Mathematical Modelling and Analysis
Volume 18 Number 3, June 2013, 309-324
http://dx.doi.org/10.3846/13926292.2013.804009
(c) Vilnius Gediminas Technical University, 2013

Positive Solutions for Singular Systems of Higher-Order Multi-Point Boundary Value Problems

Johnny Henderson ${ }^{a}$ and Rodica Luca ${ }^{b}$
${ }^{a}$ Baylor University
76798 Waco, USA
${ }^{b}$ Gh. Asachi Technical University
700506 Iasi, Romania
E-mail: Johnny_Henderson@baylor.edu
E-mail(corresp.): rluca@math.tuiasi.ro

Received June 27, 2012; revised April 10, 2013; published online June 1, 2013

Abstract

We investigate the existence of positive solutions for systems of singular nonlinear higher-order differential equations subject to multi-point boundary conditions.

Keywords: higher-order differential system, singular, multi-point boundary conditions, positive solutions.

AMS Subject Classification: 34B10; 34B18.

1 Introduction

We consider the singular system of nonlinear higher-order ordinary differential equations

$$
\begin{cases}u^{(n)}(t)+f(t, v(t))=0, & t \in(0, T), n \in \mathbb{N}, n \geq 2 \tag{S}\\ v^{(m)}(t)+g(t, u(t))=0, & t \in(0, T), m \in \mathbb{N}, m \geq 2\end{cases}
$$

with the multi-point boundary conditions

$$
\left\{\begin{array}{ll}
u(0)=u^{\prime}(0)=\cdots=u^{(n-2)}(0)=0, & u(T)=\sum_{i=1}^{p-2} a_{i} u\left(\xi_{i}\right), \tag{BC}\\
v(0)=v^{\prime}(0)=\cdots=v^{(m-2)}(0)=0, & v(T)=\sum_{i=1}^{q-2} b_{i} v\left(\eta_{i}\right),
\end{array} \quad q \in \mathbb{N}, q \geq 3 .\right.
$$

We present some weaker assumptions on f and g, which do not possess any sublinear or superlinear growth conditions and may be singular at $t=0$
and/or $t=T$, such that positive solutions for problem $(S)-(B C)$ exist. By a positive solution of $(S)-(B C)$, we understand a pair of functions $(u, v) \in$ $\left(C\left([0, T] ; \mathbb{R}_{+}\right) \cap C^{n}((0, T))\right) \times\left(C\left([0, T] ; \mathbb{R}_{+}\right) \cap C^{m}((0, T))\right)$ satisfying (S) and (BC) with

$$
\sup _{t \in[0, T]} u(t)>0, \quad \sup _{t \in[0, T]} v(t)>0 .
$$

This problem is a generalization of the problem studied in [7], where $n=m=2$. In [12], the authors investigated the existence of positive solutions for system (S) with $n=m=2$ and the boundary conditions

$$
u(0)=0, u(1)=\alpha u(\eta), v(0)=0, v(1)=\alpha v(\eta), \quad \eta \in(0,1), 0<\alpha \eta<1
$$

In [16], the authors studied the existence and multiplicity of positive solutions for system (S) with $n=m=2, T=1$ and boundary conditions which contain only one intermediate point. We also mention the paper [14], where the authors used the fixed point index theory to prove the existence of positive solutions for the system (S) with $f(t, v(t))$ and $g(t, u(t))$ replaced by $c(t) \widetilde{f}(u(t), v(t))$ and $d(t) \widetilde{g}(u(t), v(t))$, respectively, and $(B C)$, where $\frac{1}{2} \leq \xi_{1}<\xi_{2}<\cdots<\xi_{p-2}<$ $1, \frac{1}{2} \leq \eta_{1}<\eta_{2}<\cdots<\eta_{q-2}<1(T=1)$. Other systems with various nonlocal boundary conditions were investigated in the papers [2, 3, 5, 8, 9, 15]. Some multi-point boundary value problems for systems of ordinary differential equations which involve positive eigenvalues were studied in recent years by using the Guo-Krasnosel'skii fixed point theorem. In [4], the authors give sufficient conditions for λ, μ, f and g such that the system

$$
\begin{cases}u^{(n)}(t)+\lambda c(t) f(u(t), v(t))=0, \quad t \in(0, T), n \in \mathbb{N}, n \geq 2 \tag{1}\\ v^{(m)}(t)+\mu d(t) g(u(t), v(t))=0, & t \in(0, T), m \in \mathbb{N}, m \geq 2\end{cases}
$$

with the boundary conditions $(B C)$ has positive solutions $(u(t) \geq 0, v(t) \geq 0$ for all $t \in[0, T]$ and $(u, v) \neq(0,0))$. The system $\left(S_{1}\right)$ with $n=m=2$ and the multi-point boundary conditions

$$
\begin{cases}\alpha u(0)-\beta u^{\prime}(0)=0, & u(T)=\sum_{i=1}^{p-2} a_{i} u\left(\xi_{i}\right), \tag{1}\\ \quad p \in \mathbb{N}, p \geq 3 \\ \gamma v(0)-\delta v^{\prime}(0)=0, & v(T)=\sum_{i=1}^{q-2} b_{i} v\left(\eta_{i}\right), \quad q \in \mathbb{N}, q \geq 3\end{cases}
$$

has been investigated in [6].
In recent years, multi-point boundary value problems for second-order or higher-order differential or difference equations/systems have been investigated by many authors, by using different methods such as fixed point theorems in cones, the Leray-Schauder continuation theorem and its nonlinear alternatives, and the coincidence degree theory.

In Section 2, we shall present some auxiliary results which investigate two boundary value problems for higher-order equations (the problems (2.1)-(2.2) and (2.4)-(2.5) below). In Section 3, we shall prove two existence results for the positive solutions with respect to a cone for our problem $(S)-(B C)$, which are based on the Guo-Krasnosel'skii fixed point theorem, presented below.

Theorem 1. Let X be a Banach space and let $C \subset X$ be a cone in X. Assume Ω_{1} and Ω_{2} are bounded open subsets of X with $0 \in \Omega_{1} \subset \overline{\Omega_{1}} \subset \Omega_{2}$ and let $\mathcal{A}: C \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow C$ be a completely continuous operator such that, either
i) $\|\mathcal{A} u\| \leq\|u\|, u \in C \cap \partial \Omega_{1}$, and $\|\mathcal{A} u\| \geq\|u\|, u \in C \cap \partial \Omega_{2}$, or
ii) $\|\mathcal{A} u\| \geq\|u\|, u \in C \cap \partial \Omega_{1}$, and $\|\mathcal{A} u\| \leq\|u\|, u \in C \cap \partial \Omega_{2}$.

Then \mathcal{A} has a fixed point in $C \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.
Finally, in Section 4, we shall present some examples which illustrate our main results.

2 Auxiliary Results

In this section, we shall present some auxiliary results from [10,11] (see also [13]) related to the following n th-order differential equation with p-point boundary conditions

$$
\begin{align*}
& u^{(n)}(t)+y(t)=0, \quad t \in(0, T) \tag{2.1}\\
& u(0)=u^{\prime}(0)=\cdots=u^{(n-2)}(0)=0, \quad u(T)=\sum_{i=1}^{p-2} a_{i} u\left(\xi_{i}\right) . \tag{2.2}
\end{align*}
$$

Lemma 1. If $d=T^{n-1}-\sum_{i=1}^{p-2} a_{i} \xi_{i}^{n-1} \neq 0,0<\xi_{1}<\cdots<\xi_{p-2}<T$ and $y \in C([0, T])$, then the solution of $(2.1)-(2.2)$ is given by

$$
\begin{aligned}
u(t)= & \frac{t^{n-1}}{d(n-1)!} \int_{0}^{T}(T-s)^{n-1} y(s) d s-\frac{t^{n-1}}{d(n-1)!} \sum_{i=1}^{p-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)^{n-1} y(s) d s \\
& -\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s, \quad 0 \leq t \leq T
\end{aligned}
$$

Lemma 2. Under the assumptions of Lemma 1, the Green's function for the boundary value problem (2.1)-(2.2) is given by

$$
G_{1}(t, s)=\left\{\begin{array}{l}
\frac{t^{n-1}}{d(n-1)!}\left[(T-s)^{n-1}-\sum_{i=j+1}^{p-2} a_{i}\left(\xi_{i}-s\right)^{n-1}\right]-\frac{1}{(n-1)!}(t-s)^{n-1}, \\
\quad \text { if } \xi_{j} \leq s<\xi_{j+1}, \quad s \leq t, \\
\frac{t^{n-1}}{d(n-1)!}\left[(T-s)^{n-1}-\sum_{i=j+1}^{p-2} a_{i}\left(\xi_{i}-s\right)^{n-1}\right] \\
\quad \text { if } \xi_{j} \leq s<\xi_{j+1}, \quad s \geq t, j=0, \ldots, p-3, \\
\frac{t^{n-1}}{d(n-1)!}(T-s)^{n-1}-\frac{1}{(n-1)!}(t-s)^{n-1}, \quad \text { if } \xi_{p-2} \leq s \leq T, s \leq t, \\
\frac{t^{n-1}}{d(n-1)!}(T-s)^{n-1}, \quad \text { if } \xi_{p-2} \leq s \leq T, \quad s \geq t\left(\xi_{0}=0\right)
\end{array}\right.
$$

for all $(t, s) \in[0, T] \times[0, T]$.

Using the Heaviside function on $\mathbb{R}, H(x)=1$ for $x \geq 0$, and $H(x)=0$ for $x<0$, the above Green's function can be written in a compact form

$$
\begin{aligned}
G_{1}(t, s)= & \frac{t^{n-1}}{d(n-1)!}\left[(T-s)^{n-1}-\sum_{i=1}^{p-2} a_{i}\left(\xi_{i}-s\right)^{n-1} H\left(\xi_{i}-s\right)\right] \\
& -\frac{1}{(n-1)!}(t-s)^{n-1} H(t-s), \quad(t, s) \in[0, T] \times[0, T]
\end{aligned}
$$

By using the above Green's function the solution of problem (2.1)-(2.2) is expressed as $u(t)=\int_{0}^{T} G_{1}(t, s) y(s) d s$.

Lemma 3. Under the assumptions of Lemma 1, the Green's function for the boundary value problem (2.1)-(2.2) can be expressed as

$$
G_{1}(t, s)=g_{1}(t, s)+\frac{t^{n-1}}{d} \sum_{i=1}^{p-2} a_{i} g_{1}\left(\xi_{i}, s\right)
$$

where

$$
g_{1}(t, s)=\frac{1}{(n-1)!T^{n-1}}\left\{\begin{array}{l}
t^{n-1}(T-s)^{n-1}-T^{n-1}(t-s)^{n-1}, \quad 0 \leq s \leq t \leq T \tag{2.3}\\
t^{n-1}(T-s)^{n-1}, \quad 0 \leq t \leq s \leq T
\end{array}\right.
$$

Lemma 4. The function g_{1} given in (2.3) has the properties:
a) $g_{1}:[0, T] \times[0, T] \rightarrow \mathbb{R}_{+}$is a continuous function and $g_{1}(t, s) \geq 0$ for all $(t, s) \in[0, T] \times[0, T]$.
b) $g_{1}(t, s) \leq g_{1}\left(\theta_{1}(s), s\right)$, for all $(t, s) \in[0, T] \times[0, T]$.
c) For any $c \in\left(0, \frac{T}{2}\right), \min _{t \in[c, T-c]} g_{1}(t, s) \geq \frac{c^{n-1}}{T^{n-1}} g_{1}\left(\theta_{1}(s), s\right)$, for all $s \in$ $[0, T]$,
where $\theta_{1}(s)=s$ if $n=2$ and

$$
\theta_{1}(s)= \begin{cases}\frac{s}{1-\left(1-\frac{s}{T}\right)^{\frac{n-1}{n-2}}}, \quad s \in(0, T], & \text { if } n \geq 3 \\ \frac{T(n-2)}{n-1}, \quad s=0 & \end{cases}
$$

Lemma 5. Assume that $d>0,0<\xi_{1}<\cdots<\xi_{p-2}<T$, $a_{i} \geq 0$ for all $i=1, \ldots, p-2$. Then the Green's function G_{1} of the problem (2.1)-(2.2) is continuous on $[0, T] \times[0, T]$ and satisfies $G_{1}(t, s) \geq 0$ for all $(t, s) \in[0, T] \times$ $[0, T]$. Moreover, if $y \in C([0, T])$ satisfies $y(t) \geq 0$ for all $t \in[0, T]$, then the unique solution u of problem (2.1)-(2.2) satisfies $u(t) \geq 0$ for all $t \in[0, T]$.

Lemma 6. Assume that $d>0,0<\xi_{1}<\cdots<\xi_{p-2}<T$, $a_{i} \geq 0$ for all $i=1, \ldots, p-2$. Then the Green's function G_{1} of problem (2.1)-(2.2) satisfies the inequalities
a) $G_{1}(t, s) \leq I_{1}(s), \forall(t, s) \in[0, T] \times[0, T]$, where

$$
I_{1}(s)=g_{1}\left(\theta_{1}(s), s\right)+\frac{T^{n-1}}{d} \sum_{i=1}^{p-2} a_{i} g_{1}\left(\xi_{i}, s\right), \quad \forall s \in[0, T] ;
$$

b) For every $c \in\left(0, \frac{T}{2}\right)$,

$$
\min _{t \in[c, T-c]} G_{1}(t, s) \geq \frac{c^{n-1}}{T^{n-1}} I_{1}(s), \quad \forall s \in[0, T] .
$$

Lemma 7. Assume that $d>0,0<\xi_{1}<\cdots<\xi_{p-2}<T$, $a_{i} \geq 0$ for all $i=1, \ldots, p-2, c \in\left(0, \frac{T}{2}\right)$ and $y \in C([0, T])$ satisfies $y(t) \geq 0$ for all $t \in[0, T]$. Then the solution $u(t), t \in[0, T]$, of problem (2.1)-(2.2) satisfies the inequality

$$
\min _{t \in[c, T-c]} u(t) \geq \frac{c^{n-1}}{T^{n-1}} \max _{t^{\prime} \in[0, T]} u\left(t^{\prime}\right) .
$$

We can also formulate similar results as Lemmas 1-7 above for the boundary value problem

$$
\begin{gather*}
v^{(m)}(t)+h(t)=0, \quad t \in(0, T), \tag{2.4}\\
v(0)=v^{\prime}(0)=\cdots=v^{(m-2)}(0)=0, \quad v(T)=\sum_{i=1}^{q-2} b_{i} v\left(\eta_{i}\right), \tag{2.5}
\end{gather*}
$$

where $0<\eta_{1}<\cdots<\eta_{q-2}<T, b_{i} \geq 0$ for $i=1, \ldots, q-2$, and $h \in C([0, T])$. If $e=T^{m-1}-\sum_{i=1}^{q-2} b_{i} \eta_{i}^{m-1} \neq 0$, we denote by G_{2} the Green's function associated to problem (2.4)-(2.5) and defined in a similar manner as G_{1}. We also denote by g_{2}, θ_{2} and I_{2} the corresponding functions for (2.4)-(2.5) defined in a similar manner as g_{1}, θ_{1} and I_{1}, respectively.

3 Main Results

In this section, we shall investigate the existence of positive solutions for our problem $(S)-(B C)$, under various assumptions on singular functions f and g.

We present the assumptions that we shall use in the sequel.
(H1) $0<\xi_{1}<\cdots<\xi_{p-2}<T, a_{i} \geq 0, i=1, \ldots, p-2, d=T^{n-1}-$ $\sum_{i=1}^{p-2} a_{i} \xi_{i}^{n-1}>0,0<\eta_{1}<\cdots<\eta_{q-2}<T, b_{i} \geq 0, i=1, \ldots, q-2$, $e=T^{m-1}-\sum_{i=1}^{q-2} b_{i} \eta_{i}^{m-1}>0$.
(H2) Functions $f, g \in C\left((0, T) \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$and there exist $p_{i} \in C\left((0, T), \mathbb{R}_{+}\right)$, $q_{i} \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), i=1,2$, with $0<\int_{0}^{T} p_{i}(t) d t<\infty, i=1,2, q_{1}(0)=0$, $q_{2}(0)=0$ such that

$$
f(t, x) \leq p_{1}(t) q_{1}(x), \quad g(t, x) \leq p_{2}(t) q_{2}(x), \quad \forall t \in(0, T), x \in \mathbb{R}_{+}
$$

(H3) There exist $r_{1}, r_{2} \in(0, \infty)$ with $r_{1} r_{2} \geq 1$ such that

$$
\text { i) } \quad q_{10}^{s}=\limsup _{x \rightarrow 0^{+}} \frac{q_{1}(x)}{x^{r_{1}}} \in[0, \infty) ; \quad \text { ii) } \quad q_{20}^{s}=\limsup _{x \rightarrow 0^{+}} \frac{q_{2}(x)}{x^{r_{2}}}=0 .
$$

(H4) There exist $l_{1}, l_{2} \in(0, \infty)$ with $l_{1} l_{2} \geq 1$ and $c \in\left(0, \frac{T}{2}\right)$ such that
i) $f_{\infty}^{i}=\liminf _{x \rightarrow \infty} \inf _{t \in[c, T-c]} \frac{f(t, x)}{x^{l_{1}}} \in(0, \infty]$;
ii) $g_{\infty}^{i}=\liminf _{x \rightarrow \infty} \inf _{t \in[c, T-c]} \frac{g(t, x)}{x^{l_{2}}}=\infty$.
(H5) There exist $\alpha_{1}, \alpha_{2} \in(0, \infty)$ with $\alpha_{1} \alpha_{2} \leq 1$ such that

$$
\text { i) } q_{1 \infty}^{s}=\limsup _{x \rightarrow \infty} \frac{q_{1}(x)}{x^{\alpha_{1}}} \in[0, \infty) ; \quad \text { ii) } \quad q_{2 \infty}^{s}=\limsup _{x \rightarrow \infty} \frac{q_{2}(x)}{x^{\alpha_{2}}}=0
$$

(H6) There exist $\beta_{1}, \beta_{2} \in(0, \infty)$ with $\beta_{1} \beta_{2} \leq 1$ and $c \in\left(0, \frac{T}{2}\right)$ such that
i) $f_{0}^{i}=\liminf _{x \rightarrow 0^{+}} \inf _{t \in[c, T-c]} \frac{f(t, x)}{x^{\beta_{1}}} \in(0, \infty]$;
ii) $g_{0}^{i}=\liminf _{x \rightarrow 0^{+}} \inf _{t \in[c, T-c]} \frac{g(t, x)}{x^{\beta_{2}}}=\infty$.

The pair of functions $(u, v) \in\left(C([0, T]) \cap C^{n}((0, T))\right) \times(C([0, T]) \cap$ $\left.C^{m}((0, T))\right)$ is a solution for our problem $(S)-(B C)$ if and only if $(u, v) \in$ $C([0, T]) \times C([0, T])$ is a solution for the nonlinear integral equations

$$
\begin{cases}u(t)=\int_{0}^{T} G_{1}(t, s) f(s, v(s)) d s, & t \in[0, T] \tag{3.1}\\ v(t)=\int_{0}^{T} G_{2}(t, s) g(s, u(s)) d s, & t \in[0, T]\end{cases}
$$

The system (3.1) can be written as the nonlinear integral system

$$
\left\{\begin{array}{l}
u(t)=\int_{0}^{T} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s, \quad t \in[0, T] \\
v(t)=\int_{0}^{T} G_{2}(t, s) g(s, u(s)) d s, \quad t \in[0, T]
\end{array}\right.
$$

We consider the Banach space $X=C([0, T])$ with supremum norm $\|u\|=$ $\sup _{t \in[0, T]}|u(t)|$ and define the cone $P \subset X$ by $P=\{u \in X, u(t) \geq 0, \forall t \in$ $[0, T]\}$. For any $r>0$, let

$$
B_{r}=\{u \in C([0, T]),\|u\|<r\}, \quad \partial B_{r}=\{u \in C([0, T]),\|u\|=r\} .
$$

We also define the operator $\mathcal{A}: P \rightarrow X$ by

$$
\mathcal{A}(u)(t)=\int_{0}^{T} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s
$$

Lemma 8. Assume that (H1)-(H2) hold. Then $\mathcal{A}: P \rightarrow P$ is completely continuous.

Proof. We denote $\alpha=\int_{0}^{T} I_{1}(s) p_{1}(s) d s$ and $\beta=\int_{0}^{T} I_{2}(s) p_{2}(s) d s$. Using (H2), we deduce that $0<\alpha<\infty$ and $0<\beta<\infty$. By Lemma 5 and the corresponding lemma for G_{2}, we get that \mathcal{A} maps P into P.

We shall prove that \mathcal{A} maps bounded sets into relatively compact sets. Suppose $D \subset P$ is an arbitrary bounded set. First we prove that $\mathcal{A}(D)$ is a bounded set. Because D is bounded, then there exists $M_{1}>0$ such that $\|u\| \leq M_{1}$ for all $u \in D$. By the continuity of q_{2}, there exists $M_{2}>0$ such that $M_{2}=\sup _{x \in\left[0, M_{1}\right]} q_{2}(x)$. By using Lemma 6 for G_{2}, for any $u \in D$ and $s \in[0, T]$, we obtain

$$
\begin{align*}
\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau & \leq \int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau) q_{2}(u(\tau)) d \tau \\
& \leq M_{2} \int_{0}^{T} I_{2}(\tau) p_{2}(\tau) d \tau=\beta M_{2} \tag{3.2}
\end{align*}
$$

Because q_{1} is a continuous function, there exists $M_{3}>0$ such that $M_{3}=$ $\sup _{x \in\left[0, \beta M_{2}\right]} q_{1}(x)$. Therefore, from (3.2), (H2) and Lemma 6, we deduce

$$
\begin{align*}
(\mathcal{A} u)(t) & =\int_{0}^{T} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \leq \int_{0}^{T} G_{1}(t, s) p_{1}(s) q_{1}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \leq M_{3} \int_{0}^{T} I_{1}(s) p_{1}(s) d s=\alpha M_{3}, \quad \forall t \in[0, T] . \tag{3.3}
\end{align*}
$$

So, $\|\mathcal{A} u\| \leq \alpha M_{3}$ for all $u \in D$. Therefore $\mathcal{A}(D)$ is bounded.
In what follows, we shall prove that $\mathcal{A}(D)$ is equicontinuous. By using Lemma 3, we have

$$
\begin{aligned}
(\mathcal{A} u)(t)= & \int_{0}^{T} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
= & \int_{0}^{T}\left[g_{1}(t, s)+\frac{t^{n-1}}{d} \sum_{i=1}^{p-2} a_{i} g_{1}\left(\xi_{i}, s\right)\right] f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
= & \frac{1}{(n-1)!T^{n-1}} \int_{0}^{t}\left[t^{n-1}(T-s)^{n-1}-T^{n-1}(t-s)^{n-1}\right] \\
& \times f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& +\frac{1}{(n-1)!T^{n-1}} \int_{t}^{T} t^{n-1}(T-s)^{n-1} f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& +\frac{t^{n-1}}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} g_{1}\left(\xi_{i}, s\right) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s, \quad \forall t \in[0, T]
\end{aligned}
$$

Therefore, for any $t \in(0, T)$, we obtain

$$
\begin{aligned}
(\mathcal{A} u)^{\prime}(t)= & \frac{t^{n-1}(T-t)^{n-1}-T^{n-1}(t-t)^{n-1}}{(n-1)!T^{n-1}} f\left(t, \int_{0}^{T} G_{2}(t, \tau) g(\tau, u(\tau)) d \tau\right) \\
& +\int_{0}^{t} \frac{(n-1) t^{n-2}(T-s)^{n-1}-(n-1) T^{n-1}(t-s)^{n-2}}{(n-1)!T^{n-1}} \\
& \times f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& -\frac{t^{n-1}(T-t)^{n-1}}{(n-1)!T^{n-1}} f\left(t, \int_{0}^{T} G_{2}(t, \tau) g(\tau, u(\tau)) d \tau\right) \\
& +\int_{t}^{T} \frac{(n-1) t^{n-2}(T-s)^{n-1}}{(n-1)!T^{n-1}} f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) \\
& +\frac{(n-1) t^{n-2}}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} g_{1}\left(\xi_{i}, s\right) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s
\end{aligned}
$$

So, for any $t \in(0, T)$, we deduce

$$
\begin{align*}
\left|(\mathcal{A} u)^{\prime}(t)\right| & \leq \int_{0}^{t} \frac{t^{n-2}(T-s)^{n-1}+T^{n-1}(t-s)^{n-2}}{(n-2)!T^{n-1}} p_{1}(s) \\
& \times g_{1}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& +\int_{t}^{T} \frac{t^{n-2}(T-s)^{n-1}}{(n-2)!T^{n-1}} p_{1}(s) q_{1}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& +\frac{(n-1) t^{n-2}}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} g_{1}\left(\xi_{i}, s\right) p_{1}(s) q_{1}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \leq M_{3}\left(\int_{0}^{t} \frac{t^{n-2}(T-s)^{n-1}+T^{n-1}(t-s)^{n-2}}{(n-2)!T^{n-1}} p_{1}(s) d s\right. \\
& +\int_{t}^{T} \frac{t^{n-2}(T-s)^{n-1}}{(n-2)!T^{n-1}} p_{1}(s) d s \\
& \left.+\frac{(n-1) t^{n-2}}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} g_{1}\left(\xi_{i}, s\right) p_{1}(s) d s\right) \tag{3.4}
\end{align*}
$$

We denote

$$
\begin{aligned}
h(t)= & \int_{0}^{t} \frac{t^{n-2}(T-s)^{n-1}+T^{n-1}(t-s)^{n-2}}{(n-2)!T^{n-1}} p_{1}(s) d s \\
& +\int_{t}^{T} \frac{t^{n-2}(T-s)^{n-1}}{(n-2)!T^{n-1}} p_{1}(s) d s \\
\mu(t)= & h(t)+\frac{(n-1) t^{n-2}}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} g_{1}\left(\xi_{i}, s\right) p_{1}(s) d s, \quad t \in(0, T) .
\end{aligned}
$$

For the integral of the function h, by exchanging the order of integration, we obtain

$$
\begin{aligned}
& \int_{0}^{T} h(t) d t=\int_{0}^{T}\left(\int_{0}^{t} \frac{t^{n-2}(T-s)^{n-1}+T^{n-1}(t-s)^{n-2}}{(n-2)!T^{n-1}} p_{1}(s) d s\right) d t \\
& \quad+\int_{0}^{T}\left(\int_{t}^{T} \frac{t^{n-2}(T-s)^{n-1}}{(n-2)!T^{n-1}} p_{1}(s) d s\right) d t \\
& =\int_{0}^{T}\left(\int_{s}^{T} \frac{t^{n-2}(T-s)^{n-1}+T^{n-1}(t-s)^{n-2}}{(n-2)!T^{n-1}} p_{1}(s) d t\right) d s \\
& \quad+\int_{0}^{T}\left(\int_{0}^{s} \frac{t^{n-2}(T-s)^{n-1}}{(n-2)!T^{n-1}} p_{1}(s) d t\right) d s \\
& =\int_{0}^{T} \frac{(T-s)^{n-1}}{(n-2)!T^{n-1} p_{1}(s)\left(\int_{s}^{T} t^{n-2} d t\right) d s+\int_{0}^{T} \frac{p_{1}(s)}{(n-2)!}\left(\int_{s}^{T}(t-s)^{n-2} d t\right) d s} \\
& \quad+\int_{0}^{T} \frac{(T-s)^{n-1}}{(n-2)!T^{n-1}} p_{1}(s)\left(\int_{0}^{s} t^{n-2} d t\right) d s \\
& =\int_{0}^{T} \frac{(T-s)^{n-1}}{(n-2)!T^{n-1}}\left(\frac{T^{n-1}-s^{n-1}}{n-1}\right) p_{1}(s) d s+\int_{0}^{T} \frac{p_{1}(s)(T-s)^{n-1}}{(n-1)!} d s \\
& \quad+\int_{0}^{T} \frac{(T-s)^{n-1} s^{n-1}}{(n-1)!T^{n-1}} p_{1}(s) d s \\
& =\frac{2}{(n-1)!} \int_{0}^{T}(T-s)^{n-1} p_{1}(s) d s<\infty .
\end{aligned}
$$

For the integral of the function μ, we have

$$
\begin{align*}
& \int_{0}^{T} \mu(t) d t=\int_{0}^{T} h(t) d t+\frac{n-1}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} t^{n-2}\left(\int_{0}^{T} g_{1}\left(\xi_{i}, s\right) p_{1}(s) d s\right) d t \\
& \quad \leq \frac{2}{(n-1)!} \int_{0}^{T}(T-s)^{n-1} p_{1}(s) d s+\frac{T^{n-1}}{d} \sum_{i=1}^{p-2} a_{i} \int_{0}^{T} g_{1}\left(\theta_{1}(s), s\right) p_{1}(s) d s \\
& \quad \leq \frac{1}{(n-1)!}\left(2+\frac{T^{n-1}}{d} \sum_{i=1}^{p-2} a_{i}\right) \int_{0}^{T}(T-s)^{n-1} p_{1}(s) d s<\infty \tag{3.5}
\end{align*}
$$

We deduce that $\mu \in L^{1}(0, T)$. Thus for any given $t_{1}, t_{2} \in[0,1]$ with $t_{1} \leq t_{2}$ and $u \in D$, by (3.4), we obtain

$$
\begin{equation*}
\left|(\mathcal{A} u)\left(t_{1}\right)-(\mathcal{A} u)\left(t_{2}\right)\right|=\left|\int_{t_{1}}^{t_{2}}(\mathcal{A} u)^{\prime}(t) d t\right| \leq M_{3} \int_{t_{1}}^{t_{2}} \mu(t) d t \tag{3.6}
\end{equation*}
$$

From (3.5), (3.6) and absolute continuity of the integral function, we obtain that $\mathcal{A}(D)$ is equicontinuous. This conclusion together with (3.3) and Ascoli-Arzelà theorem yields that $\mathcal{A}(D)$ is relatively compact. Therefore \mathcal{A} is a compact operator.

By using similar arguments as those used in the proof of Lemma 2.4 from [12], we can show that \mathcal{A} is continuous on P. Therefore $\mathcal{A}: P \rightarrow P$ is completely continuous.

For $c \in(0, T / 2)$, we define the cone

$$
P_{0}=\left\{u \in X, u(t) \geq 0, \forall t \in[0, T], \min _{t \in[c, T-c]} u(t) \geq \gamma\|u\|\right\}
$$

where $\gamma=\min \left\{c^{n-1} / T^{n-1}, c^{m-1} / T^{m-1}\right\}$. Under assumptions (H1), (H2), we have $\mathcal{A}(P) \subset P_{0}$. Indeed, for $u \in P$, let $v=\mathcal{A}(u)$. By Lemma 7, we have

$$
\min _{t \in[c, T-c]} v(t) \geq \frac{c^{n-1}}{T^{n-1}}\|v\| \geq \gamma\|v\|
$$

that is $v \in P_{0}$.
Theorem 2. Assume that (H1)-(H4) hold. Then the problem $(S)-(B C)$ has at least one positive solution $(u(t), v(t)), t \in[0, T]$.

Proof. We consider the cone P_{0} with c given in (H4). From (H3) i) and (H2), we deduce that there exists $C_{1}>0$ such that

$$
\begin{equation*}
q_{1}(x) \leq C_{1} x^{r_{1}}, \quad \forall x \in[0,1] \tag{3.7}
\end{equation*}
$$

From (H3) ii) and (H2), for $C_{2}=\min \left\{\left(1 /\left(C_{1} \alpha \beta^{r_{1}}\right)\right)^{1 / r_{1}}, 1 / \beta\right\}>0$, we deduce that there exists $\delta_{1} \in(0,1)$ such that

$$
\begin{equation*}
q_{2}(x) \leq C_{2} x^{r_{2}}, \quad \forall x \in\left[0, \delta_{1}\right] . \tag{3.8}
\end{equation*}
$$

From (3.8), (H2) and Lemma 6, for any $u \in \partial B_{\delta_{1}} \cap P_{0}$ and $s \in[0, T]$, we obtain

$$
\begin{align*}
& \int_{0}^{T} \quad G_{2}(s, \tau) g(\tau, u(\tau)) d \tau \leq \int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau) q_{2}(u(\tau)) d \tau \\
& \quad \leq C_{2} \int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau)(u(\tau))^{r_{2}} d \tau \\
& \quad \leq C_{2} \int_{0}^{T} I_{2}(\tau) p_{2}(\tau) d \tau \cdot\|u\|^{r_{2}}=C_{2} \beta \delta_{1}^{r_{2}} \leq \delta_{1}^{r_{2}}<1 \tag{3.9}
\end{align*}
$$

By using (3.7)-(3.9) and (H2), for any $u \in \partial B_{\delta_{1}} \cap P_{0}$ and $t \in[0, T]$, we obtain

$$
\begin{aligned}
(\mathcal{A} u)(t) & \leq \int_{0}^{T} G_{1}(t, s) p_{1}(s) q_{1}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \leq C_{1} \int_{0}^{T} G_{1}(t, s) p_{1}(s)\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right)^{r_{1}} d s \\
& \leq C_{1} \int_{0}^{T} G_{1}(t, s) p_{1}(s)\left(\int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau) q_{2}(u(\tau)) d \tau\right)^{r_{1}} d s \\
& \leq C_{1} \int_{0}^{T} G_{1}(t, s) p_{1}(s)\left(C_{2} \int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau)(u(\tau))^{r_{2}} d \tau\right)^{r_{1}} d s \\
& \leq C_{1} \int_{0}^{T} I_{1}(s) p_{1}(s)\left(C_{2} \int_{0}^{T} I_{2}(\tau) p_{2}(\tau)(u(\tau))^{r_{2}} d \tau\right)^{r_{1}} d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{1} \int_{0}^{T} I_{1}(s) p_{1}(s) d s \cdot\left(C_{2} \int_{0}^{T} I_{2}(\tau) p_{2}(\tau) d \tau\right)^{r_{1}} \cdot\|u\|^{r_{1} r_{2}} \\
& \leq C_{1} \alpha\left(C_{2} \beta\right)^{r_{1}}\|u\|^{r_{1} r_{2}}=C_{1} C_{2}^{r_{1}} \alpha \beta^{r_{1}}\|u\|^{r_{1} r_{2}} \leq\|u\|^{r_{1} r_{2}} \leq\|u\| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|\mathcal{A} u\| \leq\|u\|, \quad \forall u \in \partial B_{\delta_{1}} \cap P_{0} \tag{3.10}
\end{equation*}
$$

From (H4) i), we deduce that there exist $C_{3}>0$ and $x_{1}>0$ such that

$$
\begin{equation*}
f(t, x) \geq C_{3} x^{l_{1}}, \quad \forall x \geq x_{1}, \forall t \in[c, T-c] \tag{3.11}
\end{equation*}
$$

We consider now

$$
C_{4}=\max \left\{\frac{T^{m-1}}{c^{m-1} \gamma^{l_{2}} \theta_{2}},\left(\frac{T^{l_{1}(m-1)+n-1}}{c^{l_{1}(m-1)+n-1} C_{3} \gamma^{l_{1} l_{2}} \theta_{1} \theta_{2}^{l_{1}}}\right)^{1 / l_{1}}\right\}>0
$$

where $\theta_{1}=\int_{c}^{T-c} I_{1}(s) d s>0$ and $\theta_{2}=\int_{c}^{T-c} I_{2}(s) d s>0$. From (H4) ii), we deduce that there exists $x_{2} \geq 1$ such that

$$
\begin{equation*}
g(t, x) \geq C_{4} x^{l_{2}}, \quad \forall x \geq x_{2}, \quad \forall t \in[c, T-c] \tag{3.12}
\end{equation*}
$$

Now we choose $R_{0}=\max \left\{x_{1}, x_{2}\right\}$ and $R>\max \left\{R_{0} / \gamma, R_{0}^{1 / l_{2}}\right\}$. Then for any $u \in \partial B_{R} \cap P_{0}$, we have $\min _{t \in[c, T-c]} u(t) \geq \gamma\|u\|=\gamma R>R_{0}$. By using (3.11) and (3.12), for any $u \in \partial B_{R} \cap P_{0}$ and $s \in[c, T-c]$, we obtain

$$
\begin{aligned}
& \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau \geq \int_{c}^{T-c} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau \\
& \quad \geq \frac{c^{m-1}}{T^{m-1}} \int_{c}^{T-c} I_{2}(\tau) C_{4}(u(\tau))^{l_{2}} d \tau \geq \frac{c^{m-1}}{T^{m-1}} C_{4} \gamma^{l_{2}} \int_{c}^{T-c} I_{2}(\tau) d \tau \cdot\|u\|^{l_{2}} \\
& \quad \geq\|u\|^{l_{2}}=R^{l_{2}}>R_{0}
\end{aligned}
$$

Then for any $u \in \partial B_{R} \cap P_{0}$ and $t \in[c, T-c]$, we have

$$
\begin{aligned}
(\mathcal{A} u)(t) & =\int_{0}^{T} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \geq \int_{c}^{T-c} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \geq C_{3} \int_{c}^{T-c} G_{1}(t, s)\left(\int_{c}^{T-c} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right)^{l_{1}} d s \\
& \geq C_{3} \int_{c}^{T-c} G_{1}(t, s)\left(\frac{c^{m-1}}{T^{m-1}} \int_{c}^{T-c} I_{2}(\tau) C_{4}(u(\tau))^{l_{2}} d \tau\right)^{l_{1}} d s \\
& \geq C_{3} C_{4}^{l_{1}} \frac{c^{l_{1}(m-1)}}{T^{l_{1}(m-1)}} \int_{c}^{T-c} G_{1}(t, s) \gamma^{l_{1} l_{2}}\|u\|^{l_{1} l_{2}}\left(\int_{c}^{T-c} I_{2}(\tau) d \tau\right)^{l_{1}} d s \\
& \geq C_{3} C_{4}^{l_{1}} \frac{c^{l_{1}(m-1)+n-1}}{T^{l_{1}(m-1)+n-1}} \gamma^{l_{1} l_{2}}\left(\int_{c}^{T-c} I_{1}(s) d s\right)\left(\int_{c}^{T-c} I_{2}(\tau) d \tau\right)^{l_{1}}\|u\|^{l_{1} l_{2}} \\
& \geq\|u\|^{l_{1} l_{2}} \geq\|u\| .
\end{aligned}
$$

Therefore we obtain

$$
\begin{equation*}
\|\mathcal{A} u\| \geq\|u\|, \quad \forall u \in \partial B_{R} \cap P_{0} \tag{3.13}
\end{equation*}
$$

By (3.10), (3.13) and Theorem 1 i), we obtain that \mathcal{A} has a fixed point $u_{1} \in$ $\left(\bar{B}_{R} \backslash B_{\delta_{1}}\right) \cap P_{0}$, that is $\delta_{1}<\left\|u_{1}\right\|<R$. Let $v_{1}(t)=\int_{0}^{T} G_{2}(t, s) g\left(s, u_{1}(s)\right) d s$. Then $\left(u_{1}, v_{1}\right) \in P_{0} \times P_{0}$ is a solution of $(S)-(B C)$. In addition $\left\|v_{1}\right\|>0$. Indeed, if we suppose that $v_{1}(t)=0$ for all $t \in[0, T]$, then by using (H2) we have $f\left(s, v_{1}(s)\right)=f(s, 0)=0$ for all $s \in[0, T]$. This implies $u_{1}(t)=0$ for all $t \in[0, T]$, which contradicts $\left\|u_{1}\right\|>0$. By using Theorem 1.1 from [11] (see [1]), we obtain $u_{1}(t)>0$ and $v_{1}(t)>0$ for all $t \in(0, T-c]$. The proof of Theorem 2 is completed.

Theorem 3. Assume that (H1), (H2), (H5) and (H6) hold. Then the problem $(S)-(B C)$ has at least one positive solution $(u(t), v(t)), t \in[0, T]$.

Proof. We consider the cone P_{0} with c given in (H6). By (H5) i) we deduce that there exist $C_{5}>0$ and $C_{6}>0$ such that

$$
\begin{equation*}
q_{1}(x) \leq C_{5} x^{\alpha_{1}}+C_{6}, \quad \forall x \in[0, \infty) \tag{3.14}
\end{equation*}
$$

From (H5) ii), for $\varepsilon_{0}>0, \varepsilon_{0}<\left(2^{\alpha_{1}} C_{5} \alpha \beta^{\alpha_{1}}\right)^{-1 / \alpha_{1}}$, we deduce that there exists $C_{7}>0$ such that

$$
\begin{equation*}
q_{2}(x) \leq \varepsilon_{0} x^{\alpha_{2}}+C_{7}, \quad \forall x \in[0, \infty) \tag{3.15}
\end{equation*}
$$

By using (3.14), (3.15) and (H2), for any $u \in P_{0}$, we obtain

$$
\begin{aligned}
(\mathcal{A} u)(t) \leq & \int_{0}^{T} G_{1}(t, s) p_{1}(s) q_{1}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
\leq & \int_{0}^{T} G_{1}(t, s) p_{1}(s)\left[C_{5}\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right)^{\alpha_{1}}+C_{6}\right] d s \\
\leq & C_{5} \int_{0}^{T} G_{1}(t, s) p_{1}(s)\left(\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right)^{\alpha_{1}} d s \\
& +C_{6} \int_{0}^{T} I_{1}(s) p_{1}(s) d s \\
\leq & C_{5} \int_{0}^{T} I_{1}(s) p_{1}(s)\left[\int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau)\left(\varepsilon_{0}(u(\tau))^{\alpha_{2}}+C_{7}\right) d \tau\right]^{\alpha_{1}} d s+\alpha C_{6} \\
\leq & C_{5} \int_{0}^{T} I_{1}(s) p_{1}(s) d s\left(\int_{0}^{T} I_{2}(\tau) p_{2}(\tau) d \tau\right)^{\alpha_{1}}\left(\varepsilon_{0}\|u\|^{\alpha_{2}}+C_{7}\right)^{\alpha_{1}}+\alpha C_{6} \\
= & C_{5} \alpha \beta^{\alpha_{1}}\left(\varepsilon_{0}\|u\|^{\alpha_{2}}+C_{7}\right)^{\alpha_{1}}+\alpha C_{6} \\
\leq & 2^{\alpha_{1}} C_{5} \alpha \beta^{\alpha_{1}}\left(\varepsilon_{0}^{\alpha_{1}}\|u\|^{\alpha_{1} \alpha_{2}}+C_{7}^{\alpha_{1}}\right)+\alpha C_{6} \\
= & C_{5} 2^{\alpha_{1}} \varepsilon_{0}^{\alpha_{1}} \alpha \beta^{\alpha_{1}}\|u\|^{\alpha_{1} \alpha_{2}}+C_{5} 2^{\alpha_{1}} \alpha \beta^{\alpha_{1}} C_{7}^{\alpha_{1}}+\alpha C_{6}, \quad \forall t \in[0, T] .
\end{aligned}
$$

By definition of ε_{0}, we can choose sufficiently large $R_{1}>0$ such that

$$
\begin{equation*}
\|\mathcal{A} u\| \leq\|u\|, \quad \forall u \in \partial B_{R_{1}} \cap P_{0} \tag{3.16}
\end{equation*}
$$

From (H6) i), we deduce that there exist positive constants $C_{8}>0$ and $x_{3}>0$ such that $f(t, x) \geq C_{8} x^{\beta_{1}}$, for all $x \in\left[0, x_{3}\right]$ and $t \in[c, T-c]$. From (H6) ii), for $\varepsilon_{1}=\left(\frac{T^{n-1+\beta_{1}(m-1)}}{C_{8} c^{n-1+\beta_{1}(m-1)} \gamma^{\beta_{1} \beta_{2}} \theta_{1} \theta_{2}^{\beta_{1}}}\right)^{1 / \beta_{1}}>0$, we deduce that there exists $x_{4}>0$ such that $g(t, x) \geq \varepsilon_{1} x^{\beta_{2}}$ for all $x \in\left[0, x_{4}\right]$ and $t \in[c, T-c]$.

We consider $x_{5}=\min \left\{x_{3}, x_{4}\right\}$. So we obtain

$$
\begin{equation*}
f(t, x) \geq C_{8} x^{\beta_{1}}, \quad g(t, x) \geq \varepsilon_{1} x^{\beta_{2}}, \forall(t, x) \in[c, T-c] \times\left[0, x_{5}\right] . \tag{3.17}
\end{equation*}
$$

From assumption $q_{2}(0)=0$ and the continuity of q_{2}, we deduce that there exists sufficiently small $\varepsilon_{2} \in\left(0, \min \left\{x_{5}, 1\right\}\right)$ such that $q_{2}(x) \leq \beta^{-1} x_{5}$ for all $x \in\left[0, \varepsilon_{2}\right]$. Therefore for any $u \in \partial B_{\varepsilon_{2}} \cap P_{0}$ and $s \in[0, T]$, we have

$$
\begin{align*}
\int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau & \leq \int_{0}^{T} G_{2}(s, \tau) p_{2}(\tau) q_{2}(u(\tau)) d \tau \\
& \leq \beta^{-1} x_{5} \int_{0}^{T} I_{2}(\tau) p_{2}(\tau) d \tau=x_{5} \tag{3.18}
\end{align*}
$$

By (3.17), (3.18), Lemma 6 and Lemma 7, for any $t \in[c, T-c]$, we have

$$
\begin{aligned}
(\mathcal{A} u)(t) & \geq \int_{c}^{T-c} G_{1}(t, s) f\left(s, \int_{0}^{T} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right) d s \\
& \geq C_{8} \int_{c}^{T-c} G_{1}(t, s)\left(\int_{c}^{T-c} G_{2}(s, \tau) g(\tau, u(\tau)) d \tau\right)^{\beta_{1}} d s \\
& \geq C_{8} \int_{c}^{T-c} G_{1}(t, s)\left(\varepsilon_{1} \int_{c}^{T-c} G_{2}(s, \tau)(u(\tau))^{\beta_{2}} d \tau\right)^{\beta_{1}} d s \\
& \geq \frac{C_{8} c^{n-1}}{T^{n-1}} \int_{c}^{T-c} I_{1}(s)\left[\left(\frac{\varepsilon_{1} c^{m-1}}{T^{m-1}}\right)^{\beta_{1}}\left(\int_{c}^{T-c} I_{2}(\tau)(u(\tau))^{\beta_{2}} d \tau\right)^{\beta_{1}}\right] d s \\
& \geq \frac{C_{8} c^{n-1+(m-1) \beta_{1}} \varepsilon_{1}^{\beta_{1}} \gamma^{\beta_{1} \beta_{2}} \theta_{1} \theta_{2}^{\beta_{1}}}{T^{n-1+(m-1) \beta_{1}}}\|u\|^{\beta_{1} \beta_{2}}=\|u\|^{\beta_{1} \beta_{2}} \geq\|u\| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|\mathcal{A} u\| \geq\|u\|, \quad \forall u \in \partial B_{\varepsilon_{2}} \cap P_{0} \tag{3.19}
\end{equation*}
$$

By (3.16), (3.19) and Theorem 1 ii), we deduce that \mathcal{A} has at least one fixed point $u_{2} \in\left(\bar{B}_{R_{1}} \backslash B_{\varepsilon_{2}}\right) \cap P_{0}$. Then our problem $(S)-(B C)$ has at least one positive solution $\left(u_{2}, v_{2}\right) \in P_{0} \times P_{0}$ where $v_{2}(t)=\int_{0}^{T} G_{2}(t, s) g(s, u(s)) d s$. The proof of Theorem 3 is completed.

4 Examples

In this section, we shall present two examples which illustrate our results.
Example 1. Let

$$
f(t, x)=\frac{x^{a}}{t^{\gamma_{1}}(T-t)^{\delta_{1}}}, \quad g(t, x)=\frac{x^{b}}{t^{\gamma_{2}}(T-t)^{\delta_{2}}},
$$

with $a, b>1$ and $\gamma_{1}, \delta_{1}, \gamma_{2}, \delta_{2} \in(0,1)$. Here $f(t, x)=p_{1}(t) q_{1}(x)$ and $g(t, x)=$ $p_{2}(t) q_{2}(x)$, where

$$
p_{1}(t)=\frac{1}{t^{\gamma_{1}}(T-t)^{\delta_{1}}}, \quad p_{2}(t)=\frac{1}{t^{\gamma_{2}}(T-t)^{\delta_{2}}}, \quad q_{1}(x)=x^{a}, \quad q_{2}(x)=x^{b} .
$$

We have $0<\int_{0}^{T} p_{1}(s) d s<\infty, 0<\int_{0}^{T} p_{2}(s) d s<\infty$.
In (H3), for $r_{1}<a, r_{2}<b$ and $r_{1} r_{2} \geq 1$, we have

$$
\limsup _{x \rightarrow 0^{+}} \frac{q_{1}(x)}{x^{r_{1}}}=\lim _{x \rightarrow 0^{+}} x^{a-r_{1}}=0, \quad \limsup _{x \rightarrow 0^{+}} \frac{q_{2}(x)}{x^{r_{2}}}=\lim _{x \rightarrow 0^{+}} x^{b-r_{2}}=0
$$

In (H4), for $l_{1}<a, l_{2}<b, l_{1} l_{2} \geq 1$ and $c \in\left(0, \frac{T}{2}\right)$, we have

$$
\begin{aligned}
& \liminf _{x \rightarrow \infty} \inf _{t \in[c, T-c]} \frac{f(t, x)}{x^{l_{1}}}=\liminf _{x \rightarrow \infty} \inf _{t \in[c, T-c]} \frac{x^{a-l_{1}}}{t^{\gamma_{1}}(T-t)^{\delta_{1}}} \\
& \quad=\left(\max \left\{\frac{\gamma_{1}^{\gamma_{1}} \delta_{1}^{\delta_{1}} T^{\gamma_{1}+\delta_{1}}}{\left(\gamma_{1}+\delta_{1}\right)^{\gamma_{1}+\delta_{1}}}, c^{\gamma_{1}}(T-c)^{\delta_{1}}, c^{\delta_{1}}(T-c)^{\gamma_{1}}\right\}\right)^{-1} \lim _{x \rightarrow \infty} x^{a-l_{1}}=\infty
\end{aligned}
$$

In a similar manner, we have

$$
\liminf _{x \rightarrow \infty} \inf _{t \in[c, T-c]} \frac{g(t, x)}{x^{l_{2}}}=\infty
$$

For example, if $a=2, b=3 / 2, r_{1}=1, r_{2}=4 / 3, l_{1}=3 / 2, l_{2}=1$, the above conditions are satisfied. Under the assumption (H1), by Theorem 2, we deduce that the problem $(S)-(B C)$ has at least one positive solution.

Example 2. Let $f(t, x)=\frac{x^{a}(2+\cos x)}{t^{\gamma}}, g(t, x)=\frac{x^{b}(1+\sin x)}{(T-t)^{\delta}}$, with $a, b \in(0,1)$ and $\gamma, \delta \in(0,1)$. Here $f(t, x)=p_{1}(t) q_{1}(x)$ and $g(t, x)=p_{2}(t) q_{2}(x)$, where
$p_{1}(t)=\frac{1}{t^{\gamma}}, \quad p_{2}(t)=\frac{1}{(T-t)^{\delta}}, \quad q_{1}(x)=x^{a}(2+\cos x), \quad q_{2}(x)=x^{b}(1+\sin x)$.
We have $0<\int_{0}^{T} p_{1}(s) d s<\infty, 0<\int_{0}^{T} p_{2}(s) d s<\infty$.
In (H5), for $\alpha_{1}=a, \alpha_{2}>b$ and $\alpha_{1} \alpha_{2} \leq 1$, we have

$$
\begin{aligned}
& \limsup _{x \rightarrow \infty} \frac{q_{1}(x)}{x^{\alpha_{1}}}=\limsup _{x \rightarrow \infty} \frac{x^{a}(2+\cos x)}{x^{\alpha_{1}}}=3 \\
& \limsup _{x \rightarrow \infty} \frac{q_{2}(x)}{x^{\alpha_{2}}}=\limsup _{x \rightarrow \infty} \frac{x^{b}(1+\sin x)}{x^{\alpha_{2}}}=0
\end{aligned}
$$

In (H6), for $\beta_{1}=a, \beta_{2}>b, \beta_{1} \beta_{2} \leq 1$ and $c \in\left(0, \frac{T}{2}\right)$, we have

$$
\begin{aligned}
\liminf _{x \rightarrow 0^{+}} \inf _{t \in[c, T-c]} \frac{f(t, x)}{x^{\beta_{1}}} & =\liminf _{x \rightarrow 0^{+}} \inf _{t \in[c, T-c]} \frac{x^{a}(2+\cos x)}{t^{\gamma} x^{\beta_{1}}}=\frac{3}{(T-c)^{\gamma}}>0, \\
\liminf _{x \rightarrow 0^{+}} \inf _{t \in[c, T-c]} \frac{g(t, x)}{x^{\beta_{2}}} & =\liminf _{x \rightarrow 0^{+}} \inf _{t \in[c, T-c]} \frac{x^{b}(1+\sin x)}{(T-t)^{\delta} x^{\beta_{2}}} \\
& =\frac{1}{(T-c)^{\delta}} \lim _{x \rightarrow 0^{+}} x^{b-\beta_{2}}=\infty .
\end{aligned}
$$

For example, if $a=1 / 3, b=1 / 2, \alpha_{1}=1 / 3, \alpha_{2}=1, \beta_{1}=1 / 3, \beta_{2}=1$, the above conditions are satisfied. Under the assumption (H1), by Theorem 3, we deduce that the problem $(S)-(B C)$ has at least one positive solution.

Acknowledgement

The authors thank the referees for their valuable comments and suggestions. The work of the second author was supported by the CNCS grant PN-II-ID-PCE-2011-3-0557, Romania.

References

[1] P.W. Eloe and J. Henderson. Positive solutions for $(n-1,1)$ conjugate boundary value problems. Nonlinear Anal., 28:1669-1680, 1997.
http://dx.doi.org/10.1016/0362-546X(95)00238-Q.
[2] D. Franco, G. Infante and D. O'Regan. Nontrivial solutions in abstract cones for Hammerstein integral systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14:837-850, 2007.
[3] C.S. Goodrich. Nonlocal systems of BVPs with asymptotically superlinear boundary conditions. Comment. Math. Univ. Carolin., 53:79-97, 2012.
[4] J. Henderson and R. Luca. Positive solutions for a system of higher-order multipoint boundary value problems. Comput. Math. Appl., 62:3920-3932, 2011. http://dx.doi.org/10.1016/j.camwa.2011.09.045.
[5] J. Henderson and R. Luca. On a system of higher-order multi-point boundary value problems. Electron. J. Qual. Theory Diff. Equ., 2012(49):1-14, 2012.
[6] J. Henderson and R. Luca. Positive solutions for a system of second-order multipoint boundary value problems. Appl. Math. Comput., 218:6083-6094, 2012. http://dx.doi.org/10.1016/j.amc.2011.11.092.
[7] J. Henderson and R. Luca. Positive solutions for singular systems of multi-point boundary value problems. Math. Methods Appl. Sci., 36:814-828, 2013. http://dx.doi.org/10.1002/mma.2628.
[8] G. Infante and P. Pietramala. Eigenvalues and non-negative solutions of a system with nonlocal BCs. Nonlinear Stud., 16:187-196, 2009.
[9] G. Infante and P. Pietramala. Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. Nonlinear Anal., 71:1301-1310, 2009. http://dx.doi.org/10.1016/j.na.2008.11.095.
[10] Y. Ji and Y. Guo. The existence of countably many positive solutions for some nonlinear nth order m-point boundary value problems. J. Comput. Appl. Math., 232:187-200, 2009. http://dx.doi.org/10.1016/j.cam.2009.05.023.
[11] Y. Ji, Y. Guo and C. Yu. Positive solutions to ($n-1, n$) m-point boundary value problems with dependence on the first order derivative. Appl. Math. Mech. (English Ed.), 30:527-536, 2009.
[12] B. Liu, L. Liu and Y. Wu. Positive solutions for singular systems of threepoint boundary value problems. Comput. Math. Appl., 53:1429-1438, 2007. http://dx.doi.org/10.1016/j.camwa.2006.07.014.
[13] S. Roman. Linear differential equation with additional conditions and formulae for Green's function. Math. Model. Anal., 16:401-417, 2011.
http://dx.doi.org/10.3846/13926292.2011.602125.
[14] H. Su, Z. Wei, X. Zhang and J. Liu. Positive solutions of n-order and m-order multi-point singular boundary value system. Appl. Math. Comput., 188:12341243, 2007. http://dx.doi.org/10.1016/j.amc.2006.10.077.
[15] Z. Yang. Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Anal., 62:1251-1265, 2005.
http://dx.doi.org/10.1016/j.na.2005.04.030.
[16] Y. Zhou and Y. Xu. Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations. J. Math. Anal. Appl., 320:578-590, 2006. http://dx.doi.org/10.1016/j.jmaa.2005.07.014.

