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Abstract. We investigate the behavior of zeros of solutions to the certain type of
third order nonlinear differential equations. We show that the behavior of zeros may
be rather different and depend on the nature of nonlinearity in the equation. Main
results in the paper are illustrated with a number of examples.
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1 Introduction

Consider a third order nonlinear differential equation of the form

x′′′ = −λp(t)f(x), (1.1)

where λ is a positive parameter, functions f and p are continuous, p(t) ≥ 0,
p(t) 6≡ 0. We are interested in solutions of equation (1.1) which satisfy the
initial conditions

x(0) = x′(0) = 0, x′′(0) = β, (1.2)

where β is also a parameter. It is our goal to study zeros of solutions as
functions of parameters λ and β.

We will use also the following assumptions:

(H1) xf(x) > 0 for x 6= 0;

(H2) p(Bt) = Bkp(t) for some k ≥ 0 and all B > 0;

(H3) f(Bx) = Bqf(x) for some q > 0, q 6= 1 and all B > 0.

The existence, location and properties of the zeros of the solutions of ordi-
nary differential equations are of principal importance in the theory of boundary
value problems [5,6,7], and correspondingly a vast literature on this subject has
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arisen. Among numerous papers dealing with this subject we refer the reader
in particular to [2, 3] for linear equations, and [1, 4, 8] for nonlinear equations.

The paper is organized as follows. Section 2 contains some auxiliary results.
Section 3 is devoted to the oscillatory properties of solutions of equation (1.1).
In Section 4 we consider dependence of zeros of solutions on parameters. Also
examples are given to illustrate the results.

2 Preliminary Results

Proposition 1. Suppose x(t) ∈ C3(I). If x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0
(but not all zero) and x′′′(t)x(t) < 0 when x(t) 6= 0, then x(t) > 0, x′(t) < 0,
x′′(t) > 0 for t < a.

Proof. Let x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0 and (x(a))2+(x′(a))2+(x′′(a))2 > 0.
In all cases x(t) will be positive in some open interval with the right boundary
point t = a. Suppose that there exists a point t = t0 such that x(t0) = 0
and x(t) > 0 for t0 < t < a. Since x(t0) = 0, there will exist a point t = t1,
t0 ≤ t1 < a such that x′(t1) = 0 and there will exist a point t = t2, t0 ≤ t2 < a
such that x′′(t2) = 0. Since x′′′(t)x(t) ≤ 0, it follows that x′′′(t) < 0 for
t0 < t < a. Let us consider

x′′(t) = x′′(a)−
∫ a

t

x′′′(s) ds, t0 ≤ t < a.

The right-hand side is positive, and increases as t → −∞, as long as x′′′(t)
remains negative. We thus conclude that x′′(t) is positive for t0 ≤ t < a.

Let us consider

x′(t) = x′(a)−
∫ a

t

x′′(s) ds, t0 ≤ t < a.

The right-hand side is negative, and decreases as t → −∞, as long as x′′(t)
remains positive. We thus conclude that x′(t) is negative for t0 ≤ t < a.

Let us consider

x(t) = x(a)−
∫ a

t

x′(s) ds, t0 ≤ t < a.

The right-hand side is positive, and increases as t → −∞, as long as x′(t)
remains negative. We thus conclude that x(t) is positive for t0 ≤ t < a. These
contradictions prove the proposition. ut

Corollary 1. Suppose x(t) ∈ C3(I). If x(a) ≤ 0, x′(a) ≥ 0, x′′(a) ≤ 0 (but not
all zero) and x′′′(t)x(t) < 0 when x(t) 6= 0, then x(t) < 0, x′(t) > 0, x′′(t) < 0
for t < a.

Proof. The proof follows from Proposition 1 considering y(t) = −x(t). ut

Remark 1. The function x(t) from Proposition 1 and Corollary 1 may be as-
sumed to be a solution of differential equation (1.1).
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Proposition 2. If a function f(x) satisfies assumptions (H1) and (H3), then
f(x) is strictly increasing.

Proof. Let us choose 0 < x1 < x2. Obviously, there exists a B > 1 such
that x2 = Bx1. Now consider f(x2) = f(Bx1) = Bqf(x1) > f(x1) (we use
the assumption xf(x) > 0 to obtain the last inequality). Thus, f(x) is strictly
increasing function for x > 0. Analogously we can show that f(x) is strictly
increasing for x < 0. Let x2 < x1 < 0. Then there exists a B > 1 such, that
x2 = Bx1. Now consider f(x2) = f(Bx1) = Bqf(x1) < f(x1). Thus f(x) is
strictly increasing function for x < 0. ut

Proposition 3. Suppose, that a function p(t) satisfies assumption (H2). If
k > 0, then p(t) is increasing for t > 0 and decreasing for t < 0. If k = 0, then
p(t) = Const > 0.

Proof. Assume k > 0. First, let us prove that the function p(t) is increasing
for t > 0. Let us choose 0 < t1 < t2. Obviously, there exists a B > 1 such
that t2 = Bt1. Now consider p(t2) = p(Bt1) = Bkp(t1) ≥ p(t1) (we use the
assumption p(t) ≥ 0 to obtain the last inequality). Thus, p(t) is an increasing
function for t > 0. Next, let us prove that the function p(t) is decreasing for
t < 0. Let us choose t2 < t1 < 0. Obviously, there exists a B > 1 such
that t2 = Bt1. Now consider p(t2) = p(Bt1) = Bkp(t1) ≥ p(t1). Thus p(t)
is decreasing function for t < 0. Assume k = 0. Since for every B > 0
p(Bt) = B0p(t) = p(t), it follows that p(t) = Const > 0. ut

3 Oscillatory Properties of Solutions

Corollary 2. Assume that condition (H1) is satisfied. If x(t) is a nontrivial
solution of (1.1), x(a) = x(b) = 0 and a < b, then x′(b) 6= 0 (a simple zero
cannot exist on the left of a double zero).

Proof. Let x′(b) = 0, and, without loss of generality, let x′′(b) > 0. Then,
by Proposition 1 x(t) > 0 for t < b. But x(a) = 0, a < b. The contradiction
proves the corollary. ut

Proposition 4. Let x(t) be a solution of equation (1.1) such that x(a) =
x′(b) = 0 (a < b), x(t) 6= 0 for t ∈ (a, b). If condition (H1) is fulfilled,
then x(t) vanishes in (b,+∞).

Proof. Assume that x(t) does not change sign for t > b. Without loss of
generality, let x(t) > 0, t ≥ b. Multiplying the equation (1.1) by x(t) and
integrating from a to t, we obtain∫ t

a

x(s)x′′′(s) ds = −λ
∫ t

a

x(s)p(s)f
(
x(s)

)
ds.

Integrating the first term by parts, we get

x(t)x′′(t)− x(a)x′′(a)−
∫ t

a

x′′(s)x′(s) ds = −λ
∫ t

a

x(s)p(s)f
(
x(s)

)
ds
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or

x(t)x′′(t) =
1

2
x′ 2(t)− 1

2
x′ 2(a)− λ

∫ t

a

x(s)p(s)f
(
x(s)

)
ds.

If t = b, we obtain

x(b)x′′(b) =
1

2
x′ 2(b)− 1

2
x′ 2(a)− λ

∫ b

a

x(s)p(s)f
(
x(s)

)
ds < 0.

Since x(b) > 0, then x′′(b) < 0. Since x(t) > 0, then (in view of (H1) and (1.1))
x′′′(t) < 0 and x′′(t) is strictly decreasing. Thus, x′′(t) < 0 for t > b and x′(t)
is strictly decreasing for t > b. Since x′(b) = 0 and x′(t) is strictly decreasing
for t > b, then x′(t) < 0 for t > b. Thus, x(t) is strictly decreasing for t > b. If
two consecutive derivatives of x(t) are negative then x(t) must ultimately be
negative. This completes the proof of the proposition. ut

Proposition 5. Let x(t) be a solution of equation (1.1) such that x(a) = 0. If
conditions (H1), (H2) and (H3) hold, then x(t) vanishes in (a,+∞).

Proof. Suppose that x(t) does not vanish for t > a. Without loss of generality,
let x(t) > 0 for t > a. If there exists b > a such that x′(b) = 0, then the proof
follows from the Proposition 4 above. Therefore, assume that x′(t) does not
vanish for t > a. Since x′(t) > 0 for t immediately to the right of a, it follows
that x′(t) > 0 for t > a. As x(t) > 0, then (in view of (H1) and (1.1)),
x′′′(t) < 0 and x′′(t) is strictly decreasing.

First suppose there exists t1 ≥ a such that x′′(t1) = 0. Then x′′(t) < 0
for t > t1. If two consecutive derivatives of x′(t) are negative then x′(t) must
ultimately be negative.

Now assume that x′′(t) > 0 for t > a. So x′(t) is strictly increasing for
t > a. Integrating equation (1.1) between t0 > a and t we obtain∫ t

t0

x′′′(s) ds = −λ
∫ t

t0

p(s)f
(
x(s)

)
ds,

or eliminating nonnegative terms we get

x′′(t0) = x′′(t) + λ

∫ t

t0

p(s)f
(
x(s)

)
ds ≥ λ

∫ t

t0

p(s)f
(
x(s)

)
ds.

In view of Proposition 2 and Proposition 3 the integral on the right is un-
bounded as t → +∞, but the left hand side is independent of t. This contra-
diction proves the proposition. ut

Remark 2. The condition x(a) = 0 in Proposition 5 is essential, because there
exist solutions of equation (1.1) which do not vanish. For example, it is easy
to verify, that the function

x(t) = (105/8)
1
2 (t− t0)−

3
2

is a solution of the equation x′′′ = −x3 which do not vanish.

Math. Model. Anal., 18(4):480–488, 2013.
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Corollary 3. Assume that conditions (H1), (H2) and (H3) are fulfilled. If x(t)
is a nontrivial solution of (1.1) and t = a is a zero of x(t), then x(t) has an
infinity of simple zeros in (a,+∞). If t = a is a double zero of x(t), then x(t)
does not vanish in (−∞, a).

4 Dependence of Zeros on Initial Data

Proposition 6. Suppose that conditions (H2) and (H3) are fulfilled. If x(t) is
a solution of equation (1.1) with λ ≡ 1, such that x(0) = x′(0) = 0, x′′(0) =
β0 6= 0, then every solution of equation (1.1) with arbitrary λ which has a
double zero at t = 0 and the second derivative at t = 0 of the same sign as β0
can be expressed via solution x(t) as

y(t) = λ
1

1−qAx
(
A(q−1)/(3+k)t

)
with initial data y(0) = y′(0) = 0, y′′(0) = λ

1
1−qA(2q+k+1)/(3+k)β0, where A > 0

is a parameter.

Remark 3. We distinguish the cases of x′′ having opposite signs at t = 0 in
Proposition 6, because if x(t) is a solution of (1.1), then (−x(t)) need not to
be a solution of (1.1). As an example we present the equation

x′′′ = −
{

3x5, x ≥ 0,

2x5, x < 0,

where f(x) satisfies condition (H3) with q = 5.

Remark 4. A similar statement for higher order Emden–Fowler type autono-
mous equation can be found in [1].

Proof. The proposition can be proved by direct substitution. So

y′′′(t) = λ
1

1−qA
3q+k
3+k x′′′

(
A

q−1
3+k t

)
, f

(
y(t)

)
= λ

q
1−qAqf

(
x
(
A

q−1
3+k t

))
.

Then

λ
1

1−qA
3q+k
3+k x′′′

(
A

q−1
3+k t

)
= −λp(t)λ

q
1−qAqf

(
x
(
A

q−1
3+k t

))
= −λp

(
A

q−1
3+k t

)
A−k

q−1
3+k λ

q
1−qAqf

(
x
(
A

q−1
3+k t

))
= λA−k

q−1
3+k λ

q
1−qAqx′′′

(
A

q−1
3+k t

)
.

Therefore

λ
1

1−qA
3q+k
3+k = λA−k

q−1
3+k λ

q
1−qAq, or λ

1
1−qA

3q+k
3+k = λ

1
1−qA

3q+k
3+k .

Hence the proof. ut

Remark 5. Suppose that f(x) = κx (q = 1) is a linear function and consider
the solution x(t) of equation (1.1) with λ ≡ 1 which satisfies initial data (1.2).
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Let us denote simple zeros of x(t) to the right from t0 = 0 by t1, t2, . . . . If
we change β, then the points t1, t2, . . . do not change the location (because of
linear dependence of solutions). These points are called conjugate points [3].
If f(x) is not a linear function (q 6= 1), the points t1, t2, . . . can change their
location.

Let y(t) be a nontrivial solution of equation (1.1) with the initial conditions
(1.2). Let us denote simple zeros of y(t) to the right from t0 = 0 by t1(λ, β),
t2(λ, β), . . . , ti(λ, β), . . . and let ti(1, 1) = σ+

i , ti(1,−1) = σ−i .

Theorem 1. If conditions (H1), (H2) and (H3) hold, then zero functions for
y(t) are defined by

ti(λ, β) = σ+
i λ

−1
2q+1+k β

1−q
2q+1+k for β > 0,

ti(λ, β) = σ−i λ
−1

2q+1+k (−β)
1−q

2q+1+k for β < 0. (4.1)

Proof. First, suppose that β > 0. It follows from Proposition 6, that

ti(λ, β) = ti(1)/A
q−1
3+k = σ+

i /A
q−1
3+k .

Since β = λ
1

1−qA
2q+1+k

3+k , then A = λ
3+k

(2q+1+k)(q−1) β
3+k

2q+1+k . Thus, we obtain

ti(λ, β) = σ+
i λ

−1
2q+1+k β

1−q
2q+1+k for β > 0.

Next, suppose that β < 0. It follows from Proposition 6, that

ti(λ, β) = ti(−1)/A
q−1
3+k = σ−i /A

q−1
3+k .

Since β = −λ
1

1−qA
2q+1+k

3+k , then A = λ
3+k

(2q+1+k)(q−1) (−β)
3+k

2q+1+k . Thus, we obtain

ti(λ, β) = σ−i λ
−1

2q+1+k (−β)
1−q

2q+1+k for β < 0. ut

The next two examples illustrate zero functions for certain equations. The
first one with super-linear nonlinearity (q = 3 > 1) and the second one with
sub-linear nonlinearity (0 < q = 3/5 < 1).

Example 1. Consider the equation

x′′′ = −λt2
{

100x3, x ≥ 0,

0.01x3, x < 0
(4.2)

together with initial data (1.2). Let us obtain ti(λ, β). By using numerical
simulation, we get

σ+
1 = 1.59729, σ+

2 = 3.44167, σ+
3 = 3.55694,

σ−1 = 4.44456, σ−2 = 4.66656, σ−3 = 5.19790.

Math. Model. Anal., 18(4):480–488, 2013.
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Figure 1. Zero function t1(λ, β) for equation (4.2).
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Figure 2. Zero functions for equation (4.2) with λ ≡ 1. t1(β) – solid, t2(β) – dotted,
t3(β) – dashed.

So, by Theorem 1 we get

t1(λ, β) = 1.59729λ−
1
9 β−

2
9 for β > 0 and

t1(λ, β) = 4.44456λ−
1
9 (−β)−

2
9 for β < 0,

t2(λ, β) = 3.44167λ−
1
9 β−

2
9 for β > 0 and

t2(λ, β) = 4.66656λ−
1
9 (−β)−

2
9 for β < 0,

t3(λ, β) = 3.55694λ−
1
9 β−

2
9 for β > 0 and

t3(λ, β) = 5.19790λ−
1
9 (−β)−

2
9 for β < 0.

See Figure 1, where graph of t1(λ, β) is presented. Graphs of some zero func-
tions for equation (4.2) with λ ≡ 1 are presented in Figure 2.

Example 2. Consider the equation

x′′′ = −λt4
{
x

3
5 , x ≥ 0,

7x
3
5 , x < 0

(4.3)

together with initial data (1.2). Let us obtain ti(λ, β). By using numerical
simulation, we get

σ+
1 = 2.52405, σ+

2 = 2.99564, σ+
3 = 4.12060,

σ−1 = 1.84413, σ−2 = 3.23205, σ−3 = 3.68724.
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Figure 3. Zero function t1(λ, β) for equation (4.3).
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Figure 4. Zero functions for equation (4.3) with λ ≡ 1. t1(β) – solid, t2(β) – dotted,
t3(β) – dashed.

So, by Theorem 1 we get

t1(λ, β) = 2.52405λ−
5
31 β

2
31 for β > 0 and

t1(λ, β) = 1.84413λ−
5
31 (−β)

2
31 for β < 0,

t2(λ, β) = 2.99564λ−
5
31 β

2
31 for β > 0 and

t2(λ, β) = 3.23205λ−
5
31 (−β)

2
31 for β < 0,

t3(λ, β) = 4.12060λ−
5
31 β

2
31 for β > 0 and

t3(λ, β) = 3.68724λ−
5
31 (−β)

2
31 for β < 0.

See Figure 3, where graph of t1(λ, β) is presented. Graphs of some zero func-
tions for equation (4.3) with λ ≡ 1 are presented in Figure 4.

5 Conclusions

As we can see from the previous examples, the behavior (monotony and concav-
ity) of the zero functions for the super-linear case (q > 1) substantially differs
from the sub-linear case (0 < q < 1). In the case when λ ≡ 1 zero functions
are concave upwards for the super-linear case and concave downwards for the

Math. Model. Anal., 18(4):480–488, 2013.
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sub-linear case; for super-linear case zero functions are increasing for β < 0
and decreasing for β > 0; for sub-linear case zero functions are decreasing for
β < 0 and increasing for β > 0.
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