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Abstract. A class of smooth functions which can be used as regression models for
modelling phenomena requiring an oblique asymptote is analyzed. These types of
models were defined as a product of a linear function and some well known growth
models. In addition to their increasing character with an oblique asymptote, the
resulting models provide curves with a single inflection point.
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1 Introduction

Growth curve modelling using functions with an oblique asymptote and one
or several inflection points are of interest in practice. Indeed, in economy
smooth convex increasing curves with an oblique asymptote were considered
in [30] to establish a relationship between household income and expenditure.
In hydrology, for fitting the rating curves, it could be useful to have growth
functions with one or more than one inflection point (see the U.S. Geological
Survey’s National Streamflow Information Program web page for more details).
Also modelling with a varying carrying capacity leads to growth curve with
more than one inflection point (see [16,17,29]).

In various fields, growth functions with an horizontal asymptote, such as
Michaelis–Menten, Richards, Gompertz, Logistic, and Bridge functions, are
commonly and widely used, e.g. agriculture [9,10,11,12,18], biology [1,8,19,20,
31], economy [27], engineering [26], fishery [25], forestry [22,33,35], hydrology [2,
3,5,6,7,13,21,32], medicine [15], and other areas of applied research [23,24,28].
These growth functions are characterized by an horizontal asymptote and a
single inflection point [4]. Other growth functions with these characteristics
can be found in the literature (see [9, 14,34] for example).

In this paper we extend our previous study about the already mentioned
models [4, 5, 6]. We modify them to obtain models with an oblique asymptote
while keeping the single inflection point property. The structure of the present
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paper is as follows. In Section 2 we start with a general study of our modified
model and obtain its main properties. In Section 3, using the analysis done
in the preceding section, we modify some growth functions having a horizontal
asymptote to obtain models having an increasing linear asymptote. Finally in
Section 4 we present some numerical examples on synthetic data.

2 Main Results

Let us start with a general growth model f(t), defined and twice continuously
differentiable on an interval (T0,+∞), and having the following basic proper-
ties:

• f(t) ≥ 0 is an increasing function on (T0,+∞),

• f has one and only one inflection point on (T0,+∞) at (t∗, f∗ = f(t∗)),

• limt→T+
0
f(t) = fT+

0
≥ 0, limt→+∞ f(t) = f+∞ > fT+

0
.

Let us assume that the second derivative of this growth functions can be de-
composed as follows

f (2)(t) = h(t)f (1)(t), (2.1)

where

f (1)(t) > 0 for all T0 < t < +∞,

h(t)

> 0 if T0 < t < t∗,
= 0 if t = t∗,
< 0 if t > t∗.

Remember that the Michaelis–Menten, Richards (generalized Logistic), Gom-
pertz, Logistic, and Bridge models given in Table 1 have these properties,
see [4].

In order to realize our goal of obtaining a growth function with an oblique
asymptote, we multiply the growth function f(t) by a linear increasing function
given by m(t) = pt+ q with p > 0 and q ≥ 0 to obtain

F (t) = m(t)f(t).

Moreover the zero of m(t), given by −q/p is required to be much less than t∗,
the abscissa of the inflection point of f(t), then −q/p < t∗. We are going to
consider F (t) for t > max {−q/p, T0} = T 0. Then we have

F (t) = m(t)f(t) = [pt+ q]f(t) ≥ 0, F (1)(t) = pf(t) +m(t)f (1)(t) > 0.

Hence F (t) is a positive increasing function for t > T 0. Also, from (2.1),

F (2)(t) = 2pf (1)(t) +m(t)f (2)(t) =
[
2p+ h(t)(pt+ q)

]
f (1)(t), (2.2)

and it follows that

F (2)(t) > 0 for all T 0 < t ≤ t∗.

Math. Model. Anal., 18(2):204–218, 2013.
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Table 1. Parameter values and inflection point of the growth models.

Model Function Parameters Inflection point (t∗, f∗)

Menten fM (t) =
ω0k

c+ωf t
c

kc+tc
k > 0, c > 1,
ωf > ω0 ≥ 0

(
k( c−1

c+1
)
1/c

,
ω0+ωf

2
− ωf−ω0

2c

)

Richards(1) fR(t) = a(1− be−ct)m a > 0, b > 0,
c > 0, m > 1

(
ln(mb)

c
, a

(
1− 1

m

)m)

Richards(2) fR(t) = a(1− be−ct)m a > 0, b < 0,
c > 0, m < 0

(
ln(mb)

c
, a

(
1− 1

m

)m)

Gompertz fG(t) = ae−be−ct a > 0, b > 0, c > 0
(

ln(b)
c
, ae−1

)
Logistic fL(t) = a

1+be−ct
a > 0, b > 0, c > 0

(
ln(b)
c
, a
2

)
Bridge fB(t) = a(1− e−mtb ) a > 0, b > 1, m > 0

(
( b−1
mb

)
1/b

, a
(
1− e−

b−1
b

))

Moreover, suppose we can write

2p+ h(t)(pt+ q) = Q(t)g(t),

where g(t) > 0 for t ∈ (T 0,+∞). Then Q(t) > 0 for t ∈ (T 0, t
∗], and

Q(t∗) =
2p

g(t∗)
> 0.

Since we have
F (2)(t) = Q(t)g(t)f (1)(t), (2.3)

to show that F (t) has one and only one inflection point, it remains to prove
that the sign of Q(t) changes only once on (t∗,+∞). Some conditions on the
expression of Q(t) which ensure this fact are given in the next two theorems.

Theorem 1. Let Q(t) be a function defined by

Q(t) = (A+Bt)− (C +Dt)tγ for t ≥ 0,

where B > 0 and D > 0 are two positive real numbers and γ ≥ 1. If there
exists a positive real number t∗ ≥ 0 such that Q(t∗) ≥ 0, then there exists a
unique T ∗ > t∗ such that

Q(t)

> 0 if t∗ ≤ t < T ∗,
= 0 if t = T ∗,
< 0 if t > T ∗.

(2.4)

Proof. Let us suppose that there exists a t∗ ≥ 0 such that Q(t∗) > 0. Under
the assumptions on D and γ, we also have

lim
t→+∞

Q(t) = −∞.
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For the first derivative of Q(t), we have

Q(1)(t) = B −
[
D(γ + 1)t+ γC

]
tγ−1

=

{
1

tγ−1
−
[
D(γ + 1)t

B
+
γC

B

]}
Btγ−1.

In the above equation the linear factor in brackets is strictly increasing since
B and D are strictly positive. So to determine the sign of the term between
braces we have to study two cases.

Case γ > 1: the function t 7→ 1/tγ−1 is strictly decreasing, so there exists a
unique τ > 0 such that Q(1)(τ) = 0, and then

Q(1)(t)

> 0 if 0 < t < τ,
= 0 if t = τ,
< 0 if t > τ.

Case γ = 1: the existence of τ > 0 such that Q(1)(τ) = 0 requires that C < B,
otherwise we have Q(1)(t) < 0 for all t > 0.

In both cases above, there exists a unique T ∗ > t∗ such that the condition
(2.4) holds. ut

Remark. We can allow D = 0 in Theorem 1 and the conclusion holds under
the following conditions :

• If γ = 1, we have Q(t) = A + (B − C)t. In this case, to ensure that the
condition (2.4) holds we must have B < C , because otherwise for all
t ≥ t∗ we have Q(t) ≥ Q(t∗) > 0.

• If γ > 1, we must have C > 0 because otherwise Q(1)(t) > 0 for all t ≥ t∗.

Theorem 2. Let Q(t) be a function defined by

Q(t) = (A−Bt) + (C +Dt)e−γt for t ∈ R,

where B > 0 and D ≥ 0 are two positive real numbers and γ > 0. Suppose
there exists a real number t∗ such that Q(t∗) > 0, then there exists a unique
T ∗ > t∗ such that

Q(t)

> 0 if t∗ ≤ t < T ∗,
= 0 if t = T ∗,
< 0 if t > T ∗.

(2.5)

Proof. Let us assume that there exists t∗ ∈ R such that Q(t∗) > 0. Under the
assumptions on B and γ we also have

lim
t→+∞

Q(t) = −∞.

For the first derivative of Q(t), we have

Q(1)(t) = −B +
[
D − γ(C +Dt)

]
e−γt

=

{
−eγt +

[
D − γC

B
− γD

B
t

]}
Be−γt.

Math. Model. Anal., 18(2):204–218, 2013.
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In the above equation the linear factor in brackets is strictly decreasing since
B, D, and γ are strictly positive (or a constant if D = 0). Moreover, the
exponential function t 7→ eγt is strictly increasing with limt→−∞ eγt = 0 and
limt→+∞ eγt = +∞. Thus, there exists one and only one τ ∈ R such that
Q(1)(τ) = 0 and then

Q(1)(t)

> 0 if t < τ,
= 0 if t = τ,
< 0 if t > τ.

Hence the function Q(t) is strictly increasing for t ≤ τ and strictly decreasing
for t ≥ τ . Since Q(t∗) > 0, there exists a unique T ∗ > t∗ such that the
condition (2.5) holds. ut

From the two theorems, we have

F (2)(t)

> 0 if T 0 < t < T ∗,
= 0 if t = T ∗,
< 0 if t > T ∗.

(2.6)

The function F (t) is a positive strictly increasing function, convex on (T 0, T
∗),

concave on (T ∗,+∞), with a single inflection point at (T ∗, F ∗ = F (T ∗)). More-
over the oblique asymptote is given by y = [pt+ q]f+∞.

In the next section, we apply these previous ideas on the six models men-
tioned in Table 1. This study does not cover all the existing models used in
practice (see [11,12,14,23,34,35]), but any other model with a sigmoidal behav-
ior can be modified in a similar way with the use of Theorem 1 or Theorem 2.

3 Models

The basic models are given in Table 1. We use them and consider the product

F (t) = m(t)f(t) = [pt+ q]f(t) (3.1)

to obtain the modified models listed in Table 2. Let us observe that the multi-
plicative constants, ωf or a, in the basic models are included in the parameters
p and q of the modified models, and f+∞ = 1. Using the decomposition (2.3),
we look for a unique T ∗ > t∗ such that

Q(t)

> 0 if t∗ ≤ t < T ∗,
= 0 if t = T ∗,
< 0 if t > T ∗,

(3.2)

to obtain the desired shape for the graph of F (t) for the values of the parameters
(p, q, θ) in the feasible set Θ specified in the last two columns of the Table 2. The
graphs of f and F for all these models look like the graphs given in Figure 1.
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Table 2. Growth models with an oblique asymptote y = pt+ q.

Model Function Parameters (p, q, θ) ∈ Θ
F (t) = [pt+ q]f(t) p, q θ

Michaelis–Menten FM (t) = [pt+ q]ω0k
c+tc

kc+tc
p > 0, q ≥ 0 k > 0, c > 1, 0 ≤ ω0 < 1

Richards(1) FR(t) = [pt+ q](1− be−ct)m p > 0, q ≥ 0 b > 0, c > 0, m > 1

Richards(2) FR(t) = [pt+ q](1− be−ct)m p > 0, q ≥ 0 b < 0, c > 0, m < 0

Gompertz FG(t) = [pt+ q]e−be−ct p > 0, q ≥ 0 b > 0, c > 0

Logistic FL(t) =
[pt+q]

1+be−ct
p > 0, q ≥ 0 b > 0, c > 0

Bridge FB(t) = [pt+ q](1− e−mtb ) p > 0, q ≥ 0 b > 1, m > 0
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Figure 1. Graphic representation of a growth model f(t) and its modified model F (t)
with their respective asymptotes y = 1 and y = pt+ q and inflection points (t∗, f∗) and

(T ∗, F ∗).

3.1 Michaelis–Menten model fM (t) = (ω0k
c + tc)/(kc + tc)

To ensure the increasing character of this function with the existence of an
inflection point we assume that k > 0, c ≥ 1 and 0 ≤ ω0 < 1. The Michaelis–
Menten function is well defined when t ≥ T0 = 0. Moreover we have

f
(1)
M (t) =

c(1− ω0)kctc−1

(kc + tc)2
and f

(2)
M (t) =

[
(c− 1)kc − (c+ 1)tc

] f
(1)
M (t)

t(kc + tc)
.

From (3.1) and (2.2), it follows that

F
(2)
M (t) =

[
kc
(
q(c− 1) + p(c+ 1)t

)
−
(
q(c+ 1) + p(c− 1)t

)
tc
] f

(1)
M (t)

t(kc + tc)
.

Then we have

Q(t) = kc
(
q(c− 1) + p(c+ 1)t

)
−
(
q(c+ 1) + p(c− 1)t

)
tc,

Math. Model. Anal., 18(2):204–218, 2013.
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and

g(t) =
1

t(kc + tc)
.

Thus, Theorem 1 with B = (c+ 1)p > 0, D = (c− 1)p ≥ 0 and γ = c ensures
the existence of a unique T ∗ > t∗ such that the condition (3.2) holds.

3.2 Richards model fR(t) = (1− be−ct)m

The function is defined as long as 1− be−ct ≥ 0. In this case we have

f
(1)
R (t) =

mbce−ct

1− be−ct
fR(t) and f

(2)
R (t) = −c1−mbe−ct

1− be−ct
f
(1)
R (t).

From (2.2) and (3.1), we can write

F
(2)
R (t) =

[(
(2p− cq)− cpt

)
+
(
(mbcq − 2bp) + bcmpt

)
e−ct

] f
(1)
R (t)

1− be−ct
.

It follows that

Q(t) =
(
(2p− cq)− cpt

)
+
(
(mbcq − 2bp) + bcmpt

)
e−ct

and

g(t) =
1

1− be−ct
. (3.3)

Two sets of conditions on the parameters are allowed here to ensure the
increasing character of Richards function with the existence of an inflection
point.

First case: Richards(1) with a > 0, b > 0, c > 0, m > 1, and T0 = ln(b)
c .

Second case: Richards(2) with a > 0, b < 0, c > 0, m < 0, and T0 = −∞.

Then, Theorem 2 with B = cp, D = cmbp > 0 and γ = c > 0 ensures in both
cases the existence of a unique T ∗ > t∗ such that the condition (3.2) holds.

3.3 Gompertz model fG(t) = e−be
−ct

It is well known that the Gompertz model is a limiting case of Richards(1)

model for mR → +∞, bR → 0+, and mRbR → bG, and of Richards(2) model
for mR → −∞, bR → 0−, and mRbR → bG. This function is well defined on R
and T0 = −∞. It is a strictly increasing function with one inflection point for
b > 0 and c > 0. We have

f
(1)
G (t) = bce−ctfG(t) and f

(2)
G (t) = −c

[
1− be−ct

]
f
(1)
G (t).

Hence, from (2.2) and (3.1), we get

F
(2)
G (t) =

[(
(2p− cq)− cpt

)
+ (bcq + bcpt)e−ct

]
f
(1)
G (t),

then
Q(t) =

(
(2p− cq)− cpt

)
+ (bcq + bcpt)e−ct,

and g(t) = 1. Thus, Theorem 2 with B = cp, D = bcp and α = c > 0 provides
that there exists a unique T ∗ > t∗ such that the condition (3.2) holds.
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3.4 Logistic model fL(t) = 1
1+be−ct

Obviously, the Logistic model is a particular case of the Richards(2) model
with the parameter m equal to −1 and b is replaced by −b. It is a well defined
function on R and T0 = −∞. We must have b > 0 and c > 0 to have one
inflection point at t∗ = ln(b)

c . Since

f
(1)
L (t) =

bce−ct

1 + be−ct
fL(t) = cfL(t)

[
1− fL(t)

]
and

f
(2)
L (t) = −c(1− be

−ct)

1 + be−ct
f
(1)
L (t) = c

[
1− 2fL(t)

]
f
(1)
L (t),

Hence, from (2.2) and (3.1), it follows that

F
(2)
L (t) =

[(
(2p− cq)− cpt

)
+
(
b(2p+ cq + bcpt)

)
e−ct

] f
(1)
L (t)

1 + be−ct
.

Hence we set

Q(t) =
(
(2p− cq)− cpt

)
+
(
b(2p+ cq + bcpt)

)
e−ct,

and

g(t) =
1

1 + be−ct
.

From Theorem 2 with B = cp, D = bcp, and α = c > 0 we have the existence
of a unique T ∗ > t∗ such that the condition (3.2) holds.

3.5 Bridge model fB(t) = 1− e−mtb

The Bridge function is well defined when t ≥ T0 = 0. Moreover, we assume
that b ≥ 1 and m > 0 to have an increasing function with one inflection point.
We have

f
(1)
B (t) = mbtb−1e−mt

b

and f
(2)
B (t) =

(b− 1)−mbtb

t
f
(1)
B (t).

From (3.1) and (2.2), we obtain

F
(2)
B (t) =

[(
q(b− 1) + (b+ 1)pt

)
− (mbq +mbpt)tb

]f (1)B (t)

t
.

Then we have

Q(t) =
(
q(b− 1) + (b+ 1)pt

)
−mb(q + pt)tb, g(t) =

1

t
.

Thus Theorem 1 with B = (b + 1)p > 0, D = mbp > 0 and γ = b > 1 ensures
the existence of a unique T ∗ > t∗ such that the condition (3.2) holds.

Math. Model. Anal., 18(2):204–218, 2013.
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4 Numerical Examples

In this section we use the six models presented in the last section to fit some
synthetic data sets {(tk, yk)}Kk=1. Because the numerical behavior of the original
models of Table 1 has been studied elsewhere, in this section we focus on the
asymptote of the modified models of Table 2. Firstly, we compare the values
of the two parameters of the asymptote, the slope p and the y-intercept q,
computed from the fitting of the six models on the same data sets. Because a
comparison of the models based on their best fits depends widely on the data
set, we briefly mention the quality of the fitting, we compare and rank the
fitting of the models using the value of the optimal criteria. Secondly, for a
given model, the Richards(2) model, we illustrate the effect of increasing the
density of data to recover the values of the parameters p and q of the asymptote.

4.1 Numerical computation

The parameter vector (p, q, θ) of each model F (t) is estimated by minimizing
the least squares criteria

Z(p, q, θ) =
1

2

K∑
k=1

[
F
(
tk; (p, q, θ)

)
− yk

]2
over the feasible set of parameters Θ as defined for each model in the last two
columns of Table 2. We used the MATLAB least squares function “lsqnonlin”
to solve these problems. The MATLAB function “fsolve” was used to solve
the equation Q(t) = 0 to obtain an approximation T ∗∗ of the abscissa T ∗ of
the inflection point (T ∗, F ∗) for each modified model, and the approximate
ordinate F ∗∗ is given by F ∗∗ = F (T ∗∗). Numerical results of our simulations
include the optimal solution (p∗, q∗, θ∗), the optimal value of the criteria Z∗, its
mean optimal value Z∗/K = Z(p∗, q∗, θ∗)/K, and an approximation (T ∗∗, F ∗∗)
of the inflection point (T ∗, F ∗).

4.2 First example

4.2.1 Data sets

To generate the first series of data, we have first chosen the exponential model
FE(t; p, q, θ) = (pt + q)e−α/t

γ

, where θ = (α, γ), because the shape of its
graph looks like the graph of the models under study. We have used the
value (p, q, θ) = (0.5, 100, 3000, 1.4) for its parameters. We have generated
10 random uniformly distributed abscissae on the interval (0, 2000], by choos-
ing tk ∼ U(0, 2000], and 10 random uniformly distributed abscissae on the
(2000, 4000], by choosing tk ∼ U(2000, 4000]. Then the ordinates are computed
by yk = FE(tk; p, q, θ) + rk for k = 1, . . . , 20, where rk ∼ N (0, σ2) with σ = 10.

The six models of Table 2 were then fitted to the 20 data on (0, 4000].
With each of these optimal models we have generated 20 other data points,
ten on each subintervals (0, 2000] and (2000, 4000], as we did before with the
exponential model. We have added together these data points to get two sets
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of 70 data points on each intervals (0, 2000] and (2000, 4000]. In this way we
can say that the data represent all the models.

We have considered the best fitting for the following situations:

• on the interval (0, 2000] with 70 data points;

• on the interval (0, 4000] with 140 data points;

• on the interval (0, 4000] with 70 data points (chosen randomly in the
preceding data set with 35 data points on each subinterval (0, 2000] and
(2000, 4000]);

The results are reported in Table 3. For each data set, and on each model F ,
we have tested 10 different starting points (p0, q0, θ0) randomly chosen in the
feasible set Θ using continuous uniform distributions. For each model and
each data set, when the starting values are chosen around the values of the
parameters used to generate the data, the algorithm has always converged to
the same optimal solution from any one of these starting points.

4.2.2 Numerical results and discussion

From Table 3 we observe that the asymptotes recovered by the Gompertz,
Logistic, Richards(1), Richards(2), and Bridge models have the slope p∗ and
y-intercept q∗ relatively close together. These models recover almost the same
asymptote. For the Michaelis–Menten model the slope p∗ is also close to the
values obtained by the preceding 5 models, but the y-intercept q∗ is slightly
bigger. This differences in q∗ decreases if we increase the length T of the
interval, from 2000 to 4000, maintaining the same density K/T of data as
shown when we compare the parameter values of Table 3.

Based on the optimal value of the criteria Z∗/K, the numerical results
summarized in Table 4 indicates that the best fit is obtained for the Richards(2)

model followed by the Bridge model, but the differences between the Z∗/K
for the 6 models are rather small. We also observe the same results for the
Richards(1) and the Gompertz models becausemRbR ≈ bG. Obviously, the rank
for the models might change depending on the data set under consideration. We
have included, in Figures 2 and 3, the graphs of the best model, the Richards(2)

model, and the graphs of the worst one, the Michaelis–Menten model, on the
intervals (0, 2000] and (0, 4000] to illustrate that globally the fitting is good
for all models. We can see slight differences on the graphs of the asymptotes.
Let us observe that when we increase the length T with the same data density,
the mean value Z∗/K decreases, which means we get more information for the
fitting and obtain a more reliable asymptote when T is large.

4.3 Second example

4.3.1 Data sets

In this section we have tested Richards(2) on different data sets {(tk, yk)}Kk=1

with different values ofK on the interval (0, 4000]. The data points {(tk,yk)}Kk=1

Math. Model. Anal., 18(2):204–218, 2013.
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Table 3. Optimal parameters, optimal value and an approximation of the inflection point
(T ∗∗, F ∗∗) for each data set (K,T ).

Michealis-Menten model: FM (t; p, q, ω0, k, c)

K T p∗ q∗ ω∗
0 k∗ c∗ Z∗ (T ∗∗, F ∗∗)

70 2000 0.4933 142.04 0.09506 403.34 2.9780 3840.4 (420.78, 201.36)
140 4000 0.5102 106.45 0.15396 393.03 3.4883 6820.6 (415.07, 196.38)
70 4000 0.5117 102.53 0.16045 398.77 3.5697 3203.3 (421.75, 198.02)

T K p∗ q∗ b∗ c∗ m∗ Z∗ (T ∗∗, F ∗∗)

Richards(1) model: FR(t; p, q, b, c,m)

70 2000 0.5090 103.28 0.00038 0.00536 11379 3752.5 (436.83, 214.60)
140 4000 0.5128 96.957 0.00047 0.00551 9447.4 6587.9 (430.23, 209.89)
70 4000 0.5136 95.341 0.00036 0.00540 12032 3115.8 (438.99, 213.49)

Richards(2) model: FR(t; p, q, b, c,m)

70 2000 0.5155 91.963 −3.1315 0.00631 −2.1955 3709.9 (449.43, 223.57)
140 4000 0.5137 94.305 −2.8042 0.00622 −2.3696 6470.6 (449.68, 223.76)
70 4000 0.5148 91.792 −4.3383 0.00639 −1.7672 3068.2 (462.23, 229.84)

Gompertz model: FG(t; p, q, b, c)

70 2000 0.5090 103.28 4.3372 0.00536 3752.4 (436.83, 214.60)
140 4000 0.5128 96.956 4.4386 0.00551 6587.8 (430.24, 209.89)
70 4000 0.5136 95.341 4.3621 0.00540 3115.8 (438.99, 213.49)

Logistic model: FL(t; p, q, b, c)

70 2000 0.5206 80.347 11.916 0.00740 3777.8 (460.61, 236.87)
140 4000 0.5146 91.473 11.711 0.00721 6603.4 (468.52, 237.67)
70 4000 0.5155 89.611 11.964 0.00716 3110.1 (474.90, 239.16)

Bridge model: FB(t; p, q, b,m)

70 2000 0.5189 87.746 1.7673 2.473e−5 3744.3 (452.40, 234.05)
140 4000 0.5144 92.235 1.7492 2.679e−5 6528.3 (467.86, 237.98)
70 4000 0.5151 90.758 1.7476 2.642e−5 3096.6 (476.07, 240.97)

Table 4. Ranking criterion values for the models.

Data set Data set
K = 70 and T = 2000 K = 140 and T = 4000

Model Z∗ Z∗/K Rank Z∗ Z∗/K Rank

Michaelis–Menten 3840.4 54.863 6 6820.6 48.719 6

Richards(1) 3752.4 53.606 3 6587.8 47.056 3

Richards(2) 3709.9 52.999 1 6470.6 46.219 1
Gompertz 3752.4 53.606 3 6587.8 47.056 3
Logistic 3777.8 53.969 5 6603.4 47.167 5
Bridge 3744.3 53.490 2 6528.3 46.631 2

are generated, for k = 1, . . . ,K, by

yk = (ptk + q)FR(tk; θ) + rk, (4.1)
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Figure 2. Graphic representation of the synthetic data points {tk, yk}Kk=1 with the

modified Richards(2) model FR(t; p, q, θ) = (pt+ q)fR(t; θ) and its asymptote at the
optimal solution (p∗, q∗, θ∗).
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Figure 3. Graphic representation of the synthetic data points {tk, yk}Kk=1 with the
modified Michaelis–Menten model FM (t; p, q, θ) = (pt+ q)fM (t; θ) and its asymptote

m(t) = pt+ q at the optimal solution (p∗, q∗, θ∗).

where (p, q, θ) = (0.5, 100,−3, 0.005,−2), tk ∼ U(0, 4000) is a uniformly dis-
tributed random variable over (0, T ], rk ∼ N (0, σ2) is a random normal variable
with mean µ = 0 and standard deviation σ = 4. Numerical results are summa-
rized in Table 5.

4.3.2 Numerical results and discussion

The results of the Table 5 indicate a monotonic convergence of the estimated
values of the parameters through the true values of the parameters as the
density K of the data increases in the interval.

5 Conclusion

In this paper we have extended a class of standard growth curves with hori-
zontal asymptote in order to obtain growth curves with linear asymptote. The

Math. Model. Anal., 18(2):204–218, 2013.



216 F. Dubeau and Y. Mir

Table 5. Richards(2) model ( T = 4000): Optimal parameters, optimal value and an
approximation of the inflection point (T ∗∗, F ∗∗) for different data sets with an increasing
degree of freedom.

Richards(2) model: FR(t; p, q, b, c,m)

True p q b c m (T ∗, F ∗∗)
values

0.5 100 −3 0.005 −2 (555.9, 268.63)

K p∗ q∗ b∗ c∗ m∗ Z∗ Z∗/K (T ∗, F ∗∗)

20 0.5055 91.41 −10.08 0.00574 −0.7447 103.38 5.169 (594.6, 300.33)
40 0.5053 92.52 −6.706 0.00569 −0.9774 306.57 7.664 (585.9, 287.99)
60 0.5048 93.27 −6.951 0.00566 −1.1920 388.41 6.474 (571.1, 280.08)
80 0.5047 93.31 −5.708 0.00557 −1.2013 452.86 5.661 (573.9, 278.83)

100 0.5021 94.73 −4.828 0.00543 −1.3373 715.41 7.154 (561.8, 270.79)
120 0.5013 96.69 −4.688 0.00538 −1.3561 772.29 6.436 (561.3, 272.61)
140 0.5007 98.16 −3.774 0.00538 −1.5728 921.59 6.598 (558.5, 266.42)
160 0.5007 98.54 −3.661 0.00507 −1.7069 1139.2 7.120 (558.8, 266.47)
180 0.5005 98.89 −3.177 0.00507 −1.9521 1362.5 7.569 (559.6, 271.94)
200 0.5000 99.89 −2.924 0.00495 −1.9814 1497.7 7.489 (557.3, 270.24)

objective of the present study was to present such models and show their per-
formances on synthetic data sets. In addition to their increasing character with
an oblique asymptote, the resulting models provide curves with a single inflec-
tion point. Other extensions of these models to obtain curvilinear asymptote
and growth curves with several inflection points could be of interest. These
extensions and their applications will be presented in a future paper.
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