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1 Introduction

We consider the singular system of nonlinear higher-order ordinary differential
equations

u™(t) + f(t,o(t)) =0, t€(0,T), neN, n>2, )
oM (t) +g(tut) =0, te(0,T), meN, m=>2,
with the multi-point boundary conditions
p—2
w(©0) =/ (0) = =ul"2(0) =0, w(T)=) au(&), peN, p>3,
=1
q—2
v(0) =/ (0) = -+ =02 (0) =0, o(T)=> biv(n), qeN, ¢>3.
=1
(BC)

We present some weaker assumptions on f and g, which do not possess
any sublinear or superlinear growth conditions and may be singular at ¢t = 0
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and/or t = T, such that positive solutions for problem (S)-(BC) exist. By
a positive solution of (S)-(BC), we understand a pair of functions (u,v) €
(C(0, T);Ry) N C™((0,T))) x (C([0, T]; Ry) N C™((0,T))) satistying (S) and
(BC) with
sup u(t) >0, sup w(t) > 0.
te[0,T] te[0,T]

This problem is a generalization of the problem studied in [7], where n = m = 2.
In [12], the authors investigated the existence of positive solutions for system
(S) with n = m = 2 and the boundary conditions

u(0) =0, u(1) = au(n), v(0) =0, v(1) = av(n), n€ (0,1),0 <an<1.

In [16], the authors studied the existence and multiplicity of positive solutions
for system (S) with n = m = 2, T'=1 and boundary conditions which contain
only one intermediate point. We also mention the paper [14], where the authors
used the fixed point index theory to prove the existence of positive solutions for
the system (S) with f(¢,v(t)) and g(¢, u(t)) replaced by ¢(t)f(u(t),v(t)) and
d(t)g(u(t), v(t)), respectively, and (BC), where 3 < & < & < -+ < §a <
L2 <m <m < <mga <1 (T =1). Other systems with various
nonlocal boundary conditions were investigated in the papers [2,3,5,8,9,15].
Some multi-point boundary value problems for systems of ordinary differential
equations which involve positive eigenvalues were studied in recent years by
using the Guo—Krasnosel’skii fixed point theorem. In [4], the authors give

sufficient conditions for A, i, f and g such that the system

{ u™ (t) + Ae(t) f(u(t),v(t)) =0, t€(0,T), neN, n>2,

o™ (8) + pd(t)g(u(t),v(t)) =0, t€(0,T), meN, m>2, (51)

with the boundary conditions (BC) has positive solutions (u(t) > 0, v(t) > 0
for all ¢ € [0,T] and (u,v) # (0,0)). The system (S7) with n =m = 2 and the
multi-point boundary conditions

OZU(O) — ﬂU/(O) = Zaz 52 p S Na p 2 3’
(BCh)

q—
y0(0) — 6v'(0) = Z v(n:), q€N, ¢>3,

has been investigated in [6].

In recent years, multi-point boundary value problems for second-order or
higher-order differential or difference equations/systems have been investigated
by many authors, by using different methods such as fixed point theorems in
cones, the Leray—Schauder continuation theorem and its nonlinear alternatives,
and the coincidence degree theory.

In Section 2, we shall present some auxiliary results which investigate two
boundary value problems for higher-order equations (the problems (2.1)—(2.2)
and (2.4)-(2.5) below). In Section 3, we shall prove two existence results for
the positive solutions with respect to a cone for our problem (S)—(BC), which
are based on the Guo—Krasnosel’skii fixed point theorem, presented below.
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Theorem 1. Let X be a Banach space and let C C X be a cone in X. Assume
21 and Qiare bounded open subsets of X with 0 € 21 C 21 C (25 and let
A:CN 22\ 21) = C be a completely continuous operator such that, either
) [[Au| < ull, w € C NIy, and || Aull > |lull, w € C NI, or
i) [|Au|| > |Ju|, w € CN OS2, and ||Au|| < |lul|, v € C N Is.

Then A has a fized point in C N (22 \ 21).

Finally, in Section 4, we shall present some examples which illustrate our
main results.
2 Auxiliary Results
In this section, we shall present some auxiliary results from [10,11] (see also [13])
related to the following nth-order differential equation with p-point boundary

conditions

u™(t) +y(t) =0, te(0,T), (2.1)

uw(0) =/ (0) = - =u"20) =0, u(l)= Z a;u(&;). (2.2)

Lemma 1. If d = T" ! — Ef:_lzaiff_l #0,0<& <o <& <T and
y € C([0,T)), then the solution of (2.1)—(2.2) is given by

tnfl T . tnil p—2 & "
u(t) = m/o (T —s)"""y(s)ds — d(n—l)!;ai/o (& —s)" y(s)ds

- (n—ll)'/o (t—s)"ty(s)ds, 0<t<T.

Lemma 2. Under the assumptions of Lemma 1, the Green’s function for the
boundary value problem (2.1)—(2.2) is given by

n—1 _ —2 _ _
T = = S s — 9 — (- 9,
if & < s <&y, s <t
n—1 n— -2 n—
Gq(t m[(T - S) t— Zf:j+1 az(gz - 5) 1]7
1(75)_ if€j§3<§j+1782t7j:07"'ap_37
n—1 .
(@ =) = it =), &2 <s<T, s<t,
n—1 )
(T —s)"Y if & <s<T, s>t (&%=0),

for all (t,s) € [0,T] x [0,T].

Math. Model. Anal., 18(3):309-324, 2013.



312 J. Henderson and R. Luca

Using the Heaviside function on R, H(z) =1 for z > 0, and H(z) = 0 for
x < 0, the above Green’s function can be written in a compact form

n—1 p—2
Gr(1:5) = gty [T 9" = Sl = o (e~ o)

By using the above Green’s function the solution of problem (2.1)—(2.2) is
expressed as u(t) = fOT G1(t, s)y(s) ds.

Lemma 3. Under the assumptions of Lemma 1, the Green’s function for the
boundary value problem (2.1)—(2.2) can be expressed as

t’nfl p—2

Gi(t,s) = gu(t ) + — > aigi(&,s),
=1

where

t 1 T =) =T (), 0S5 <t ST
D68 = C T (e T — gt 0<t<s<T.

Lemma 4. The function g1 given in (2.3) has the properties:

a) g1 : [0, 7] x [0,T] = Ry is a continuous function and g1(t,s) > 0 for all
(t,s) €10,7] x [0,T].

b) g1(t,s) < g1(01(s), s), for all (t,s) € [0,T] x [0,T].

C) For any ¢ € (07 %)7 minte[c,ch] gl(tas) > %91(91(8),8), fO’f’ all s €
[0, 71,

where 01(s) = s if n =2 and

— =, s5€(0,7],

n—1
f1(s) = 1-(=7)m=2 ifn > 3.
T’(nr7._712)7 s =0,

Lemma 5. Assume that d > 0, 0 < & < -+ < &0 < T, a; > 0 for all
i=1,...,p— 2. Then the Green’s function Gy of the problem (2.1)—(2.2) is
continuous on [0,T] x [0,T] and satisfies G1(t,s) > 0 for all (t,s) € [0,T] x
[0,T]. Moreover, if y € C([0,T]) satisfies y(t) > 0 for all t € [0,T], then the
unique solution u of problem (2.1)—(2.2) satisfies u(t) >0 for all t € [0,T].

Lemma 6. Assume that d > 0, 0 < & < -+ < &9 < T, a; > 0 for all
i=1,...,p—2. Then the Green’s function Gy of problem (2.1)—(2.2) satisfies
the inequalities
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a) Gl(tvs) < Il(s)v V(t,s) € [OaT] X [OaT]; where

n—1 P—2
Ii(s) = g1(01(s), s) + > aigi(&s), Vs €[0,T;
i=1
b) For every c € (0, 1),
n—1
te{r}l}ﬂ J Gi(t,s) > ﬁh(s), Vs € [0,T].

Lemma 7. Assume that d > 0, 0 < & < -+ < &2 < T, a; > 0 for all
i=1,....,p—2,ce (0, %) and y € C([0,T)) satisfies y(t) > 0 for all t € [0,T].
Then the solution u(t), t € [0,T], of problem (2.1)—(2.2) satisfies the inequality

n—1

i t) > t
epin u(t) 2 gy max u(t).

We can also formulate similar results as Lemmas 1-7 above for the boundary
value problem

v ™ () + h(t) =0, te(0,T), (2.4)
v(0) = v/(0) =+ = 0"D(0) =0, w(T) =} bwlm),  (25)

where 0 <1y < -+ <my_o<T,b;>0fori=1,...,¢—2,and h € C([0,T]). If
e="Tm"1 —Zg;lz bmgnfl # 0, we denote by G2 the Green’s function associated
to problem (2.4)—(2.5) and defined in a similar manner as G;. We also denote
by g2, 62 and I the corresponding functions for (2.4)—(2.5) defined in a similar
manner as g1, 7 and I, respectively.

3 Main Results

In this section, we shall investigate the existence of positive solutions for our
problem (S)—(BC), under various assumptions on singular functions f and g.
We present the assumptions that we shall use in the sequel.

(H1) 0 < & < - <& o <Tya; >0,i=1,....p—2,d =T"" —
S aer? >0 0<m < - <mgo<T,b;>0i=1..,q9—2,
e=Tm"1 -7 1:n1>0

(H2) Functions f,g € C((0,T) x Ry,Ry) and there exist p; € C((0,T),R}),

quC(]RJF,]RJF)2—12W1th0<f0pZ )dt < 00,1 =1,2, ¢:(0) =0,
g2(0) = 0 such that

ft,z) <pi(Oaqi(z), g(t,z) <p2(t)ga(z), VEe€(0,T), x€Ry.

Math. Model. Anal., 18(3):309-324, 2013.
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(H3) There exist r1,72 € (0,00) with r179 > 1 such that

i) ¢, =limsup @(z) €[0,00); ii) g5 = limsup a2(2) =0.
z—0t+ T 0+ T2
(H4) There exist l1,ls € (0,00) with l;ls > 1 and ¢ € (0, ) such that
) Joo=lminf inf o €000
i . g(t,z)
W ST e T
(H5) There exist ai,as € (0,00) with agag < 1 such that
i) ¢j. =limsup @ (7) [0,00); i) g5, = limsup @2(7) = 0.
z—o0 LY z—00 L2

(H6) There exist 81,82 € (0,00) with 8182 <1 and ¢ € (0, %) such that

. 7 f(t,x) .
i) fO*li‘Eéﬁfte[ian g apn € (0,00
N B g(t,z)

W) gh=liminf | inf S5 = oo

The pair of functions (u,v) € (C([0,7]) N C™((0,T))) x (C([0,T]) N
C™((0,T))) is a solution for our problem (S)—(BC) if and only if (u,v) €
C(]0,T]) x C([0,T]) is a solution for the nonlinear integral equations

= / G1(t, s)f(sw(s)) ds, telo,T],
pox
v(t) = / Ga(t,s)g(s,u(s))ds, te[0,T].

0

The system (3.1) can be written as the nonlinear integral system

/ G1(t,s) (s, /OT Ga(s,7)g(7,u(7)) dT)dS, t € 10,7,
t) :/0 Ga(t,s)g(s,u(s))ds, te0,T].

We consider the Banach space X = C(]0,7]) with supremum norm ||u|| =
Supyepo, 7] |u(t)| and define the cone P C X by P = {u € X, u(t) > 0, Vt €
[0,7]}. For any r > 0, let

By ={u e C(0,7T]), [lull <r}, 0B, ={ue C([0,T]), [lul| =r}.
We also define the operator A: P — X by

A(u)(t) = /OT G4 (t, s)f(s, /OT GQ(S,T)g(T,u(T)) dr)ds.
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Lemma 8. Assume that (H1)-(H2) hold. Then A : P — P is completely
continuous.

Proof. 'We denote a = foT I (s)pi(s)ds and B = fOT I>(s)p2(s) ds. Using (H2),
we deduce that 0 < a < 0o and 0 < 8 < co. By Lemma 5 and the correspond-
ing lemma for Go, we get that A maps P into P.

We shall prove that 4 maps bounded sets into relatively compact sets.
Suppose D C P is an arbitrary bounded set. First we prove that A(D) is
a bounded set. Because D is bounded, then there exists M; > 0 such that
|lu]| < My for all w € D. By the continuity of go, there exists My > 0 such
that My = sup,cp,ay,] ¢2(7). By using Lemma 6 for Go, for any u € D and
s € [0,T], we obtain

/ GQ(S,T)Q(T,U(T)) dTﬁ/ GQ(S,T)])Q(T)C]Q(U(T)) dr
0 0

T
< MQ/O Is(7)p2(7) dT = BMo>. (3.2)

Because ¢y is a continuous function, there exists Mz > 0 such that M3 =
SUPyefo,a0,) 41 (). Therefore, from (3.2), (H2) and Lemma 6, we deduce

T T
:/0 Gl(t,s)f<s,/0 GQ(S,’T)Q(T,U(T)) dT)dS
T T
S/o Gl(t,s)pl(s)ql(/o GQ(S,T)g(T,u(T)) dT)dS
< Mj3 /OT Ii(s)p1(s)ds = aM3, Vte[0,T]. (3.3)

So, ||Au|| < aMj for all uw € D. Therefore A(D) is bounded.
In what follows, we shall prove that A(D) is equicontinuous. By using
Lemma 3, we have

/ G1(t, s) s,/T Ga(s,7)g(7,u(7)) dT)dS
:/0 [gl (t,s) ndl pz:Qalgl (&, 8) f(s,/OTGQ(s,T)g(T,u(T)) dT)dS

1 t 1 n—1 n—1 n—1
:W/O[t”’ (T — s ' — T (¢ — 5)" ]

X f(s,/OT GQ(S,T)Q(T,U(T)) d’T)dS

+ W /Tt"_l(T - s)”—1f<s, /OTGQ(S,T)Q(T, u(r)) dT)dS

s S 3o 699 (s [ Gats (k) ar)is, 0.7

Math. Model. Anal., 18(3):309-324, 2013.
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Therefore, for any ¢ € (0,7"), we obtain

n—1 n—1 _ qmn—1/4 _ 4\yn—1 T
(Au)'(t) = i G t()n — 1)!11:”1@ ) f(t,/o Ga(t,7)g(7,u(7)) dr)
Pin— Dt 2(T —s)" "t — (n— )Tt — 5)" 2
+/0 (n— D)1

X f s, /T Ga(s,7)g(7,u(7)) dT)dS
Wf( /OT Ga(t,7)g(7,u(r)) dT)
+ /tT (n _(szti f)(é:n__f)n_l f(S, /OT G2(377)g(T, ’LL(T)) dT)

. (n—il)t”“iai /()Tgl(&vS)f(s’/OTGQ(S’T)g(T’U(T)) dT)dS.

i=1

So, for any t € (0,T'), we deduce

t yn—2 — s n—1 n—1(4 s n—2
(At} S/o — ()n—;)!gn_l(t ")

X g1 (/OT Ga(s,7)g(T,u(T)) dT) ds
+ /tT Imm(s)ql(/oT GQ(S,T)Q(T,U(T)) d’l’) ds
R / & om e / Gals. )g(ru(r) dr)ds

i=1

t tn*2(T _ S)nfl 4 T”fl(t _ s)"*z
< M3 (/0 (n — 2)!T”—1 pl(s) ds

T yn—2 _ g)n—1
+/t t(n (TQ)'T’z T p1(s)ds

(n— 1 e pZzaZ /T 91(&i, s)p1(s) ds). (3.4)

We denote

7 t tn72(T _ S)nfl + Tnfl(t _ S)n72
hlt) = /0 (n — 2)ITn—1

T -2 —1
2T — )
+/t (n — 2)ITn—1 pi(s)ds,

n— n—2 p—2 T
w(t) = h(t) + % Za,-/o 91(&, )pi(s)ds, te (0,T).

=1

p1(s)ds
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For the integral of the function h, by exchanging the order of integration,
we obtain

/OT h(t) dt = /OT ( /Ot (T — i):j;;;‘:j@ — )" s) ds)dt
LY.

- / (/s ( ()n = ;);Tn-l( L (o) ) as
! /OT ( /0 Wﬁl(s) dt)ds

/OTWM(S) (/sTtH it)ds + /OT(S 1—(82)>! (/ST(”)” dt)ds
o o[ )

= (M e as+ [ O,

T T — g)n—1gn—1
+/0 ((n—i)!T”—lpl(s)dS

2

T
= m/o (T — 5)" " 'pi(s)ds < o0.

For the integral of the function u, we have

/OT/J(t)dt:/OT ZCLZ/ =2 /OT91(&,8)p1(s)ds)dt

T —1p—2
Sﬁ/o (T —s)" ! ds+ Zaz/ 91(01(s), s)p1(s) ds

1 Tn—1 p—2 T -
< ot g ;ai)/o (T = 5)"py(s) ds < oo. (3.5)

We deduce that p € L'(0,T). Thus for any given t1,ty € [0,1] with ¢; < to
and u € D, by (3.4), we obtain

to 123
(Aut) - (Au)(ea)| = | [ (awy @it <0 [ a3
t1 ty
From (3.5), (3.6) and absolute continuity of the integral function, we ob-
tain that A(D) is equicontinuous. This conclusion together with (3.3) and
Ascoli-Arzela theorem yields that A(D) is relatively compact. Therefore A is
a compact operator.
By using similar arguments as those used in the proof of Lemma 2.4 from
[12], we can show that A is continuous on P. Therefore A : P — P is completely
continuous. O

Math. Model. Anal., 18(3):309-324, 2013.
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For ¢ € (0,T/2), we define the cone

= > i >
Py {u € X, u(t) >0, Vt€[0,7], te[rcr}%rn_c]u(t) > 7||u\|},

where v = min{c" 1 /T~ ¢m=1/T™=1}. Under assumptions (H1), (H2), we
have A(P) C Py. Indeed, for u € P, let v = A(u). By Lemma 7, we have

n—1

min v(t) > [0l = ~lvll;

t€lc, T—c] - In-l
that is v € P.

Theorem 2. Assume that (H1)-(H4) hold. Then the problem (S)—-(BC) has
at least one positive solution (u(t),v(t)), t € [0,T].

Proof. 'We consider the cone Py with ¢ given in (H4). From (H3) i) and (H2),
we deduce that there exists C; > 0 such that

q(z) < Cia™, Vzxel0,1]. (3.7)

From (H3) ii) and (H2), for Co = min{(1/(C1aB™))*/™,1/B8} > 0, we deduce
that there exists 61 € (0,1) such that

q2(z) < Cox™, Ve l0,d]. (3.8)

From (3.8), (H2) and Lemma 6, for any u € 0Bs, N Py and s € [0,T], we
obtain

T T
/ GQ(S,T)Q(T,U(T)) dr §/ GQ(S,T)]?Q(T)QQ(U(T)) dr
0 0
T .
< C’g/ Ga(s,7)p2(T) (u(T)) dr
0
T
< CQ/ IQ(T)pQ(T) dr - H’U,HT2 = C2ﬂ5;2 < 512 < 1. (39)
0
By using (3.7)—(3.9) and (H2), for any u € 0B, N Py and t € [0,T], we obtain
(Au)(t) < /o Gl(tas)m(s)ql(/o Ga(s,7)g(7,u(7)) dT)dS
T T -
< Cl/o G1(t, s)pl(s)(/o Gg(s,T)g(T,u(T)) dT) ds
<0 /0 Gr(t,5)m(s)( /0 Ga(s, T)pa(r)az (u(r)) dr) ds
T T T1
< Cl/o G1(t,8)p1(8)(02/0 Ga(s, 7)p2(T) (u(T)) dT) ds

1

<o [ 16mE(C: [ e o) ar)
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T

T r1
<C [ n@pds (G [ Bpa(rdr) - ul
0 0
< Cra(Cof)" [|ul 72 = CLl3 ™ [Jul[™ ™ < fluf™72 < lull

Therefore
[Au|| < |lul|, Yu € dBs, N Py. (3.10)

From (H4) i), we deduce that there exist C3 > 0 and 27 > 0 such that
f(t,x) > Cszh, Vo>, V€ [e, T —d. (3.11)

‘We consider now

Tm—1 Th(m=1)+n-1 1/11
Cy = max{ ( 7 ) } > 0,
0

cmflfylz 05 ’ cll(m_1)+n_103’7lll2 0,

where 6; = chic Ii(s)ds > 0 and 0y = foC I(s)ds > 0. From (H4) ii), we

C

deduce that there exists x5 > 1 such that
g(t,x) > Cua'?, Vo >xy, VtE[c,T . (3.12)
Now we choose Ry = max{z1,22} and R > maX{Ro/fy,Ré/l2}. Then for

any u € OBgr N Py, we have minye 7—q u(t) > 7vllul| = yR > Ro. By using
(3.11) and (3.12), for any u € 0Br N Py and s € [¢,T — ¢], we obtain

T T—c
/ Ga(s, T)g(T, u(T)) dr > / Ga(s, T)g(T, u(T)) dr
0 c

C’m—l T—c Io cm—l . T—c .
> o [ RO drz Son [ R dr
c C
> |lul|2 = R"2 > Ry.

Then for any u € 0Bgr N Py and t € [¢, T — ¢, we have
T T
() = [ Git.s)s (s, [ Gals.mg(ru(r) dr)ds
0 0
T—c T
Z/ Gl(t,s)f<s,/ GQ(S,T)Q(T,U(T)) dT)dS
c 0
T—c T—c 1
> Cg/ G1(t,s) (/ G2(87T)g(7'7’u,(7')) dT) ds
Cch Ccmf1 T—c Iy A
> 03/ G4 (t, S)(ﬁ/ I (7)Cy (u(T)) dT) ds
L(m-1) T—c T—c L
> CoClh it [ Gattsn ([ Rt ar) s

4 Tll(M71) ¢

. Cll(mfl)Jrnfl e T—c T—c I i
203041m7”(/6 Il(S)dS)(/C L(r)dr) " flul>

> |2 > [ful.

Math. Model. Anal., 18(3):309-324, 2013.
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Therefore we obtain
[lAu|| > |lu]l, Yu € dBrN Pp. (3.13)

By (3.10), (3.13) and Theorem 1 i), we obtain that A has a fixed point u; €
(Br \ Bs,) N Py, that is 61 < [|ui]| < R. Let vi(t) = [ Galt, s)g(s,u1(s)) ds.
Then (ui,v1) € Py x Py is a solution of (S)-(BC). In addition |vi| > 0.
Indeed, if we suppose that v1(t) = 0 for all ¢ € [0,T], then by using (H2) we
have f(s,v1(s)) = f(s,0) = 0 for all s € [0,T]. This implies u;(¢t) = 0 for
all ¢ € [0,T], which contradicts |lui|| > 0. By using Theorem 1.1 from [11]
(see [1]), we obtain u;(t) > 0 and v1(¢) > 0 for all ¢t € (0,7 — ¢]. The proof of
Theorem 2 is completed. O

Theorem 3. Assume that (H1), (H2), (H5) and (H6) hold. Then the problem
(S)-(BC) has at least one positive solution (u(t),v(t)), t € [0,T).

Proof. 'We consider the cone Py with ¢ given in (H6). By (H5) i) we deduce
that there exist C5 > 0 and Cg > 0 such that

¢1(z) < C52™t + C4, Y € [0, 00). (3.14)

From (H5) ii), for g > 0, g9 < (221 C5a3%1) /1 we deduce that there exists
C7 > 0 such that

02(z) < £02°? + Cy, Yz € [0,00). (3.15)

By using (3.14), (3.15) and (H2), for any u € Py, we obtain
(Au)(t) < /T Gi(t,s)pi(s)q (/T Ga(s,7)g(7,u(7)) dT)dS
0T ’ T o
< /0 G1(t, ) ()] G5 ( /O Ga(s,T)g(r.u(r)) dr) " + C|ds
< Cs /OTGl(t7 s)pl(s)(/OT Ga(s,7)g(7,u(7)) dT)alds
T
+ 6’6/0 I (s)p1(s) ds

T T ay

< 05/0 I (s)p1(s) [/0 Ga(s,7)p2(7) (20 (u(r)) ™ + C7) dT} ds+aCg
T T o o

<G [ nemdas( [ @) el + )" s

= C5a (o||ul|*? + C7)™* + aCg
< 2MCsap™ (e ul ™ + C7) + aCl
= 52151 S ||u]|*12 4+ C52%1 8% C 4 aCs, Yt € [0,T).

By definition of £y, we can choose sufficiently large Ry > 0 such that

[Aull < ||ul|, Yu€ OBg, NFy. (3.16)



Positive Solutions for Singular Systems 321

From (H6) i), we deduce that there exist positive constants Cg > 0 and
w3 > 0 such that f(t,x) > Cg2P, for all x € [0,23] and t € [¢,T — ¢|. From
.. r—1481(m—1)
(H6) ii), for e; = (Csc"*”l(m*l)yﬁlﬁzalafl)I/Bl > 0, we deduce that there
exists x4 > 0 such that g(¢,2) > e1272 for all @ € [0,24] and t € [¢,T — ¢].
We consider x5 = min{xs,z4}. So we obtain

ft,z) > CeaPr,  g(t,z) > 12, Y(t,z) € [¢, T — ] x [0, z5]. (3.17)

From assumption ¢2(0) = 0 and the continuity of ¢z, we deduce that there
exists sufficiently small 5 € (0,min{xs,1}) such that qa(z) < B~ txs for all
z € [0, e2]. Therefore for any u € B, N Py and s € [0, 7], we have

T T
/ Ga(s, 7)g (7, u(r)) dr < / G (s, 7)pa(7) gz (u(r)) dr
0 0

< ﬁ_lxg,/o Iy(7)p2(T) dT = 5. (3.18)

By (3.17), (3.18), Lemma 6 and Lemma 7, for any ¢ € [¢,T — ¢|, we have

T

(Au)(t) > /CTC G4 (t, s)f(s, Ga(s,7)g(7,u(7)) dT) ds

> Cs /CT_C Gi(t,s) (/CT_C Ga(s,7)g(7,u(7)) dT) Blds
> Cy / Tﬁcal(t, s) (51 / o Ga(s, 7) (u(r))™ dT) * ds

S () ([ o) T

Cgcn—1Hm=1p1 B 6162,
= Tn—1+(m—1)p1

B1
2w PP2 = (]2 > ul.
Therefore

|Aul| > |lul|, Yu € dB., N Po. (3.19)

By (3.16), (3.19) and Theorem 1 ii), we deduce that A has at least one
fixed point us € (Bgr, \ Be,) N Py. Then our problem (S)-(BC) has at least

one positive solution (ug,v2) € Py x Py where vy(t) = fOT Ga(t, 8)g(s,u(s)) ds.
The proof of Theorem 3 is completed. O

4 Examples

In this section, we shall present two examples which illustrate our results.

Ezxample 1. Let

x® b

f(t,z) = (T =) g(t,x) = (T — 1)

Math. Model. Anal., 18(3):309-324, 2013.
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with a,b > 1 and 71,81,72,02 € (0,1). Here f(t,2) = p1(t)q1(2) and g(t, ) =
p2(t)gz2(x), where

1 1

— a b
ma pa(t) =

t) ) Q1(ZU) =a, qz(ﬂf) =X .

pit) = (T — 1)

VVehaweO<f0 p1(s) ds < oo, O<fO pa(s) ds < .
In (H3), for r <a ro < b and rlrgzl we have

. q1\T . —r . q2(T . —r
hmsupL) = lim 2" =0, hmsupL = lim 27" =0.
r—0+ I z—0t z—0+ I z—0t

In (H4), for l; < a,ls <b, l1la > 1 and ¢ € (0, %), we have

t afll
liminf inf M = liminf inf _r
00 tele,T—c] wlt z—00 tele,T—c] tN (T —t)%

Y1 551T’71+61 -1
= (max{ LA~ m (T — )%, (T — )™ lim 27" = oo.
(71 + 51)71+51 Z00

In a similar manner, we have

t
liminf inf 9( ;x) =00
r—o0 tele,T—c] X°2

For example, if a = 2, b = 3/2, r1 = 1, 1o = 4/3, 11 = 3/2, s = 1, the
above conditions are satisfied. Under the assumption (H1), by Theorem 2, we
deduce that the problem (S)—(BC') has at least one positive solution.

Ezample 2. Let f(t,x) = M, g(t,z) = M7 with a,b € (0,1) and

(=1
~,8 € (0,1). Here f(t,xz) = p1(t)q1(x) and g(t,x)Tz p2(t)ga(x), where
pi(t) = th’ pa(t) = ﬁ, q(z) =242+ cosz), qo(x) =2(1 +sinx).

Wehave0<f0p1 s)ds < oo, 0<f0p2 s)ds < oo.
In (H5), for a1 = a, as > b and ajas < 1, we have

(2
i sup 247 — Ji sup T2 C087) _ g
r—o0 L T—00 xr*
b 1 :
i sup 2% — Jim sup 2L SE)
rz—o0 L T—00 T2
In (H6), for 1 =a, B2 > b, 182 <1 and c € (0, %), we have
a(9 .
iminf inf 28 Cfimint e S2tCs) 3 g
=0+ tefe,T—c b1 20+ tefe,T—c] t7 b (T — c)”
b 1 :
liminf inf 9(t, ) = liminf inf w
z—0t te[e,T—c] xP2 z—0t te[e, T—c] (T*t)a.%ﬁz
1
=——  lim 2% = .

(T — 0)6 z—0t
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For example, if a =1/3,b=1/2, a1 =1/3, aa =1, 1 = 1/3, B2 = 1, the

above conditions are satisfied. Under the assumption (H1), by Theorem 3, we
deduce that the problem (S)—(BC') has at least one positive solution.
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