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Abstract. This paper aims to develop a high-dimensional SI model with stage struc-
ture for both the prey (pest) and the predator, and then to investigate the dynamics
of it. The model can be used for the study of Integrated Pest Management (IPM)
which is a combination of constant pulse releasing of animal enemies and diseased
pests at two different fixed moments. Firstly, we use analytical techniques for impul-
sive delay differential equations to obtain the conditions for global attractivity of the
‘pest-free’ periodic solution and permanence of the population model. It shows that
the conditions strongly depend on time delay, impulsive release of animal enemies
and infective pests. Secondly, we present a pest management strategy in which the
pest population is kept under the economic threshold level (ETL) when the pest pop-
ulation is permanent. Finally, numerical analysis is presented to illustrate our main
conclusion.

Keywords: age-structured population, delay, impulsive differential equation, global asymp-

totic stability, predator-prey model.

AMS Subject Classification: 34B10.

1 Introduction

Large-scale pest outbreak may bring serious ecological and economic problems
to our society. For example, cotton bollworm outbreaks have caused severe
losses of cotton in Xinjiang, Henan, Shandong, Hebei provinces of China in the
past two decades; outbreaks of large-scale locusts, which feed on leaves, stems
of crops, can cause serious ecological disaster. Organic chemicals (chemical
insecticides) have been used to control bands and swarms for more than half a
century. It turns out to be useful since they can quickly kill a significant portion

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2013.840866
mailto:zhangtongqian@sdust.edu.cn
mailto:mxz721106@sdust.edu.cn
mailto:songyi012@yahoo.cn; tonghuazhang@swin.edu.au


506 T.Q. Zhang, X.Z. Meng, Y. Song and T.H. Zhang

of a pest population. Extensive use of chemical pesticides greatly enhances the
human ability to control insects, however, it also brought well-known issues of
environmental pollution, ecological balance, food safety, and so on. Pesticide
caused environmental pollution is believed to be the number one killer to human
health and other creatures. Therefore, how effectively and without compromise
of environment to control insects has become an increasingly complex issue over
the past two decades.

A pest control problem is a problem of population dynamics. It is proved
to be more effective to control the pest by biological technologies, which in-
clude using predatory natural enemies, microbial, parasitic enemies, etc. It can
be cultivated in biological laboratory or natural environment. This method is
mostly welcomed by the people because it is harmless not only to environment
and human health, but also the development of population. Nowadays, this
method has been widely applied in the pest control of vegetables, fruits, some
trees in agriculture and planting. In recent years, impulsive systems are found
in many research areas of applied sciences [7,10,15,19,21]. Impulsive delay dif-
ferential equations play a significant role in various branches of applied sciences
including biology and population dynamics. Generally, the theory of impulsive
delay differential equations is relatively mature [9, 13] and the introduction of
time delay and impulse to predator-prey models with stage-structure enriches
the biological background greatly. But the consequence is obvious because
the system becomes nonautonomous and quite complicated. Recently, two-
dimensional delayed stage-structured models with impulsive effect at one fixed
impulsive moment have been investigated in [5,16]. The predator-prey models
with stage structure for the predator have been extensively investigated, [4,20]
to name but a few. In the real world, as immature prey takes τ units of time
to mature, it is necessary to consider the death toll during the juvenile period.
Hence time delay is endowed with more vital significance in stage-structured
models, for example [1, 6, 17].

In this paper, we aim to propose a pest control SI model which is stage-
structured for both the pest and the predator by introducing a constant periodic
releasing animal enemies and infective pests at two different fixed moments. As
the diseased and juvenile individuals of pests cause damage to crops very little,
we assume in our model natural enemies prey on mature pests, but the diseased
and juvenile pests, and we only need to control the adult pest (prey). Then
we propose a high-dimensional delayed predator-prey model with two stage
structures and two different fixed moment impulse effects. New technique is
also developed to investigate the dynamics of the model.

1.1 Model formulation

The basic model considered is based on the following SI epidemic model{
Ṡ(t) = bS(t)− βS(t)I(t)− dS(t),

İ(t) = βS(t)I(t)− dI(t)− rI(t),

where S(t) and I(t) denote the members of the population susceptible to the
disease, and the infective members, respectively. Aiello and Freedman intro-
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duced the following famous model [1]:{
ẋj(t) = αx(t)− γxj(t)− αe−γτx(t− τ),

ẋ(t) = αe−γτx(t− τ)− ex2(t),

where they assumed for the mature population that the death rate is of a
logistic nature, that is, proportional to the square of the population with pro-
portionality constant e. Meng and Chen introduced a stage-structured SI eco-
epidemiological model with time delay and impulsive controlling [14]. Cooke [3]
formulated an SIR model with time delay effect by assuming that the force of
infection at time t is given by βS(t)I(t− τ), where β is the average number of
contacts per infective per day and τ > 0 is a fixed time during which the infec-
tious agents develop in the vector and it is only after that time that the infected
vector can infect a susceptible human. Levin et al. adopted a incidence form
like βSp(t)Iq(t), βSp(t)Iq(t)/N , p, q ∈ R+ which depends on different infective
diseases and environments [12]. We shall consider the case of p = 1, q = 2,
N = 1, i.e. βS(t)I2(t). Motivated by recent work, we formulate the following
delayed pest management SI model with stage structure for both the pests and
the predators, and the effects of constant natural enemies and diseased pests
impulsive input periodically at two different fixed moments:



dSj(t)

dt
= rS(t)− d1Sj(t)− re−d1τS(t− τ), t 6= (n+ l − 1)T, t 6= nT ,

dS(t)

dt
= re−d1τS(t− τ)− d2S2(t)

− βS(t)I2(t)− αS(t)y(t)

1 + ωy(t)
, t 6= (n+ l − 1)T, t 6= nT,

dI(t)

dt
= βS(t)I2(t)− d3I(t), t 6= (n+ l − 1)T, t 6= nT,

dyj(t)

dt
=
λαS(t)y(t)

1 + ωy(t)
− (m+ d4)yj(t), t 6= (n+ l − 1)T, t 6= nT,

dy(t)

dt
= myj(t)− d5y(t), t 6= (n+ l − 1)T, t 6= nT,

∆Sj(t) = 0, ∆S(t) = 0, ∆I(t) = 0, ∆yj(t) = q, ∆y(t) = 0,

t = (n+ l − 1)T,

∆Sj(t) = 0, ∆S(t) = 0, ∆I(t) = p, ∆yj(t) = 0, ∆y(t) = 0, t = nT,

(1.1)
where Sj(t) and S(t) represent the density of the immature and mature pest,
yj(t) and y(t), the density of the immature and mature natural enemy, respec-
tively; I(t) represents the density of the diseased pest at time t, r is the growth
rate of the mature pest in the absence of the predator, d1, µ, d3, d4 and d5
are the death rates of the immature pest, mature pest infective pest, immature
natural enemy and mature natural enemy. d2 is the mature pest death and
overcrowding rate. β is the infection rate of infective pest, α is the predation
rate of the predator, λ represents the conversion rate at which ingested prey in
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excess of what is needed for maintenance is translated into predator population
increase, ω measures the psychological or inhibitory effect respectively; τ is the
mean length of the juvenile period; T is the period of the impulsive effect; q is
the released amount of natural enemies at every impulsive period (n+ l− 1)T ;
p represents the released amount of infective pests at every impulsive period
nT . From the point of biology, we only consider system (1.1) in the following
region: D = {(Sj , S, I, yj , y | Sj , S, I, yj , y ≥ 0}. Let

C+ =
{
φ =

(
φ1(s), φ2(s), φ3(s), φ4(s), φ5(s)

)
∈ C : φi(0) > 0 (i = 1, 2, 3, 4, 5)

}
,

where φi(s) is non-negative, bounded and continuous function for s ∈ [−τ, 0].
C denotes the Banach space C([−τ, 0], R5) of continuous functions mapping
the interval [−τ, 0] into R5. Motivated by the application of systems (1.1) to
population dynamics, we assume that solutions of systems (1.1) satisfy the
initial conditions

φ ∈ C+. (1.2)

For continuity of initial conditions, we require

φ1(0) =

∫ 0

−τ
red1σS(σ) dσ.

Since the variables Sj(t) only appear in the first equation of system (1.1),
we only need to consider the subsystem of system (1.1) as follows:

dS(t)

dt
= re−d1τS(t− τ)− d2S2(t)

− βS(t)I2(t)− αS(t)y(t)

1 + ωy(t)
, t 6= (n+ l − 1)T, t 6= nT,

dI(t)

dt
= βS(t)I2(t)− d3I(t), t 6= (n+ l − 1)T, t 6= nT,

dyj(t)

dt
=
λαS(t)y(t)

1 + ωy(t)
− (m+ d4)yj(t), t 6= (n+ l − 1)T, t 6= nT,

dy(t)

dt
= myj(t)− d5y(t), t 6= (n+ l − 1)T, t 6= nT,

∆S(t) = 0, ∆I(t) = 0, ∆yj(t) = q, ∆y(t) = 0, t = (n+ l − 1)T,

∆S(t) = 0, ∆I(t) = p, ∆yj(t) = 0, ∆y(t) = 0, t = nT.

(1.3)

1.2 Boundedness

First we should point out the solution of (1.1), x(t) = (Sj(t), S(t), I(t), yj(t),
y(t)) is a piecewise continuous function on (nτ, (n + 1)τ ], and x(nτ+) =
limt→nτ+ x(t). For system (1.1) to be biologically meaningful, it is impor-
tant to prove that all its state variables are non-negative for all time. In other
word, solutions of system (1.1) with positive initial value remain positive for
all time t > 0.
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Let Sj(0) > 0, S(0) > 0, I(0) > 0, yj(0) > 0 and y(0) > 0. Then, one can
easily prove that the solutions (Sj , S, I, yj , y) of system (1.1) are positive for
all t > 0. First, we show that S(t) > 0 for all t > 0. Notice S(0) > 0, hence
if there exists t0 such that S(t0) = 0, then t0 > 0. Assume that t0 is the first
such time that S(t) = 0, that is t0 = inf{t > 0 | S(t) = 0}; then from the
second equation of (1.1) we get

S′(t0) = re−d1τS(t− τ) > 0.

Hence for sufficiently small ε > 0, S′(t0 − ε) > 0. But by the definition of t0,
S′(t0 − ε) ≤ 0. This contradiction shows that S(t) > 0 for all t > 0.

From the third equation of (1.1) we get for t 6= nT , that

I(t) = I(0)e
∫ t
0
(βS(t)I(t)−d3) dt.

For t = nT , we have I(nT+) = I(nT ) + p, p ≥ 0, it is easy to see that I(t) > 0
for all t > 0. From the fourth equation of (1.1) for t 6= (n + l − 1)T , we have
that

yj(t) = yj(0)e
∫ t
0
(
λαy(t)
yj(t)

−m−d4) dt
,

and for t = (n+ l − 1)T , we have yj(nT
+) = yj(nT ) + q, q ≥ 0, thus we have

yj(t) > 0 for all t > 0. Similarly from the fifth equation of (1.1), we get for
t > 0 that

y(t) = y(0)e
∫ t
0
(
myj(t)

y(t)
−d5) dt.

Obviously we have yj(t) > 0 for all t > 0.
Finally we consider the following equation:

u′(t) = −re−d1τS(t− τ)− d1u(t) (1.4)

and comparing with (1.1), we note that if u(t) is the solution of (1.4) and if
Sj(t) > 0 can solve (1.1), then Sj(t) > u(t) for 0 ≤ t ≤ τ . Solving (1.4) gives

u(t) = e−d1t
(
Sj(0)−

∫ t

0

red1(σ−τ)S(σ − τ) dσ

)
.

From φ1(0) =
∫ 0

−τ re
d1σS(σ) dσ, one can obtain

u(τ) = e−d1τ
(∫ 0

−τ
red1σS(σ) dσ −

∫ τ

0

red1(σ−τ)S(σ − τ) dσ

)
.

Notice that
∫ 0

−τ re
d1σS(σ) dσ is equivalent to

∫ τ
0
red1(σ−τ)S(σ− τ) dσ. And we

obtain u(τ) = 0. Hence Sj(τ) > 0. Since u(t) is strictly decreasing, Sj(t) >
u(t) > 0 for 0 ≤ t ≤ τ . So Sj(t) > 0 for 0 ≤ t ≤ τ .

We now show by induction that Sj(t) is positive on nτ < t < (n + l)τ ,
n = 0, 1, . . .. We have just shown that this is valid for n = 0. Assume it is valid
for n = 0, 1, . . . , k − 1. Then Sj(kτ) > 0. Consider the equation given by

u′(t) = −re−d1τS(t− τ)− d1u(t), u(kτ) = yj(kτ). (1.5)

Math. Model. Anal., 18(4):505–528, 2013.



510 T.Q. Zhang, X.Z. Meng, Y. Song and T.H. Zhang

From (1.1), Sj(t) > u(t) for t > kτ . Now (1.5) is equivalent to the integral
equation

u(t) = e−d1(t−kτ)
(
Sj(kτ)−

∫ t

kτ

red1(σ−kτ−τ)S(σ − τ) dσ

)
.

Hence

u
(
(k + 1)τ

)
= e−d1τ

(
Sj(kτ)−

∫ (k+1)τ

kτ

red1(σ−(k+1)τ)S(σ − τ) dσ

)
.

From φ1(0) =
∫ 0

−τ re
d1σS(σ) dσ, one can obtain

φ1(kτ) =

∫ kτ

(k−1)τ
red1(σ−kτ)S(σ) dσ =

∫ (k+1)τ

kτ

red1(σ−(k+1)τ)S(σ − τ) dσ.

So we obtain u((k+ 1)τ) = 0 and so Sj(τ) > 0. Hence Sj((k+ 1)τ) > 0. Since
u(t) is strictly decreasing, we have Sj(t) > u(t) > 0 for all t > 0.

Let R+ = [0,∞), R5
+ = {x ∈ R5 : x ≥ 0, x = (Sj , S, I, yj , y)}. Denote

f = (f1, f2, f3, f4, f5)T the map defined by the right-hand side of the anterior
five equations of system (1.1), and N the set of all non-negative integers. Let
V : R+ ×R5

+ → R+, then V is said to belong to class V0 if

(i) V is continuous in ((k−1)T, kT ]×R5
+, k ∈ N , and for each x ∈ R5

+ limits

lim
(t,z)→((k−1)T+,x)

V (t, z) = V ((k−1)T, x), lim
(t,z)→(kT+,x)

V (t, z) = V (kT+, x)

exist.

(ii) V is locally Lipschitzian in x.

Then we have the following definition:

Definition 1. [3] Let V ∈ V0, then for (t, x) ∈ ((k − 1)T, kT ] × R5
+, k ∈ N ,

the upper right derivative of V (t, x) with respect to the impulsive differential
system (1.1) is defined as

D+V (t, x) = lim sup
h→0+

1

h

[
V
(
t+ h, x+ hf(t, x)

)
− V (t, x)

]
.

Next, we will consider the boundedness of system (1.1). Let

V (t) = λSj(t) + λS(t) + λI(t) + yj(t) + y(t).

Then the upper right derivative of V (t) along a solution of system (1.1) with
t 6= (n+ l − 1)T , t 6= nT is given by

V̇ (t) = rλS(t)− d2λS2(t)− d1λSj(t)− d3λI(t)− d4yj(t)− d5y(t).

Since r, λ, d1, d2, d3, d4, d5 > 0, one can deduce that

V̇ (t) < λ
(
(r + d)S(t)− d2S2(t)

)
− dV (t) < Λ− dV (t),
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where Λ = λ(r + d)2/(4d2) and d = min{d1, d3, d4, d5}. We consider the fol-
lowing impulse differential inequalities.

V̇ (t) ≤ Λ− dV (t), t 6= (n+ l − 1)T, t 6= nT,

V
(
(n+ l − 1)T+

)
= V

(
(n+ l − 1)T

)
+ q, t = (n+ l − 1)T,

V (nT+) = V (nT ) + λp, t = nT.

According to impulse differential inequalities theory, we get

V (t) ≤ V (0)e−dt +

∫ t

0

Λe−d(t−s)ds

+
∑

0<(n+l−1)T<nT<t

(
qe−d(t−(n+l−1)T ) + λpe−d(t−nT )

)
→ Λ

d
+
qedlT + λpedT

edT − 1
= L

as t→∞, so V (t) is ultimately bounded. Therefore, by the definition of V (t),
we know that each positive solution of system is ultimately bounded.

2 Analysis of the Model

Then we have the following lemmas from previous work.

Lemma 1. [2, 8] Let V : R+ ×R3
+ → R+, and V ∈ V0. Assume that

D+V
(
t, z(t)

)
≤ (≥) g

(
t, V

(
t, z(t)

))
, t 6= nτ,

V
(
t, z(t)+

)
≤ (≥) Ψn

(
V
(
t, z(t)

))
, t = nτ,

where g : R+ × R+ → R is continuous in (nτ, (n + 1)τ ] × R+ and for each
x ∈ R+, n ∈ N , lim(t,y)→((nτ)+,x) g(t, y) = g((nτ)+, x) exist ; Ψn : R+ → R+ is
nondecreasing. Let r(t) = r(t, 0, u0) be the maximal (minimal) solution of the
scalar impulsive differential equation{

u′ = g(t, u), t 6= nτ,

u(t+) = Ψn
(
u(t)

)
, t = nτ

(2.1)

on [0,∞). Then V (0+, z0) ≤ (≥) u0 implies that V (t, z(t)) ≤ (≥) r(t), t ≥ 0,
where z(t) = z(t, 0, z0) is a solution of system (2.1) on [0,∞).

Lemma 2. [18] Consider the following delay differential equation

dx(t)

dt
= ax(t− τ)− bx(t)− cx2(t),

where a, b, c, τ are all positive constants and x(t) > 0 for t ∈ [−τ, 0]. Then we
have

(1) if a < b, limt→∞ x(t) = 0.

Math. Model. Anal., 18(4):505–528, 2013.
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(2) if a > b, limt→∞ x(t) = (a− b)/c.

Lemma 3. [11] System
dv

dt
= −cv(t), t 6= nT, n ∈ N,

∆v(t) = µ, t = nT, n ∈ N
(2.2)

has a unique positive T -periodic solution v∗(t) = µe−c(t−nT )/(1− e−cT ) for
t ∈ (nT, (n + 1)T ], n ∈ N with v∗(0) = µ/(1− e−cT ). And for each solution
v(t) we have v(t)→ v∗(t) as t→ +∞.

Lemma 4. [22] System
du(t)

dt
= av(t)− bu(t),

dv(t)

dt
= −cv(t),

 t 6= nT,

∆u(t) = 0, ∆v(t) = µ, t = nT

(2.3)

has a unique positive T -periodic solution (u∗(t), v∗(t)), which takes the form

u∗(t) = u∗(0)e−b(t−nT ) +
aµ(e−b(t−nT ) − e−c(t−nT ))

(c− b)(1− e−cT )
,

v∗(t) = µe−c(t−nT )/(1− e−cT ),

u∗(0) =
aµ(e−bT − e−cT )

(c− b)(1− e−bT )(1− e−cT )
,

v∗(0) = µ/(1− e−cT )

for t ∈ (nT, (n+ 1)T ] and n ∈ N , and satisfies u(t)→ u∗(t) and v(t)→ v∗(t)
as t→∞.

2.1 Global attractivity of the ‘mature pest-extinction’ periodic so-
lution

Firstly, in this section, we investigate the pest-extinction solution of the system
(1.3), in which the pest individual are entirely absent from the population
permanently, i.e. S(t) = 0, t ≥ 0. In this case, system system (1.3) can be
rewritten as follows: 

dI(t)

dt
= −d3I(t), t 6= nT,

∆I(t) = p, t = nT
(2.4)

and 

dyj(t)

dt
= −(m+ d4)yj(t),

dy(t)

dt
= myj(t)− d5y(t),

 t 6= (n+ l − 1)T, t 6= nT,

∆yj(t) = q, ∆y(t) = 0, t = (n+ l − 1)T.

(2.5)
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Then from Lemmas 3 and 4 we have

Theorem 1. System (1.3) has a ‘pest-extinction’ periodic solution (0, I∗(t),

y∗j (t), y∗(t)) for t ∈ ((n + l−1)T, (n+l)T ], n ∈ N , where I∗(t) = pe−d3(t−nT )

1−e−d3T ,

I∗(0) = p
1−e−d3T and

y∗(t) = y∗(0)e−d5(t−(n+l−1)T )

+
mq(e−d5(t−(n+l−1)T ) − e−(m+d4)(t−(n+l−1)T ))

(m+ d4 − d5)(1− e−(m+d4)T )
,

y∗j (t) = qe−(m+d4)(t−(n+l−1)T )/(1− e−(m+d4)T ),

y∗(0) =
mq(e−d5T − e−(m+d4)T )

(m+ d4 − d5)(1− e−d5T )(1− e−(m+d4)T )
,

y∗j (0) = q/(1− e−(m+d4)T ).

Secondly, we analyze the global attractivity of the ‘mature pest-extinction’
periodic solution. Denote

A1 =
pe−d3T

1− e−d3T
, A2 =

mq(e−d5T − e−(m+d4)T )

(m+ d4 − d5)(1− e−d5T )(1− e(m+d4)T )
,

B =
mq(1− d5

m+d4
)( d5
m+d4

(1− e−(m+d4)T ))
d5

m+d4−d5

(m+ d4 − d5)(1− e−d5T )
m+d4

m+d4−d5

, R1 =
re−d1τ

βA2
1 + αA2

1+ωA2

.

Then we have

Theorem 2. The ‘mature pest-extinction’ periodic solution (0, I∗(t), y∗j (t),
y∗(t)) of system (1.3) is globally attractive, provided that R1 < 1.

Proof. Let (S(t), I(t), yj(t), y(t)) be any solution of system (1.3) with initial
condition (1.2). From the second equation of system (1.3), it follows that
dI(t)/dt ≥ −d3I(t), I(t+) = I(t) + p, for nT < t ≤ (n + 1)T . By Lemma 3,
impulse differential system

dz1(t)

dt
= −d3z1(t), t 6= nT,

∆z1(t) = p, t = nT

has a globally asymptotically stable positive periodic solution,

z∗1(t) =
pe−d3(t−nT )

1− e−d3T
, t ∈

(
nT, (n+ 1)T

]
.

Then the comparison theorem implies, for any sufficiently small ε > 0, there
exists an integer n1 such that

I(t) > z∗1(t)− ε > pe−d3T

1− e−d3T
− ε = A1 − ε, t > n1T. (2.6)

Math. Model. Anal., 18(4):505–528, 2013.



514 T.Q. Zhang, X.Z. Meng, Y. Song and T.H. Zhang

Similarly, for any sufficiently small ε1 > 0, there exists an integer n2 > n1 such
that

yj(t) > y∗j (t)− ε1, t ∈
(
(n+ l − 1)T, (n+ l)T

]
, t > n2T, (2.7)

from which and the fourth equation of system (1.3), we have

dy(t)

dt
≥ m

(
y∗j (t)− ε1

)
− d4y(t).

Consider the system
dz2(t)

dt
= m

(
y∗j (t)− ε1

)
− d5z2(t), t 6= (n+ l − 1)T,

∆z2(t) = 0, t = (n+ l − 1)T.
(2.8)

It is not difficult to verify that system (2.8) has a globally asymptotically stable
positive periodic solution,

z∗2(t) = g(t)−mε1/d5, t ∈
(
(n+ l − 1)T, (n+ l)T

]
.

where g(t) is continuous function on [(n+ l − 1)T, (n+ l)T ] and

g(t)=
mq((1−e−(m+d4T ))e−d5(t−(n+l−1)T )−(1−e−d5T )e−(m+d4)(t−(n+l−1)T ))

(m+ d4 − d5)(1− e−(m+d4T ))(1− e−d5T )
.

It has a unique stationary point

t̆ = (n+ l − 1)T +
1

m+ d4 − d5
ln

(m+ d4)(1− e−d5T )

d5(1− e−(m+d4)T )
,

at which

g′′(t̆)=−mq d
m+d4

m+d4−d5
5 (1− e−(m+d4)T )

d5
m+d4−d5

(m+ d4)
d5

m+d4−d5 (1− e−d5T )
m+d4

m+d4−d5

< 0.

Note that

g
(
(n+l−1)T

)
= g
(
(n+l)T

)
=

mq(e−d5T − e−(m+d4)T )

(m+ d4 − d5)(1− e−d5T )(1− e(m+d4)T )
= A2.

Thus we have
A2 ≤ g(t) ≤ g(t̆) = B. (2.9)

So for any sufficiently small ε2 > 0, there exists an integer n2 > n1 and n > n2
such that

y(t) > z∗2(t)− ε2, t ∈
(
(n+ l − 1)T, (n+ l)T

]
,

which implies that

y(t) > A2 −mε1/d5 − ε2. (2.10)
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Therefore, from the first equation of system (1.3), we have

dS(t)

dt
≤ re−d1τS(t− τ)− d2S2(t)

−
(
β(A1 − ε)2 +

α(A2 − mε1
d5
− ε2)

1 + ω(A2 − mε1
d5
− ε2)

)
S(t), t > n2T + τ. (2.11)

Now we consider the following comparison equation:

dz3(t)

dt
= re−d1τz3(t− τ)− d2z23(t)

−
(
β(A1 − ε)2 +

α(A2 − mε1
d5
− ε2)

1 + ω(A2 − mε1
d5
− ε2)

)
z3(t), t > n2T + τ. (2.12)

Since R1 < 1, we have

re−d1τ < βA2
1 + αA2/(1 + ωA2). (2.13)

We can choose three sufficiently small positive constants ε, ε1, ε2 such that

re−d1τ < β(A1 − ε)2 +
α(A2 − mε1

d5
− ε2)

1 + ω(A2 − mε1
d5
− ε2)

. (2.14)

By Lemma 2 we know limt→∞ z3(t) = 0. From (2.11), by impulsive compar-
ison theorem, we have S(t) ≤ z3(t) for t large enough. Then we obtain that
limt→∞ S(t) = 0. It implies, for a sufficiently small ε3 > 0 and large t, we have
0 < S(t) < ε3. Without loss of generality, we may assume 0 < S(t) < ε3 as
t ≥ 0.

From the second equation of system (1.3), we have dI(t)/dt < (βε3L −
d3)I(t). Consider the following comparison system

dz4(t)

dt
= (βε3L− d3)z4(t), t 6= nT,

∆z4(t) = p, t = nT.
(2.15)

By Lemma 3, system (2.15) has a positive periodic solution

z∗4(t) =
pe−(d3−βεL)(t−nT )

1− e−(d3−βε3L)T
,

which is globally asymptotically stable. Thus, for a sufficiently small ε > 0,
when t is large enough, we have

I(t) < z4(t) < z∗4(t) + ε. (2.16)

Combining system (2.6) with (2.16), we obtain

z∗1(t)− ε < I(t) < z∗4(t) + ε. (2.17)

Let ε1, ε3 → 0, (2.17) implies limt→∞ I(t) = I∗(t).
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Consider the third equation of system (1.3), we have

dyj(t)

dt
≤ λαεL

1 + ωL
− (m+ d4)yj(t).

From the comparison system
dz5(t)

dt
=
λαε3L

1 + ωL
− (m+ d4)z5(t), t 6= (n+ l − 1)T,

∆z5(t) = q, t = (n+ l − 1)T,

there exists a positive periodic solution,

z∗5(t)=
λαε3L

(1 + ωL)(m+ d4)
+
qe−(m+d4)(t−(n+l−1)T )

1− e−(m+d4)T
, (n+ l−1)T < t ≤ (n+l)T,

which is globally asymptotically stable. Hence, for a sufficiently small ε4 > 0,
when t is large enough, we have

yj(t) < z5(t) < z∗5(t) + ε4. (2.18)

Combining system (2.7) with (2.18), we obtain

y∗j (t)− ε1 < yj(t) < z∗5(t) + ε4,

which implies limt→∞ yj(t) = y∗j (t) as ε1, ε3 and ε4 are all sufficiently small
constants. Since limt→∞ yj(t) = y∗j (t), by Lemma 4, we obtain limt→∞ y(t) =
y∗(t). The proof is completed. ut

Let R1 = 1, we can work out threshold value of parameter p, q and τ
respectively. Denote

p∗ =
(
ed3T − 1

)√re−d1τ − αA2

1+ωA2

β
, τ∗ =

1

d1
ln

r

βA2
1 + αA2

1+ωA2

and

q∗ =
(m+ d4 − d5)(1− e−d5T )(1− e(m+d4)T )(re−d1τ − βA2

1)

m(e−d5T − e−(m+d4)T )(α− ω(re−d1τ − βA2
1))

.

We have

Corollary 1. If p > p∗ or q > q∗ or τ > τ∗, then the ‘mature pest-extinction’
periodic solution (0, I∗(t), y∗j (t), y∗(t)) is globally attractive.

2.2 Permanence and the pest control strategy

In Section 2.2, we will prove the pest-eradication solution (0, I∗(t), y∗j (t), y∗(t))
of (1.3) is globally attractive when R1 < 1, that is, the adult pest population is
eradicated totally as time goes under the condition for the global attractivity.
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Considering the principle of ecosystem balance, biological diversity of popula-
tion and resources saving, we hope that the pest population can coexist with
its natural enemy population while the pests do not bring immense economic
loss, in other words, we only want to control the pest population under the
economic threshold level (ETL). So in the following, we will give the sufficient
condition for the permanence of (1.3), and discuss the strategy of regulating
the pest. The following definition is necessary before stating our theorems.
Denote

A =
mλαL

d4(1 + ωL)(m+ d4)
, R2 =

(
re−d1τ − βpL

1− e−d3T
)
/

αB

1 + ωB
,

B1 = ωB
( R2αA

1 + ωB
−
(
d2 +

β2L3

d3

))
−
(
d2 +

β2L3

d3
+ αA

)
,

k∗ =
R2 − 1

R2

B1 +
√
B2

1 + 4αωAB(d2 + β2L3

d3
)(R2 − 1)

2ωA(d2 + β2L3

d3
)

.

Then we have

Theorem 3. If R2 > 1, there exists a positive constant σ such that each posi-
tive solution (S(t), I(t), yj(t), y(t)) of system (1.3) satisfies S(t) ≥ σ for t large
enough.

Proof. The first equation of system (1.3) can be rewritten as

Ṡ(t) =
(
re−d1τ − d2S(t)− βI2(t)− αy(t)

1 + ωy(t)

)
S(t)− re−d1τ d

dt

∫ t

t−τ
S(%) d%.

Let U(t) = S(t) + re−d1τ
∫ t
t−τ S(%) d%. Its derivative along the solution of

system (1.3) is

dU(t)

dt
=

(
re−d1τ − d2S(t)− βI2(t)− αy(t)

1 + ωy(t)

)
S(t). (2.19)

Next, we claim that the inequality S(t) < k∗ cannot hold for all t ≥ t0, here
t0 > 0 is arbitrary constant. Otherwise, there exists a positive constant t0 such
that S(t) < k∗ for all t ≥ t0. We shall prove that this can not happen. From
the second equation of system (1.3), when t ≥ t0, we have

dI(t)

dt
≤ βk∗L2 − d3I(t), t 6= nT,

∆I(t) = p, t = nT.
(2.20)

Thus there exists a T ′1 > t0 + τ such that

I(t) <
βk∗L2

d3
+
pe−d3(t−nT )

1− e−d3T
+ ε1 <

βk∗L2

d3
+

p

1− e−d3T
+ ε1 , C, t > T ′1.

(2.21)
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From the third equation of system (1.3), when t ≥ t0, we have
dyj(t)

dt
≤ λαk∗L

1 + ωL
− (m+ d4)yj(t), t 6= (n+ l − 1)T,

∆yj(t) = q, t = (n+ l − 1)T.

Thus there exists a T ′′1 > t0 + τ such that

yj(t) <
λαk∗L

(1 + ωL)(m+ d4)
+
qe−(m+d4)(t−(n+l−1)T )

1− e−(m+d4)T
+ ε2 = ỹj(t) + ε2, t > T ′′1 .

Let T1 = max{T ′1, T ′′1 }. Then from the fourth equation of system (1.3), when
t > T1, we have

dy(t)

dt
≤ m

(
ỹj(t) + ε2

)
− d5y(t), t 6= (n+ l − 1)T,

∆y(t) = 0, t = (n+ l − 1)T.

Similarly, there exits a T2 > T1 such that

y(t) <
m

d5

(
λαk∗L

(1 + ωL)(m+ d4)
+ ε2

)
+ g(t) + ε3, t > T2.

Then from (2.9), we have

y(t) <
m

d5

(
λαk∗L

(1 + ωL)(m+ d4)
+ ε2

)
+B + ε3 , D, t > T2. (2.22)

By the definition of k∗, one can easily get k∗ > 0. Choose ε1, ε2, ε3 > 0 to be
small enough such that

re−d1τ > d2k
∗ + βCL+ αD/(1 + ωD), (2.23)

inequality (2.23) is further proved in Appendix A. Then we have

dU(t)

dt
>

(
re−d1τ − d2k∗ − βCL−

αD

1 + ωD

)
S(t), t > T̃ . (2.24)

Let Sl = mint∈[T1,T1+τ ] S(t). We can show S(t) ≥ Sl for all t ≥ T̃ . Actually,

if there exists a nonnegative constant T3 such that S(t) ≥ Sl for t ∈ [T̃ , T̃ +τ +
T3], S(T̃ + τ + T3) = Sl and Ṡ(T̃ + τ + T3) ≤ 0. Then from the first equation
of (1.3) and (2.21), we easily see that

Ṡ(T̃ + τ + T3) = re−d1τS(T̃ + T3)− d2S2(T̃ + τ + T3)

− βS(T̃ + τ + T3)I2(T̃ + τ + T3)− αS(T̃ + τ + T3)y(T̃ + τ + T3)

1 + ωy(T̃ + τ + T3)

So we have

Ṡ(T̃ + τ + T3) >
(
re−d1τ − d2k∗ − βCL− αD/(1 + ωD)

)
Sl > 0, (2.25)
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which is a contradiction. Hence S(t) ≥ Sl > 0 for all t ≥ T̃ . From (2.24), we
have

dU(t)

dt
>

(
re−d1τ − d2k∗ − βCL−

αD

1 + ωD

)
Sl > 0, (2.26)

which implies U(t) → +∞ as t → +∞. This is a contradiction to U(t) ≤
(1+rτe−d1τ )L. Therefore, for any positive constant t0, the inequality S(t) < k∗

cannot hold for all t ≥ t0.
If S(t) ≥ k∗ holds true for all t large enough, then we finish the proof of the

theorem. Otherwise, S(t) is oscillatory about k∗. We shall show our conclusion
is also true in this case.

Let σ = min
{

1
2k
∗, k∗ exp (−(d2L+ βL2 + αL

1+ωL )τ)
}

. In the following, we

shall prove that S(t) ≥ σ. Assume there exist two positive constants t̄, ρ such
that

S(t̄) = S(t̄+ ρ) = k∗, and S(t) < k∗, for t̄ < t < t̄+ ρ. (2.27)

From (2.27), we know that S(t) < k∗ for t̄ < t < t̄+ ρ, from the third equation
of system (1.3), when t ≥ t̄, we have

dyj(t)

dt
≤ λαk∗L

1 + ωL
− (m+ d4)yj(t), t 6= (n+ l − 1)T,

∆yj(t) = q, t = (n+ l − 1)T.

Thus there exists a T1 > t̄+ τ such that

yj(t) <
λαk∗L

(1 + ωL)(m+ d4)
+
qe−(m+d4)(t−(n+l−1)T )

1− e−(m+d4)T
+ ε2 = ỹj(t) + ε2, t > T1.

Then from the fourth equation of system (1.3), when t > T1, we have
dy(t)

dt
≤ m(ỹj(t) + ε2)− d5y(t), t 6= (n+ l − 1)T,

∆y(t) = 0, t = (n+ l − 1)T.

Similarly, there exits a T2 > T1 such that

y(t) <
m

d5

(
λαk∗L

(1 + ωL)(m+ d4)
+ ε2

)
+ g(t) + ε3

<
m

d5

(
λαk∗L

(1 + ωL)(m+ d4)
+ ε2

)
+B + ε3 = D.

Thus, we can eventually get y(t) < D for t̄+ T2 < t < t̄+ ρ.
Since S(t) is continuous and bounded, and is not effected by impulses, we

conclude that S(t) is uniformly continuous. Hence there exists a constant T4
with 0 < T4 < τ and independent of the choice of t̄ such that S(t) > 1

2k
∗ for

all t̄ ≤ t ≤ t̄+ T4. If ρ ≤ T4, our aim is obtained.
If T4 < ρ ≤ τ , from the first equation of system (1.3), we have

Ṡ(t) ≥ −
(
d2L+ βL2 + αL/(1 + ωL)

)
S(t), t̄ < t ≤ t̄+ ρ.
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Then we have S(t) ≥ k∗e−(d2L+βL
2+ αL

1+ωL )τ for t̄ < t ≤ t̄ + ρ ≤ t̄ + τ since
S(t̄) = k∗. It is obvious that S(t) ≥ σ for t̄ < t ≤ t̄+ ρ.

If ρ ≥ τ , then we have that S(t) ≥ k∗e−(d2L+βL
2+ αL

1+ωL )τ for t̄ < t ≤
t̄ + τ . Next, we will show that S(t) ≥ k∗e−(d2L+βL

2+ αL
1+ωL )τ for t̄ + τ < t ≤

t̄ + ρ. In fact, if this is not true, there exists a T5 > 0 such that S(t) ≥
k∗e−(d2L+βL

2+ αL
1+ωL )τ for t̄ < t ≤ t̄+τ+T5; S(t̄+τ+T5) = k∗e−(d2L+βL

2+ αL
1+ωL )τ

and Ṡ(t̄+ τ + T5) ≤ 0.
On the other hand, from the second equation of system (1.3) and (2.21),

we easily see

Ṡ(T̃ + τ + T5) = re−d1τS(T̃ + T5)− d2S2(T̃ + τ + T5)

− βS(T̃ + τ + T5)I2(T̃ + τ + T5)− αS(T̃ + τ + T5)y(T̃ + τ + T5)

1 + ωy(T̃ + τ + T5)
,

thus we get

Ṡ(T̃ + τ + T5) >

(
re−d1τ − d2k∗ − βCL−

αD

1 + ωD

)
Sl > 0, (2.28)

which is a contradiction to Ṡ(t̄+ τ + T5) ≤ 0. Hence we get that S(t) ≥ σ > 0
for all t ∈ [t̄, t̄ + ρ]. Since interval [t̄, t̄ + ρ] is arbitrarily chosen, we know
S(t) ≥ σ for t large enough. Please notice the choice of σ is independent of
the positive solution of (1.3) which satisfies that I(t) ≥ σ for sufficiently large
t. This completes the proof. ut

Theorem 4. If R2 > 1, then system (1.3) is permanent.

Proof. Suppose that (S(t), I(t), yj(t), y(t)) is any positive solution of system
(1.3) with initial conditions (1.2). By Theorem 3, there exist positive constants
σ and T ∗ such that S(t) ≥ σ, for t ≥ T ∗. From the proof of Theorem 2, we
can conclude that the following inequalities

I(t) > A1 − ε1, yj(t) > y∗j (t)− ε1 >
qe−(m+d4)T

1− e−(m+d4)T
− ε1,

y(t) > A2 −mε1/d5 − ε2
hold for t large enough. Noticing the boundedness of (1.1) gives S(t), I(t), yj(t),
y(t) ≤ L for t large enough. Then system (1.3) is permanent, and the proof is
completed. ut

Let R2 = 1, we can work out threshold value of parameter p, q and τ
respectively. Denote

p∗ =
(1− e−d3T )(re−d1τ − αB

1+ωB )

βL
, τ∗ =

1

d1
ln

r
βpL

1−e−d3T + αB
1+ωB

and

q∗ =
(m+ d4 − d5)(1− e−d5T )

m+d4
m+d4−d5

( re−d1τ−βpL/(1−e−d3T )
α−ω(re−d1τ−βpL/(1−e−d3T ))

)
m(1− d5

m+d4
)( d5
m+d4

(1− e−(m+d4)T ))
d5

m+d4−d5

.
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We have

Corollary 2. If p < p∗ or q < q∗ or τ < τ∗, then system (1.3) is permanent.

As any pest control professional can tell us, large-scale eradication is in-
feasible. Therefore we aim to keep pests under the economic threshold level
(ETL) to protect the crop but to eradicate them. In the following, we consider
pest control strategy and give conditions under which the pest population is
under ETL. Then we have

Theorem 5. For system (1.3), if

re−d1τ − d2E < βA2
1 + αA2/(1 + ωA2) < re−d1τ , (2.29)

then the pest and its natural enemy may coexist. Furthermore, when t is large
enough, we have S(t) < E, where the constant E is the economic threshold
level (ETL).

Proof. Suppose (S(t), I(t), yj(t), y(t)) is a positive solution of (1.3) with initial
conditions (1.2). Since

βA2
1 + αA2/(1 + ωA2) < re−d1τ ,

we may choose three sufficiently small positive constants ε1, ε2, ε such that

re−d1τ > β(A1 − ε)2 +
α(A2 −mε1/d5 − ε2)

1 + ω(A2 −mε1/d5 − ε2)
.

Furthermore, from the following inequality

re−d1τ − d2E < βA2
1 + αA2/(1 + ωA2)

we can get

re−d1τ − (β(A1 − ε)2 + α(A2−mε1/d5−ε2)
1+ω(A2−mε1/d5−ε2) )

d2
< E, (2.30)

and by (2.11), when t is large enough, we have

dS(t)

dt
≤ re−d1τS(t−τ)− d2S2(t)−

(
β(A1− ε)2 +

α(A2 − mε1
d5
− ε2)

1 + ω(A2 − mε1
d5
− ε2)

)
S(t),

which implies S(t) ≤ Z(t) for t large enough.
Consider the comparison equation

dZ(t)

dt
= re−d1τZ(t−τ)−d2Z2(t)−

(
β(A1−ε)2+

α(A2 −mε1/d5−ε2)

1 + ω(A2 −mε1/d5−ε2)

)
Z(t).

Using (2.28) and Lemma 2, we have

lim
t→+∞

Z(t) =
re−d1τ −

(
β(A1 − ε)2 + α(A2−mε1/d5−ε2)

1+ω(A2−mε1/d5−ε2)
)

d2
,
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(a) Time series of system (1.3). Mature pests die
out.

(b) Phase portrait of S(t), y(t).

(c) Phase portrait of S(t), I(t), yj(t). (d) Phase portrait of S(t), I(t), y(t).

Figure 1. The results of numerical simulation on the threshold values R1 = 0.3608, where
l = 0.5; p = 0.3; q = 0.3, T = 0.3; τ = 0.

which along with (2.30) gives

lim sup
t→+∞

S(t) ≤
re−d1τ −

(
β(A1 − ε)2 + α(A2−mε1/d5−ε2)

1+ω(A2−mε1/d5−ε2)
)

d2
< E.

This completes the proof. ut

3 Numerical Analysis and Discussion

In this paper, we further developed impulsive delayed models with staged struc-
ture, and investigated a high-dimensional delayed pest management SI model
with impulsive natural enemies and diseased pest transmission at different fixed
moments. Our main purpose is to study dynamics of the model such as attrac-
tivity of periodic solution, permanence of the system and to give pest control
strategies for Integrated Pest Management (IPM). Using the theory for im-
pulsive delay differential equation, we obtained some interesting results. In
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(a) Time series of system (1.3). System (1.3)is
uniformly permanent.

(b) Phase portrait of S(t), y(t).

(c) Phase portrait of S(t), I(t), yj(t). (d) Phase portrait of S(t), I(t), y(t).

Figure 2. The results of numerical simulation on the threshold values R2 = 1.6742, where
l = 0.5; p = 0.3; q = 0.3, T = 3; τ = 0.

Section 2, we analyzed extinction of pests and coexistence of pests and natural
enemies. Section 2.1, discussed the conditions for the global asymptotical at-
tractivity of the ’pest-extinction’ periodic solution, and in Section 2.2, we got
the conditions for the permanence of the system and also considered the pest
control strategy. From Theorem 2, we can see that a large amount of infective
prey input, p or a large amount of natural enemy input, q or a long juvenile
period of the predator, τ is a sufficient condition for the global attractivity of
the ’pest-extinction’ periodic solution. From Theorems 3 and 4, we can see
that a small amount of infective pest or a small amount of natural enemy or a
short juvenile period of the predator (with τ) is a sufficient condition for the
permanence of the system. Theorems 2, 3 and 4 show that R1 and R2 depend
on the time delay τ , so, we call it “profitless”, and we obtained critical values
of time delay τ∗ and τ∗.

To verify the theoretical results obtained in this paper, we will give some
numerical simulations by Maple and Matlab, which also show some new phe-
nomena different to previous work. For this purpose, parameters have been

Math. Model. Anal., 18(4):505–528, 2013.
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(a) Time series of system (1.3). System (1.3) is
uniformly permanent. (b) Phase portrait of S(t), y(t).

(c) Phase portrait of S(t), I(t), yj(t).
(d) Phase portrait of S(t), I(t), y(t).

Figure 3. The results of numerical simulation on the threshold values R2 = 7.1749, where
l = 0.5; p = 0.05; q = 0.05, T = 0.3; τ = 0.

selected as follows, r = 1, d1 = 0.2, d2 = 0.2, d3 = 0.8, d4 = 0.2, d5 = 0.2,
β = 1.3, α = 1.3, λ = 1, ω = 0.8, m = 0.4 with initial values S(0) = 1.2,
I(0) = 0.1, yj(0) = 0.2, y(0) = 0.1.

(i) From Theorem 3.2, we know that the mature pest tend to die out when
T = 0.3, p = 0.3, q = 0.3, τ = 0 (R1 = 0.3608 < 1, see Fig. 1(a)).

(ii) If we increase the period of pulses to T = 3 (R2 = 1.6742 > 1) or we fix
T = 0.3 and decrease the natural enemy amount and diseased pest amount to
p = 0.05, q = 0.05 (R2 = 7.1749 > 1), then the system (1.3) is permanent (see
Fig. 2(a) and Fig. 3(a), respectively), which follows from Theorem 4.

(iii) Also we can fix T = 3, p = 0.3, q = 0.3 and increase maturation time
delay to τ = 5.8 (R1 = 0.9787 < 1), then we find that the pest tends to be
extinct (see Fig. 4), which implies the great effect of the maturation time delay
on dynamics of the system.

(iv) Fig. 2(b), Fig. 2(c) and Fig. 2(d) show the system has a global stable
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Figure 4. Time series of system (1.3).

l = 0.5; p = 0.3; q = 0.3, T = 3; τ = 1 and R1 = 0.9787.
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Figure 5. Time series of pests. Pests can be controlled under ETL.

positive periodic solution when it is permanent.

(v) From the standpoint of ecological balance and saving resources, we
maintain the pest population under the economic threshold level (ETL = 0.12)
only, but to eradicate the pests totally (see Fig. 5).

All these results show that dynamical behaviors of system (1.3) become
more complex under periodically impulsive effects.

Appendix A

The proof of inequality (2.23). Let

re−d1τ > d2k
∗∗ + βCL+ αD/(1 + ωD). (3.1)

Math. Model. Anal., 18(4):505–528, 2013.
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From (2.21) and (2.22), and let ε1, ε2, ε3 → 0, then we have

re−d1τ > d2k
∗∗ + β

(βk∗∗L2

d3
+

p

1− e−d3T
)
L+

α(Ak∗∗ +B)

1 + ω(Ak∗∗ +B)
.

Simplifying the inequality (2.23) we get

ωA
(
d2 +

β2L3

d3

)
(k∗∗)2 +

( pL

1− e−d3T
− re−d1τ

)
(1 + ωB) + αB

+
(

(1 + ωB)
(
d2 +

β2L3

d3

)
+
( pL

1− e−d3T
− re−d1τ

)
Aω + αA

)
k∗∗ < 0.

Note that

re−d1τ − βpL

1− e−d3T
= R2

αB

1 + ωB

B1 = ωB
( R2αA

1 + ωB
−
(
d2 +

β2L3

d3

))
−
(
d2 +

β2L3

d3
+ αA

)
.

Then we have

ωA
(
d2 +

β2L3

d3

)
(k∗∗)2 −B1k

∗∗ + αB(1− R2) < 0. (3.2)

Solving the inequality (3.2), we get k∗∗1 < k∗∗ < k∗∗2 , where

k∗∗1,2 =
B1 ∓

√
B2

1 + 4ωαAB(d2 + β2L3/d3)(R2 − 1)

2ωA(d2 + β2L3/d3)
.

In fact, inequality (3.1) holds for any k∗∗ (k∗∗1 < k∗∗ < k∗∗2 ). Thus, let

0 < k∗ =
R2 − 1

R2
k∗∗2 < k∗∗2 ,

then inequality (2.23) holds for R2 > 1.
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