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Abstract. For 2D bounded composite material geometrically composed by a disk
of variable radius r and an outer ring it is determined in an analytic form the
x-component of the effective conductivity tensor. Namely, it is shown that the
x-component is a sum of geometrical progression with respect to powers of r2 for
all sufficiently small r.
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1 Introduction

Circular type 2D mechanical structures are subject of long investigations. In
the pioneering work [9] it had been found a complete solution of the problem
of torsion and bending of elastic cylindric body reinforced by parallel cylindric
beams Sk, k = 1, . . . ,m, of different materials. The author showed that this
problem is equivalent to the problem, which can be formulated in the following
form.

Problem A. Let Sk, k = 0, 1, . . . ,m, are simply connected non-overlapping do-
mains of the complex plane C with smooth boundaries C0, C1, . . . , Cm, such
that the contour C0 embraces any contour Ck, k = 1, . . . ,m. Let S :=
S0 \∪mk=1Sk. The problem is to find a function ϕ harmonic in each domain Sk,
k = 0, 1, . . . ,m, continuous in clS0 and such that its normal derivative on each
contour Ck, k = 0, . . . ,m has a jump satisfying given conditions.
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Here and anywhere cl(G) denotes a closure of a domain G ⊂ C.

It is proved in [9] that the given problem is equivalent to a system of m+ 1
Fredholm integral equations of the second kind. He showed that under some
solvability conditions this system has a solution and this solution is unique
up to an additive constant. The main aim of the above article is to calculate
certain elastic characteristics of the considered elastic cylindric body reinforced
by parallel cylindric beams. One of these is, so-called, elastic torsional rigid-
ity. Mathematically speaking, it is a real valued functional depending on the
solution of the latter problem.

The solution of the Problem A is uniquely determined from a system of Fred-
holm integral equations of the second kind. Anyway, from the practical point
of view it is important to find an explicit expression of the solution. Therefore,
any solution’ method for Problem A which leads to a closed form solution (even
in certain special cases), is interesting for the practice. For example, in case
when m = k = 1 and S0 and S1 are disks (or what is equivalent S′0 and S′1 are
disks with a common origin) the Problem A, is solved by the direct method
based on expansions in Taylor’s and Laurent’s series of a function f(z), which
is analytic in S′1 ∪ S′, S′ = S′0 \ clS′1. The function f(z) is such that its real
part Re f equals to an unknown function ϕ in S′1 ∪ S′. By using this solution
the elastic torsional rigidity is calculated in an explicit form in [10]. The case
when m = k = 1 and S0 and S1 are confocal ellipses is considered in [11]. The
discussion on recent contributions to the explicit solution of Problem A in the
case of non-circular geometry is presented in [7].

Our main aim is to solve a problem similar to Problem A when m = k = 1
and S0 and S1 are disks with a common origin, geometrically representing a
bounded 2D composite material. Here, the annulus S = S0 \ clS1 and the
disk S1 are domains corresponding to the matrix and the inclusion of the com-
posite, respectively. On the base of this solution we calculate an analog of
the elastic torsional rigidity, which is an x-component of, so-called, Effective
Conductivity Tensor (ECT). In spite of the fact, that usually the term “effec-
tive conductivity” is used for composite materials with a rich microstructure,
we utilize the same term here, meaning effective conductivity of a bounded
composite material, see, e.g., [2, 3, 5].

More precisely, we consider the problem of determination of the temperature
distribution under perfect contact condition in the described inhomogeneous
media, which is loaded by a simple heat flow. Note, that this problem is
equivalent to the R-linear conjugation problem on the complex plane (for more
details on the solution of similar problems we refer to [4, 6], [8, p. 45]). The
formula for the x-component of the effective conductivity tensor is represented
in an analytic form in terms of radius r of the internal disk and so-called
contrast parameter ρ introduced by Bergmann [1].

The obtained exact formula allows us to apply it for the description of cer-
tain physical phenomenon, these results will be presented in a separate paper.
We can to consider also an asymptotic behavior of the solution and compo-
nents of the effective conductivity tensor in the case when inclusion is either
shrinking to a point or expanding up to the whole domain S0.
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2 Formulation of the Problem

Let C be the complex plane, and R be the field of real numbers. For any ξ
from C or R let us denote by |ξ| its modulus. For any r ∈ (0, 1) we consider the
following sets of the complex plane: Dr := {z ∈ C : |z| < r}, γr := {t ∈ C : |t| =
r}, Ar := {z ∈ C : r < |z| < 1}, Γ := {t ∈ C : |t| = 1}. The boundary ∂Dr of
Dr is denoted by γr and ∂Ar := γr ∪ Γ . For any z = x+ iy ∈ C we denote by
(η, θ), 0 < η <∞, 0 ≤ θ ≤ 2π, its polar coordinates, thus, z = η exp{iθ}; Re z
is a real part of a complex number z.

Let Ω be an open or closed domain in C and let τ : Ω −→ R be a real valued
function, then Ck(Ω), k ∈ 1, . . . , denotes a class of functions having continuous
partial derivatives up to k-th order. If τ ∈ C2(Ω) then

∆τ(x+ iy) :=
∂2τ

∂x2
+
∂2τ

∂y2
.

For any function ϕ : Dr ∪ Ar −→ R, by ϕ1 and ϕ2 we mean its restrictions to
Dr and Ar, respectively.

Let us consider 2D circular composite material consisting of two compo-
nents, represented geometrically by the annulus Ar (a host material or matrix)
and by the disk Dr (inclusion). Each component of the composite is filled in by
the homogeneous material of constant thermal conductivity λ2 and λ1, respec-
tively. We suppose that a normalized external heat flow is put in the direction
opposite to x-axes. Then the main problem is to determine the potential tem-
perature distribution in such a composite in the stationary case.

Mathematically this problem consists in determination of a pair of real-
valued functions ϕ = (ϕ1, ϕ2), with ϕ1 ∈ C2(Dr) ∩ C1(cl Dr), ϕ2 ∈ C2(Ar) ∩
C1(cl Ar) representing temperature distribution in the corresponding domains,
satisfying the following system of relations

∆ϕ(z) = 0, ∀z ∈ Dr ∪Ar,

ϕ2(t) = −Re t, ∀t ∈ Γ,
ϕ1(t) = ϕ2(t), ∀t ∈ γr,

λ1
∂ϕ1

∂n
(t) = λ2

∂ϕ2

∂n
(t), ∀t ∈ γr,

(2.1)

where λ1 and λ2 are some positive constants such that ρ := λ2−λ1

λ2+λ1
does not

equal to zero, ϕ1(t) and ϕ2(t) denote the boundary values of, respectively,
ϕ1(z), z ∈ Dr, and ϕ2(z), z ∈ Ar,

∂ϕk

∂n , k = 1, 2, is respectively an outward
and inward normal derivatives with respect to the boundary of the domain of
the function ϕk, k = 1, 2. Since by definition domains of the functions ϕ1 and
ϕ2 are Dr and Ar, then for any t ∈ γr the directions of the normal n at the
left and at the right side of the fourth equality of the system (2.1) coincide (see
Fig. 1).

Problem (2.1) (cf., e.g., [8, p. 45] with λ2 = 1) can be reduced to the
following R-linear conjugation problem: find two functions φ : Dr ∪ Ar −→
C, φ0 : C ∪ {∞} −→ C, φ0(∞) = 0, such that φ = (φ1, φ2) is analytic in
Dr ∪Ar with φ1, φ2 being continuous in cl Dr, cl Ar, respectively, φ0 is analytic
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Figure 1. A section of a bounded 2D composite.

in ext D1 = {z ∈ C : |z| > 1} and continuous in cl{ext D1}, functions φ and φ0
satisfy the following conjugation conditions

φ+(t) = φ−(t)− ρφ−(t) ∀t ∈ γr, φ−(t) = φ0(t)− φ0(t)− t ∀t ∈ Γ, (2.2)

where φ+(t) and φ+(t), t ∈ γr, is boundary values of φ(z), accordingly, from
Dr, Ar, u+ iv := u− iv for u, v ∈ R.

Note, that the problems similar to (2.2) have been considered in [4, 6, 8].
Our aim is to calculate x-component of the effective conductivity tensor (see,
e.g. [5]), i.e. a quantity λxeff satisfying the following equality

F xλxeff (r) = λ1

∫∫
Dr

∂ϕ1

∂x
dx dy + λ2

∫∫
Ar

∂ϕ2

∂x
dx dy, (2.3)

where ϕ(x, y) := (ϕ1(x+ iy), ϕ2(x+ iy)) = Re (φ1(x+ iy), φ2(x+ iy)) with
φ1(x + iy), φ2(x + iy) being the solution to (2.2), F x is a complete flux in
x-direction.

The first step is to find a solution of (2.1) in an explicit form.

3 Solution of Problem 2.1

In order to solve boundary value problem (2.1) we propose a method based on
expansions in the Taylor’s and the Laurent’s power series of f1 and f2. Here
f1 and f2 are restrictions of a function f(z) : Dr ∪Ar −→ C, such that f ≡ f1
and f1 is analytic in Dr, Re f1(z) = ϕ1(x, y) for all z = x + iy ∈ Dr; f ≡ f2
and f2 is analytic in Ar, Re f2(z) = ϕ2(x, y) for all z = x+ iy ∈ Ar.

Note, that a similar idea was realized in the paper [10].

Theorem 1. For any 0 < r < 1 the solution of the boundary value problem
(2.1) is given by the following formulas

ϕ1(z) = −η 1− ρ−1

r2 − ρ−1
cos θ ∀z = η exp{iθ} ∈ Dr, (3.1)

ϕ2(z) =

(
η

ρ−1

r2 − ρ−1
− η−1 r2

r2 − ρ−1

)
cos θ ∀z = η exp{iθ} ∈ Ar. (3.2)

Math. Model. Anal., 18(3):386–394, 2013.
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Furthermore,

ϕ1(t) = ϕ2(t) = −(1− ρ−1)
r

r2 − ρ−1
cos θ ∀t = r exp{iθ} ∈ γr, (3.3)

ϕ2(t) = − cos θ ∀t = exp{iθ} ∈ Γ. (3.4)

Proof. Let a function f1 : Dr −→ C be an analytic in Dr and such that
Ref1 = ϕ1 in Dr ∪ γr. Then the function f1 has an expansion in the Taylor’s
power series in Dr and we have

f1(z) = a′0 + ib′0 +

∞∑
k=1

(a′k + ib′k)zk ∀z ∈ Dr. (3.5)

Let a function f2 : Ar −→ C be a single-valued analytic function in Ar, such
that Ref2 = ϕ2 in Ar ∪γr ∪Γ . Then it can be expanded in the Laurent’s series
in Ar and the following equality holds

f2(z) = a′′0 + ib′′0 +

∞∑
k=−∞, k 6=0

(a′′k + ib′′k)zk ∀z ∈ Ar. (3.6)

It follows from (3.5), (3.6) and the choice of functions f1 and f2 that the
functions in the right-hand side of (3.1) and (3.2) are proper candidates to be
solutions of the problem (2.1). We have to check later whether the functions ϕ1,
ϕ2, satisfying conditions (2.1), belongs to considered functional spaces. Taking
real part of (3.5), (3.6) we obtain the following representations of ϕ1, ϕ2

ϕ1(z) = a′0 +

∞∑
k=1

(
a′kη

k cos kθ − b′kηk sin kθ
)
∀z = η exp{iθ} ∈ Dr, (3.7)

ϕ2(z) = a′′0 +

∞∑
k=1

(a′′kη
k + a′′−kη

−k) cos kθ

+

∞∑
k=1

(b′′−kη
−k − b′′kηk) sin kθ ∀z = η exp{iθ} ∈ Ar. (3.8)

Any pair of functions ϕ = (ϕ1, ϕ2) given by (3.7), (3.8), respectively, satisfy the
first equation of the system (2.1) in the corresponding domains. The second
condition of (2.1) and the formula (3.8) yields

a′′0 +

∞∑
k=1

(a′′k + a′′−k) cos kθ +

∞∑
k=1

(b′′−k − b′′k) sin kθ = − cos θ ∀θ ∈ [0, 2π].

Hence, by uniqueness of the Fourier series, coefficients of (3.8) satisfy the fol-
lowing relations

a′′0 = 0, a′′−1 = −(1 + a′′1),

a′′−k = −a′′k , k = 2, 3, . . . , b′′−k = b′′k , k = 1, 2, . . . .
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Then we can rewrite the relation (3.8) in the following form

ϕ2(z) =
(
a′′1η − (1 + a′′1)η−1

)
cos θ +

∞∑
k=2

a′′k
(
ηk − η−k

)
cos kθ

+

∞∑
k=1

b′′k
(
η−k − ηk

)
sin kθ ∀z = η exp{iθ} ∈ cl Ar, (3.9)

The third condition of (2.1) implies the equality

a′0 +
(
(a′1 − a′′1)r + (1 + a′′1)r−1

)
cos θ +

∞∑
k=2

(
(a′k − a′′k)rk + a′′kr

−k) cos kθ

−
∞∑
k=1

(
(b′k − b′′k)rk + b′′kr

−k) sin kθ = 0 ∀θ ∈ [0, 2π].

Thus, we have

a′0 = 0, a′1 = a′′1 − (1 + a′′1)r−2, (3.10)

a′k = a′′k(1− r−2k), k = 2, 3 . . . , b′k = b′′k(1− r−2k), k = 1, 2, . . . .

Hence, we can rewrite the representation (3.7) in the following form

ϕ1(z) = η(a′′1 − (1 + a′′1)r−2) cos θ +

∞∑
k=2

a′′k η
k
(
1− r−2k

)
cos kθ

−
∞∑
k=1

b′′k η
k(1− r−2k) sin kθ ∀z = η exp{iθ} ∈ cl Dr. (3.11)

Taking into account, that normal derivatives on the circle centered at the origin
coincide with the derivatives with respect to polar radius, we have the following
relations ∂ϕk

∂n = ∂ϕk

∂η |η=r, k = 1, 2. Hence, dividing by λ1+λ2 the last condition

of (2.1) we obtain the following relation

(
−ρa′′1 + (1 + a′′1)r−2

)
cos θ − ρ

∞∑
k=2

ka′′k r
k−1 (1− r−2k) cos kθ

−
∞∑
k=1

k b′′k r
k−1 (−ρ+ r−2k

)
= 0 ∀θ ∈ [0, 2π], (3.12)

where ρ = (λ1 − λ2)/(λ1 + λ2). Let

0 < r < min
{
|ρ|−1/2, 1

}
, (3.13)

then the following inequalities hold(
1− r−2k

)
6= 0, k = 2, 3, . . . , −ρ+ r−2k 6= 0, k = 1, 2, . . . ,

thus, the equality (3.12) is true for such r if and only if the following relations
hold

a′′1=ρ−1(r2−ρ−1)−1, a′′k = 0, k=2, 3, . . . , b′′k=0, k=1, 2, . . . . (3.14)

Math. Model. Anal., 18(3):386–394, 2013.
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Taking into account that for any 0 < λ1, λ2 < +∞ the Bergmann contrast
parameter ρ satisfies the inequality −1 < ρ < 1, clarify that the inequality
(3.13) holds for any r ∈ (0, 1), therefore, relations (3.14) hold for all r ∈ (0, 1).

Then 1 + a′′1 = r2(r2 − ρ−1)−1 and (3.10) turns to a′1 = −(1 − ρ−1) ×
(r2 − ρ−1)−1, therefore, the equality (3.11) coincides with the formula (3.1).
By using the last relations, we obtain that (3.9) coincides with (3.2). Formulas
(3.3) and (3.4) are simple consequences of the continuity of the functions (3.1)
and (3.2), accordingly, in cl Dr and cl Ar. Therefore, the pair of functions (3.1)
and (3.2) defines the unique solution of the problem (2.1). ut

4 Effective Conductivity

In the considered case x-component F x of the complete flux can be normalized
as follows F x = −π (see [8]).

Theorem 2. Under assumptions of Theorem 1 the following formula holds

λxeff (r) = λ2
ρ−1 + r2

ρ−1 − r2
. (4.1)

Furthermore, the function (2.3) is the sum of the following series

λxeff (r) = λ2
(
1 + ρr2

) (
1 +

∞∑
k=1

ρkr2k
)
, (4.2)

converging for any 0 < r < 1.

Proof. By the Green formula

λxeff (r) = −π−1
(
λ1

∮
γr

ϕ1(x, y) dy + λ2

(∮
Γ

−
∮
γr

)
ϕ2(x, y) dy

)
= −π−1

(∮
γr

(
λ1ϕ1(x, y)− λ2ϕ2(x, y)

)
dy + λ2

∮
Γ

ϕ2(x, y) dy
)
,

where in the contour integrals the orientation is assumed to be the opposite
to the clockwise direction, ϕ1 ( or ϕ2) is a restriction of ϕ to Dr ( or Ar).
Therefore, by the formulas (3.3) and (3.4) and using the polar coordinates
(η, θ) we rewrite the last equality in the following form

λxeff (r) = −π−1λ2ρ
−1 − (λ2ρ

−1 + λ1(1− ρ−1))r2

−ρ−1 + r2

∫ 2π

0

(cos θ)2 dθ. (4.3)

Since

λ2ρ
−1 + λ1

(
1− ρ−1

)
= −λ2,

∫ 2π

0

(cos θ)2 dθ = π,

the equality (4.3) turns to the formula (4.1), which holds for all r ∈ (0, 1)).
Then the equality (4.2) follows from the obtained formula after substitution

to it the following series expansion

1

−ρ−1 + r2
= −ρ− ρ

∞∑
k=1

ρkr2k ∀r ∈ (0, 1). ut
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Corollary 1. λxeff (r) is an even function in r, continuous for all r ∈ [0, 1]. Fur-

thermore, λxeff (1) = λ1, λxeff (0) = λ2.

Remark 1. The obtained formula (4.1) coincides with the celebrated Clausis-
Mossotti approximation formula for x-component of the effective conductivity
tensor (see, e.g. [8]).

Remark 2. If one have to construct the composite material with a prescribed
value of λxeff (r), then formula (4.1) gives an exact relation between values of
conductivity of matrix and inclusion (in the case of fixed r) or a functional
representation of λ2 in terms of r (in the case of fixed λ1).
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