1) by the smoothing change of variables to the form with smooth data and
solution.

The present paper is a complement to work [14], where the convergence and
the error of the product quasi-interpolation method has been presented for the
integral equation (1.1). We refer yet to [9], where another type fully discrete
method for solving (1.1) has been constructed.

Denote by T the integral operator of equation (1.1)

(Tu)(x) =

∫ 1

0

[
a(x, y) log |x− y|+ b(x, y)

]
u(y) dy.

For m ∈ N, λ0, λ1 < 1, denote by Cm,λ0,λ1(0, 1) the weighted space of functions
u ∈ C[0, 1] ∩ Cm(0, 1) such that,

‖u‖Cm,λ0,λ1 (0,1) :=

m∑
k=0

sup
0<x<1

ωk−1+λ0
(x)ωk−1+λ1

(1− x)
∣∣u(k)(x)

∣∣ <∞,
where

ωρ(r) =

{
1, ρ < 0,

rρ/(1 + |log r|), ρ ≥ 0, r, ρ ∈ R, r > 0.

Clearly, Cm[0, 1] ⊂ Cm,λ0,λ1(0, 1) for λ0, λ1 < 1.

Lemma 1. Let a, b ∈ C([0, 1] × (0, 1)) satisfy for (x, y) ∈ [0, 1] × (0, 1) the
inequality ∣∣a(x, y)

∣∣+
∣∣b(x, y)

∣∣ ≤ cy−λ0(1− y)−λ1 ,

where λ0, λ1 ∈ R, λ0 < 1, λ1 < 1. Then T maps C[0, 1] into C[0, 1], and
T : C[0, 1]→ C[0, 1] is compact.

The proof is standard, cf. [5]; a detailed argument can be found in [11].
Denote ∂kx∂

l
y = (∂/∂x)k(∂/∂y)l.

Lemma 2 [see [11]]. Let a, b ∈ Cm([0, 1] × (0, 1)) and let for k + l ≤ m,
(x, y) ∈ [0, 1]× (0, 1),∣∣∂kx∂lya(x, y)

∣∣+
∣∣∂kx∂lyb(x, y)

∣∣ ≤ cy−λ0−l(1− y)−λ1−l,

where λ0 < 1, λ1 < 1. Then T maps the Banach space Cm,λ0,λ1(0, 1) into itself,
and T : Cm,λ0,λ1(0, 1)→ Cm,λ0,λ1(0, 1) is compact.

Let I be the identity mapping and denote N (I−T ) = {u ∈ C[0, 1] : u=Tu} .
The following theorem is a consequence of Lemmas 1 and 2.

Theorem 1. Assume the conditions of Lemma 2 and N (I − T ) = {0} . Then
for f ∈ Cm,λ0,λ1(0, 1) also the solution of equation (1.1) u ∈ Cm,λ0,λ1(0, 1) and
‖u‖Cm,λ0,λ1 (0,1) ≤ c ‖f‖Cm,λ0,λ1 (0,1) . The constant c is independent of f .

Our main results will be established under assumptions of Theorem 1.

Math. Model. Anal., 18(1):136–148, 2013.
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2 The Smoothing Change of Variables

In the integral equation (1.1) we perform the change of variables

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,

where ϕ : [0, 1]→ [0, 1] is defined by the formula

ϕ(t) =
1

c∗

∫ t

0

σp0−1(1− σ)p1−1 dσ,

c∗ =

∫ 1

0

σp0−1(1− σ)p1−1 dσ =
(p1 − 1)!

p0(p0 + 1) · · · (p0 + p1 − 1)
. (2.1)

We assume, that p0, p1 ∈ N. If so, the integral in (2.1) can be evaluated in
a stable way by an exact Gauss rule, since the integrand is a polynomial of
degree p0 + p1 − 2. Clearly, ϕ(0) = 0, ϕ(1) = 1 and ϕ(t) is strictly increasing

in [0, 1]. Hence ϕ(t)−ϕ(s)
t−s > 0, |ϕ(t) − ϕ(s)| = ϕ(t)−ϕ(s)

t−s |t − s| for s 6= t, and
equation (1.1) takes the form

v(t) =

∫ 1

0

(
A(t, s) log |t− s|+B(t, s)

)
v(s) ds+ g(t), 0 ≤ t ≤ 1, (2.2)

where v(t) = u(ϕ(t)) is the new function we look for,

g(t) = f
(
ϕ(t)

)
, A(t, s) = a

(
ϕ(t), ϕ(s)

)
ϕ′(s),

B(t, s) =
[
a
(
ϕ(t), ϕ(s)

)
logΦ(t, s) + b

(
ϕ(t), ϕ(s)

)]
ϕ′(s),

Φ(t, s) =

{(
ϕ(t)− ϕ(s)

)
/(t− s), t 6= s

ϕ′(s), t = s

}
.

Let us characterise the boundary behaviour of functions in equation (2.2).
Clearly,

0 ≤ ϕ(t) ≤ ctp0 , 0 ≤ 1− ϕ(t) ≤ c(1− t)p1 ,∣∣ϕ(k)(t)
∣∣ ≤ ctp0−k(1− t)p1−k, 0 < t < 1, k = 1, . . . ,m.

Lemma 3. Let a and b satisfy the conditions of Lemma 2. Then for j =
0, . . . ,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds∣∣∂jsa(ϕ(t), ϕ(s)

)∣∣+
∣∣∂jsb(ϕ(t), ϕ(s)

)∣∣ ≤ cs−p0λ0−j(1− s)−p1λ1−j .

The proof of the inequality is based on the formula of Faà di Bruno(
d

dx

)j
u
(
ϕ(x)

)
=

∑
k1+2k2+···+jkj=j

j!

k1! · · · kj !
u(k1+···+kj)

(
ϕ(x)

)(ϕ′(x)

1!

)k1
· · ·
(
ϕ(j)(x)

j!

)kj
,
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where the sum is taken over all non-negative integers k1, . . . , kj such that k1 +
2k2 + · · ·+ jkj = j.

The derivatives of the function Φ(t, s) have singularities at (0, 0) and (1, 1),
the only zeroes of Φ(t, s) in [0, 1]× [0, 1]. It is easy to see that

∂ksΦ(t, s) � (t+ s)p0−k−1
(
(1− t) + (1− s)

)p1−k−1
, as t, s→ 0 or as t, s→ 1,

that together with the formula of Faà di Bruno implies the following results.

Lemma 4. For j = 0, . . . ,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds∣∣∂js(log
(
Φ(t, s)

))∣∣ ≤ c(t+ s)−j
(
(1− t) + (1− s)

)−j
.

Next we present estimates for functions A(t, s), B(t, s), and ∂ms [A(t, s)v(s)],
∂ms [B(t, s)v(s)].

Lemma 5. Let a and b satisfy the conditions of Lemma 1. Then the following
holds true: if p0, p1 ≥ 1 satisfy

p0 > 1/(1− λ0), p1 > 1/(1− λ1), (2.3)

then for (t, s) ∈ [0, 1]× (0, 1) it holds∣∣A(t, s)
∣∣ ≤ csδ0(1− s)δ1 ,

∣∣B(t, s)
∣∣ ≤ csδ0(1− s)δ1

∣∣log s(1− s)
∣∣, (2.4)

with δ0 := (1− λ0)p0 − 1 > 0, δ1 := (1− λ1)p1 − 1 > 0.

Lemma 6 [see [13]]. Let the conditions of Lemma 2 be fulfilled. If p0, p1 ≥ 1
satisfy

p0 > m/(1− λ0), p1 > m/(1− λ1), (2.5)

then for (t, s) ∈ [0, 1]× (0, 1) it holds∣∣A(t, s)
∣∣ ≤ csm−1+δ0(1− s)m−1+δ1 ,∣∣B(t, s)
∣∣ ≤ csm−1+δ0(1− s)m−1+δ1

∣∣log s(1− s)
∣∣,

with δ0 := (1− λ0)p0 −m > 0, δ1 := (1− λ1)p1 −m > 0. About the boundary
behaviour of v(t) = u(ϕ(t)) see Lemma 3.1 in [13]: for u ∈ Cm,λ0,λ1(0, 1),
j = 1, . . . ,m, 0 < t < 1, it holds∣∣v(j)(t)∣∣ ≤ c ‖u‖Cm,λ0,λ1 (0,1){tp0−j , λ0 < 0

t(1−λ0)p0−j |log t| , 0 ≤ λ0 < 1

}
×
{

(1− t)p1−j , λ1 < 0

(1− t)(1−λ1)p1−j |log(1− t)| , 0 ≤ λ1 < 1

}
, (2.6)∣∣∂ms [A(t, s)v(s)

]∣∣ ≤ cs−1+δ0(1− s)−1+δ1 ‖u‖Cm,λ0,λ1 (0,1) , (2.7)∣∣∂ms [B(t, s)v(s)
]∣∣ ≤ cs−1+δ0(1− s)−1+δ1

∣∣log s(1− s)
∣∣ ‖u‖Cm,λ0,λ1 (0,1) . (2.8)

We see, that under conditions (2.5) and 0 ≤ λ0 < 1, 0 ≤ λ1 < 1, it holds

v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m; (2.9)

if λ0 < 0, λ1 < 0, then (2.9) holds if p0, p1 > m.
We extend A(t, s) and B(t, s) with respect to s outside (0, 1) by the zero

value. Under conditions (2.3) we obtain continuous functions on [0, 1] × R,
see (2.4).

Math. Model. Anal., 18(1):136–148, 2013.



140 K. Orav-Puurand

3 Central Part Interpolation by Polynomials and Piece-
wise Polynomials

Given an interval [a, b] and m ∈ N, introduce the uniform grid consisting of m
points

xi = a+

(
i− 1

2

)
h, i = 1, . . . ,m, h =

b− a
m

. (3.1)

Denote by Πm the Lagrange interpolation projection operator assigning to any
u ∈ C[a, b] the polynomial Πmu ∈ Pm−1 that interpolates u at points (3.1);
Pm−1 is the set of polynomials of degree not exceeding m− 1.

Lemma 7 [see [16]]. In the case of interpolation knots (3.1), for f ∈ Cm[a, b]
it holds

max
a≤x≤b

∣∣f(x)− (Πmf)(x)
∣∣ ≤ θmhm max

a≤x≤b

∣∣f (m)(x)
∣∣, (3.2)

θm =
1 · 3 · . . . · (2m− 1)

2 · 4 · . . . · 2m
∼= (πm)−

1
2 ,

where θm ∼= εm means that θm/εm → 1 as m → ∞. Further, for m = 2k,
k ≥ 1,

max
xk≤x≤xk+1

∣∣f(x)− (Πmf)(x)
∣∣ ≤ ϑmhm max

a≤x≤b

∣∣f (m)(x)
∣∣, (3.3)

ϑm = 2−2m
m!

((m/2)!)
∼=
√

2/πm−
1
2 2−m,

whereas for m = 2k + 1, k ≥ 1,

max
xk≤x≤xk+2

∣∣f(x)− (Πmf)(x)
∣∣ ≤ ϑmhm max

a≤x≤b

∣∣f (m)(x)
∣∣, (3.4)

ϑm =
2
√

3

9

(k!)2

(2k + 1)!
∼=

2
√

3

9

√
2/πm−

1
2 2−m.

In the central parts of [a, b], the interpolation process on the uniform grid
has good stability properties as m increases: in contrast to an exponential
growth of ‖Πm‖C[a,b]→C[a,b] as m → ∞, it holds by the Runck’s theorem

(see [12])

‖Πm‖C[a,b]→C[ a+b2 −rh1/2, a+b2 +rh1/2] ≤ cr(1 + logm), (3.5)

where the constant cr depends only on r > 0.
Introduce in R the uniform grid {jh : j ∈ Z} where h = 1/n, n ∈ N. Let

m ≥ 2 be fixed. Given a function f ∈ C[−δ, 1 + δ], δ > 0, we define a piece-
wise polynomial interpolant Πh,mf ∈ C[0, 1] as follows. On every subinterval
[jh, (j+ 1)h], 0 ≤ j ≤ n− 1, the function Πh,mf is defined independently from

other subintervals as a polynomial Π
[j]
h,mf ∈ Pm−1 of degree ≤ m − 1 by the

conditions

Π
[j]
h,mf(lh) = f(lh), for l ∈ Z such that l − j ∈ Zm, (3.6)
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where Zm =
{
k ∈ Z : −m

2 < k ≤ m
2

}
. TheΠh,mf is uniquely defined at interior

knots and Πh,mf is continuous on [0, 1] (see [8]); the one side derivatives of
the interpolant Πh,mf at the interior knots may be different.

Introduce the Lagrange fundamental polynomials Lk,m ∈ Pm−1, k ∈ Zm
satisfying Lk,m(l) = δk,l for l ∈ Zm, where δk,l is the Kronecker symbol, δk,l = 0
for k 6= l and δk,k = 1. An explicit formula for Lk,m is given by

Lk,m(t) =
∏

l∈Zm\{k}

t− l
k − l

, k ∈ Zm. (3.7)

Then (see [8])(
Π

[j]
h,mf

)
(t) =

∑
k∈Zm

f
(
(j + k)h

)
Lk,m(nt− j), j = 0, . . . , n− 1. (3.8)

For m ≥ 3, Πh,mf uses values of f outside of [0, 1]. For f ∈ C[0, 1], Πh,mf
obtains a sense after an extension of f onto [−δ, 1 + δ] with some δ > 0.
We are in a lucky situation if f ∈ Cm[0, 1] satisfies the boundary conditions
f (j)(0) = f (j)(1) = 0, j = 1, . . . ,m, cf. Lemma 6 and conditions (2.9), then
the simplest extension operator

Eδ : C[0, 1]→ C[−δ, 1 + δ], (Eδf)(t) =


f(0), −δ ≤ t ≤ 0

f(t), 0 ≤ t ≤ 1

f(1), 1 ≤ t ≤ 1 + δ


maintains the smoothness of f . The operator

Ph,m := Πh,mEδ : C[0, 1]→ C[0, 1] (3.9)

is well defined and P 2
h,m = Ph,m, i.e., Ph,m is a projector in C[0, 1]. For

wh ∈ R(Ph,m) (the range of Ph,m) we have wh = Ph,mwh = Πh,mEδwh, and
due to (3.8)

wh(t) =
∑
k∈Zm

(Eδwh)
(
(j + k)h

)
Lk,m(nt− j),

for t ∈
[
jh, (j + 1)h

]
, j = 0, . . . , n − 1, where (Eδwh)(ih) = wh(ih) for i =

0, . . . , n, (Eδwh)(ih) = wh(0) for i < 0 and (Eδwh)(ih) = wh(1) for i > n.
Thus wh ∈ R(Ph,m) is uniquely determined on [0, 1] by its knot values wh(ih),
i = 0, . . . , n. We conclude, that dimR(Ph,m) = n+ 1. It is also clear, that for
a wh ∈ R(Ph,m) we have wh = 0 if and only if wh(ih) = 0, i = 0, . . . , n.

On [jh, (j + 1)h] for f ∈ C[−δ, 1 + δ] the interpolant Πh,mf = Π
[j]
h,mf

coincides with the polynomial interpolantΠmf constructed for f on the interval
[aj , bj ] where aj = (j − m−1

2 )h, bj = (j + m+1
2 )h in the case of even m and

aj = (j − m
2 )h, bj = (j + m

2 )h in the case of odd m; moreover, [jh, (j + 1)h]
is a “central” part of [aj , bj ] on which the interpolation error can be estimated
by (3.3) and (3.4).

In this way we obtain the following result.

Math. Model. Anal., 18(1):136–148, 2013.
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Lemma 8 [see [8]].

(i) For f ∈ Cm[−δ, 1 + δ],

max
0≤t≤1

∣∣f(t)− (Πh,mf)(t)
∣∣ ≤ ϑmhm max

−δ≤t≤1+δ

∣∣f (m)(t)
∣∣

with ϑm defined in (3.3) and (3.4) respectively for even and odd m.

(ii) For f ∈ V (m) :=
{
v ∈ Cm[0, 1] : v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m

}
, it

holds
max
0≤t≤1

∣∣f(t)− (Ph,mf)(t)
∣∣ ≤ ϑmhm max

0≤t≤1

∣∣f (m)(t)
∣∣. (3.10)

From (3.5) we obtain that

‖Ph,m‖C[0,1]→C[0,1] ≤ c(1 + logm). (3.11)

Thus the norms ‖Ph,m‖C[0,1]→C[0,1] are uniformly bounded with respect to n.

Together with (3.10), noticing that V (m) is dense in C[0, 1], the Banach-
Steinhaus theorem yields the following result.

Lemma 9. For any f ∈ C[0, 1], max0≤t≤1 |f(t)− (Ph,mf)(t)| → 0, as n→∞.

4 A Product Integration Method Based on the Central
Part Interpolation

We determine the approximate solution vh of equation (2.2) by solving the n+1
dimensional problem

vh(t) =

∫ 1

0

log |t− s|Ph,m
(
A(t, s)vh(s)

)
ds

+

∫ 1

0

Ph,m
(
B(t, s)vh(s)

)
ds+ g(t), 0 ≤ t ≤ 1. (4.1)

Here Ph,m (see (3.9)) is applied to the products A(t, s)vh(s) and B(t, s)vh(s)
as functions of s, treating t as a parameter. This is the operator form of a
product interpolation method corresponding to the piecewise polynomial “cen-
tral part” interpolation on the uniform grid {ih : i = 0, . . . , n} . Below we use
the following notations for the integral operators of equations (1.1), (2.2) and
(4.1) respectively:

(Tu)(x) =

∫ 1

0

[
a(x, y) log |x− y|+ b(x, y)

]
u(y) dy, 0 ≤ x ≤ 1,

(T v)(t) =

∫ 1

0

[
A(t, s) log |t− s|+B(t, s)

]
v(s) ds, 0 ≤ t ≤ 1,

(Thv)(t) =

∫ 1

0

[
log |t−s|Ph,m

(
A(t, s)v(s)

)
+ Ph,m

(
B(t, s)v(s)

)]
ds, 0 ≤ t ≤ 1.
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Theorem 2.

(i) Let a and b satisfy the conditions on Lemma 1, N (I − T ) = {0}, f ∈
C[0, 1] and let p0 > 1/(1−λ0) and p1 > 1/(1−λ1). Then for sufficiently
large n, equation (4.1) has a unique solution vh ∈ C[0, 1] and

‖v − vh‖∞ := max
t∈[0,1]

∣∣v(t)− vh(t)
∣∣ −→ 0, (4.2)

where v ∈ C[0, 1] is the unique solution of equation (2.2).

(ii) Let a and b satisfy the conditions of Lemma 2, N (I−T ) = {0}, f ∈
Cm,λ0,λ1(0, 1); let p0, p1>m and let p0 and p1 satisfy the conditions (2.5).
Then

‖v − vh‖∞ ≤ ch
m ‖f‖Cm,λ0,λ1 (0,1) , (4.3)

constant c in (4.3) is independent of n and f .

Proof. (i) Accept the assumptions formulated in (i). We claim that Th → T
compactly in C[0, 1] as n→∞, i.e. (see [1, 15])

‖Thv − T v‖∞ → 0 for every v ∈ C[0, 1], (4.4)

(vh) ⊂ C[0, 1], ‖vh‖∞ ≤ 1 ⇒ (Thvh) is relatively compact in C[0, 1]. (4.5)

Indeed, the sets {A(t, ·) : 0 ≤ t ≤ 1} and {B(t, ·) : 0 ≤ t ≤ 1} are relatively com-
pact in C[−δ, 1 + δ], and by Lemma 9 for a fixed v ∈ C[0, 1] extended by
v(s) = v(0) for −δ ≤ s ≤ 0 and v(s) = v(1) for 1 ≤ s ≤ 1 + δ it holds

sup
0≤t≤1

max
0≤s≤1

∣∣A(t, s)v(s)− Ph,m
(
A(t, s)v(s)

)∣∣→ 0, as n→∞,

sup
0≤t≤1

max
0≤s≤1

∣∣B(t, s)v(s)− Ph,m
(
B(t, s)v(s)

)∣∣→ 0, as n→∞.

This together with the equality ‖Ph,m‖ ≤ c(1+logm) (see (3.11)) implies (4.4).
The proof of (4.5) can be built using the Arzela theorem.

Due to the condition N (I − T ) = {0} also N (I − T ) = {0}. As well
known (see [1, 2, 5, 15]) relations (4.4), (4.5) and N (I − T ) = {0} imply that,
for sufficiently large n the operators I − Th are invertible in C[0, 1] and the
inverses are uniformly bounded:∥∥(I − Th)−1

∥∥
C[0,1]→C[0,1]

≤ c, n ≥ n0.

Let v and vh be solutions of equations (2.2) and (4.1) respectively. Then
v − vh = (I − Th)−1(T v − Thv) and

‖v − vh‖∞ ≤ c ‖T v − Thv‖∞ , n ≥ n0,

and, due to (4.4), the convergence (4.2) follows.
(ii) Let us prove the error estimate (4.3) under conditions (2.5) on p0 and

p1, and p0, p1 > m. For the solution u of (1.1) we have by the Theorem 1

Math. Model. Anal., 18(1):136–148, 2013.
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u ∈ Cm,λ0,λ1(0, 1). On the basis of (2.7)–(2.9) and (3.10) we find that∣∣(T v)(t)− (Thv)(t)
∣∣

=

∣∣∣∣∣
∫ 1

0

[
A(t, s) log |t− s|+B(t, s)

]
v(s) ds

−
∫ 1

0

[
log |t− s|Ph,m

(
A(t, s)v(s)

)
+ Ph,m

(
B(t, s)v(s)

)]
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

log |t−s|(I−Ph,m)
(
A(t, s)v(s)

)
ds+

∫ 1

0

(I−Ph,m)(B(t, s)v(s) ds

∣∣∣∣∣
≤
∫ 1

0

∣∣log |t−s|(I−Ph,m)
(
A(t, s)v(s)

)∣∣ ds+∫ 1

0

∣∣(I−Ph,m)(B(t, s)v(s)
∣∣ ds

≤ c1hm
∫ 1

0

∣∣log |t− s|
∣∣s−1+δ0(1− s)−1+δ1 ds · ‖u‖Cm,λ0,λ1 (0,1)

+ c2h
m

∫ 1

0

s−1+δ0(1− s)−1+δ1
∣∣log s(1− s)

∣∣ ds · ‖u‖Cm,λ0,λ1 (0,1)
≤ chm‖u‖Cm,λ0,λ1 (0,1).

This proves (4.3) and completes the proof of the Theorem. ut

Let us derive the matrix form of the product interpolation method (4.1).
From the definition of the operator Ph,m (see (3.8)):

vh(t) =

n−1∑
j=0

(j+1)h∫
jh

log |t− s|
∑
k∈Zm

A
(
t, (j + k)h

)
vh
(
(j + k)h

)
Lk,m(ns− j) ds

+

n−1∑
j=0

(j+1)h∫
jh

∑
k∈Zm

B
(
t, (j + k)h

)
vh
(
(j + k)h

)
Lk,m(ns− j) ds

+ g(t), 0 ≤ t ≤ 1.

We obtain the algebraic system of linear equations with respect to the grid
values vh(ih), i = 0, . . . , n by collocating at the points ih:

vh(ih) =

n−1∑
j=0

∑
k∈Zm

{
A
(
ih, (j + k)h

) ∫ (j+1)h

jh

log |ih− s|Lk,m(ns− j) ds

+B
(
ih, (j + k)h

) (j+1)h∫
jh

Lk,m(ns− j) ds

}
vh((j + k)h)

+ g(ih), i = 0, . . . , n;

note that A(ih, (j + k)h) = 0 and B(ih, (j + k)h) = 0 for j + k ≤ 0 and for
j + k ≥ n, thus in the r.h.s the values vh(lh) with l ≤ 0 and l ≥ n actually are
not exploited.
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With the change of variables ns− j = σ we see that∫ (j+1)h

jh

log |ih− s|Lk,m(ns− j) ds

= h

[
log h

∫ 1

0

Lk,m(σ) dσ +

∫ 1

0

log |i− j − σ|Lk,m(σ) dσ

]
and

(j+1)h∫
jh

Lk,m(ns− j) ds = h

1∫
0

Lk,m(σ) dσ, j = 0, . . . , n− 1, k ∈ Zm,

so we have to compute integrals

αi′,k := log h

∫ 1

0

Lk,m(σ) dσ +

∫ 1

0

log |i′ − σ|Lk,m(σ) dσ,

i′ = −n+ 1, . . . , n, k ∈ Zm,

and

βk :=

∫ 1

0

Lk,m(σ) dσ, k ∈ Zm.

The system takes the form:

vh(ih) = h

n−1∑
j=0

∑
k∈Zm

{
A
(
ih, (j + k)h

)
αi−j,k +B

(
ih, (j + k)h

)
βk
}
vh
(
(j + k)h

)
+ g(ih),

i = 0, . . . , n, or collecting in the r.h.s. the coefficients by vh((j+k)h) with fixed
j + k = l,

vh(ih) =
n−1∑
l=1

ci,lvh(lh) + g(ih), i = 0, . . . , n, (4.6)

where

ci,l = h

[
A(ih, lh)

∑
{k∈Zm : 0≤l−k≤n−1}

αi−l+k,k +B(ih, lh)
∑
k∈Zm

βk

]
,

i = 0, . . . , n, l = 1, . . . , n− 1.

We took into account that A(ih, lh) = 0 and B(ih, lh) = 0 for l ≤ 0 and l ≥ n.
Having determined vh(ih), i = 0, . . . , n, through solving the system (4.6), the
collocation solution vh(t) at any intermediate point t ∈ [jh, (j + 1)h], j =
0, . . . , n− 1, is given by

vh(t) =
∑
k∈Zm


vh(0), j + k ≤ 0

vh((j + k)h), 1 ≤ j + k ≤ n− 1

vh(1), j + k ≥ n

 · Lk,m(nt− j),

where Lk,m is the Lagrange fundamental polynomial defined in (3.7).

Math. Model. Anal., 18(1):136–148, 2013.
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5 Numerical Example

For testing the algorithm (4.6) we consider equation (1.1) with b(x, y) ≡ 0,
a(x, y) = y−λ0(1− y)−λ1 , λ0 < 1, λ1 < 1:

u(x) =

∫ 1

0

y−λ0(1− y)−λ1 log |x− y| dy + f(x), 0 ≤ x ≤ 1.

Table 1. m = 2, p = 9, λ0 = λ1 = 0.75.

n ε2,n,9
ε2,n,9
ε2,2n,9

4 3.26E−02

8 1.84E−02 1.77

16 5.77E−03 3.19

32 1.48E−03 3.89

64 3.69E−04 4.01

128 9.19E−05 4.02

256 2.29E−05 4.01

512 5.71E−06 4.01

1024 1.42E−06 4.02

Table 2. m = 3, p = 12, λ0 = λ1 = 0.75.

n ε3,n,12
ε3,n,12
ε3,2n,12

4 0.17

8 3.11E−02 5.47

16 4.39E−03 7.08

32 5.42E−04 8.10

64 6.72E−05 8.07

128 8.37E−06 8.03

256 1.04E−06 8.05

512 1.30E−07 8

1024 1.62E−08 8.02

Table 3. m = 4, p = 17, λ0 = λ1 = 0.75.

n ε4,n,9
ε4,n,17
ε4,2n,17

4 0.14

8 1.42E−02 9.86

16 2.55E−03 5.92

32 2.13E−04 11.51

64 1.43E−05 14.76

128 9.06E−07 15.78

256 5.66E−08 16.01

512 3.53E−09 16.03

1024 2.18E−10 16.19

Table 4. m = 5, p = 21, λ0 = λ1 = 0.75.

n ε5,n,21
ε5,n,21
ε5,2n,21

4 0.20

8 2.39E−02 8.37

16 3.46E−03 6.91

32 1.27E−04 27.24

64 4.53E−06 28.04

128 1.43E−07 31.68

256 4.46E−09 32.06

512 1.43E−10 31.19

1024 6.52E−12 21.93

We set u(x) = xλ0(1− x)λ1 , λ0 < 1, λ1 < 1 to be the exact solution; it cor-
responds to f(x) = xλ0(1−x)λ1−x log x−(1−x) log(1−x)+1, 0 < x < 1. We
composed system (4.6) for m = 2, 3, 4, 5, n = 2k with k = 1, 2, . . . , 10. In func-
tions a and f we used various values of λ0 and λ1; in the change of variables (2.1)
we used different values of the smoothing parameter max {p0, p1} = p ∈ N de-
pending on λ0 and λ1 and satisfying the conditions (2.5). In Tables 1–8 the
errors

εm,n,p := max
0≤i≤n

∣∣v(ih)− vh(ih)
∣∣

and the quotients εm,n,p/εm,2n,p are presented. The expected limit value of
εm,n,p/εm,2n,p is 2m. As results in the tables show, the numerical results confirm
our theoretical results (see (4.3)) quite well.
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Table 5. m = 2, p = 9, λ0 = λ1 = 0.25.

n ε2,n,9
ε2,n,9
ε2,2n,9

4 0.10

8 4.32E−02 2.31

16 1.17E−02 3.69

32 2.99E−03 3.91

64 7.55E−04 3.96

128 1.90E−04 3.97

256 4.77E−05 3.98

512 1.19E−05 4.01

1024 2.99E−06 3.98

Table 6. m = 3, p = 15, λ0 = λ1 = 0.25.

n ε3,n,15
ε3,n,15
ε3,2n,15

4 0.16

8 3.11E−02 5.14

16 6.01E−03 5.10

32 8.56E−04 7.13

64 1.11E−04 7.71

128 1.40E−05 7.93

256 1.76E−06 7.95

512 2.21E−07 7.96

1024 2.76E−08 8.01

Table 7. m = 2, p = 21, λ0 = 0.2, λ1 = 0.9.

n ε2,n,21
ε2,n,21
ε2,2n,21

4 0.24

8 8.51E−02 5.67

16 2.32E−02 2.82

32 6.18E−03 3.67

64 1.59E−03 3.89

128 4.06E−04 3.92

256 1.02E−04 3.98

512 2.56E−05 3.98

1024 6.40E−06 4

Table 8. m = 3, p = 31, λ0 = 0.2, λ1 = 0.9.

n ε3,n,31
ε3,n,31
ε3,2n,31

4 0.35

8 0.12 4.91

16 2.29E−02 2.92

32 2.92E−03 7.84

64 3.82E−04 7.64

128 4.87E−05 7.84

256 6.17E−06 7.89

512 7.75E−07 7.96

1024 9.71E−08 7.98
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