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Abstract. A preconditioned iterative solution method is presented for nonlinear
parabolic transport systems. The ingredients are implicit Euler discretization in time
and finite element discretization in space, then an outer-inner (outer damped inexact
Newton method with inner preconditioned conjugate gradient) iteration, further, as a
main part, preconditioning via an `-tuple of independent elliptic operators. Numerical
results show that the suggested method works properly for a test problem in air
pollution modeling.
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1 Introduction

Nonlinear time-dependent reaction-convection-diffusion (transport) systems a-
rise in various situations in applied mathematics and mathematical modeling,
often leading to large-scale, computationally challenging problems. Parabolic
transport systems are often encountered in the form

∂ui
∂t
− div(Ki∇ui) + bi · ∇ui +Ri(t, x, u1, . . . , u`) = gi, i = 1, . . . , `, (1.1)

ui
∣∣
∂Ω×R+ = γi,

which contains nonlinear coupling in the reaction terms. Such problems fre-
quently arise in environmental modeling, for instance in the study of the trans-
port of air pollutants, where ui are concentrations of chemical species. These
systems may consist of a huge number of equations: for instance, in [14] a
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model with more than 70 chemical reaction is analysed in details, but larger
models can also occur. A further specific feature of air pollution models is that
chemical reactions are described by very stiff systems of ODEs, which makes
the system ill-conditioned.

There are various techniques for the numerical handling of such types of
problems, see e.g. the monographs [9, 13, 14, 15]. Due to the compound struc-
ture of these systems, a widespread approach is to handle certain parts of the
problem separately. For example, operator splitting is often used to reduce the
original problem to successive simpler ones, or implicit-explicit (IMEX) time
stepping is widely applied in order to enable to treat the less stiff part of the
problem explicitly. The cost of such simplifications can be certain extra error,
as is mostly the case with operator splitting, or a reduced stability, which arises
for IMEX methods compared to fully implicit time stepping.

Any of the usual solution methods falls into one of two types: one discretizes
either first in time or first in space. In our paper we discretize first in time. After
time-discretization a coupled elliptic system has then to be solved on each time
level. Since the system of ODEs that stems from the chemical part is generally
stiff, the usage of implicit time-discretization schemes seems inevitable, in fact
we apply fully implicit time stepping for greater stability. Hence a nonlinearity
appears in the elliptic problems. Following [1], we propose an outer-inner
(outer damped inexact Newton method with inner preconditioned conjugate
gradient) iteration for solving the finite element discretization of the nonlinear
elliptic problems. The main part of this method is preconditioning using the
discretization of an `-tuple of independent elliptic operators as preconditioner.
This implies that the preconditioning matrix has a block-diagonal structure,
and the auxiliary problems can be solved with a cost proportional to that of a
single PDE, in contrast to solving the linearized PDE systems. Here we note
that there are various preconditioning strategies for such problems, some of
them similar to ours, for instance, approximate matrix factorization or block
Gauss–Seidel iterations. Our approach uses equivalent operators following [2],
which results in block diagonal preconditioners and lead to mesh independent
convergence rates for the conjugate gradient method.

We note that the applicability of the proposed method is more general than
the mentioned air pollution models. In fact, this approach can be used in a
similar way for other time-dependent parabolic reaction-convection-diffusion
systems arising in the context of chemical or biological interactions. For in-
stance, models describing chemotaxis-growth systems, when nonlinear advec-
tion part of the model starts to be a leading mechanism of dynamics, are
described in [3,12], and various other reaction-convection-diffusion systems are
given in [5].

The main goal of the paper is the application and numerical illustration
of the above-mentioned theoretical results to a real-life parabolic transport
system in air pollution modeling. We consider a simplified two dimensional
air-pollution model described in [7], where the nonlinear chemical part is taken
from [8]. The results of [1] are adapted, involving the time-step parameter, to
the solution of the elliptic systems arising after the implicit time-discretization.
The numerical results show that the suggested method performs satisfactorily
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for this realistic model problem.

2 The problem

2.1 A two-dimensional model problem

In [7] the following two-dimensional environmental model is proposed:

∂ui
∂t
−K∆ui + bi · ∇ui +Ri(t, x, y, u1, . . . , u`) = 0, i = 1, . . . , `, (2.1)

ui
∣∣
∂Ω×R+ = γi,

where ui = ui(t, x, y) are concentrations of chemical species (pollutants) and
the diffusion coefficient K is some positive constant. This system describes
the horizontal submodule of the process. The assumption of constant diffusion
coefficient K := Kx = Ky is not a severe restriction, since (in contrast to the
vertical coefficient) the horizontal diffusion coefficients are often chosen in this
way. It is also assumed that Dirichlet boundary conditions are imposed, where
the boundary values are usually interpolated from numerical results of a large
scale global model. Following [7], the advection part in Eq. (2.1) has the form

bi · ∇ui = µ(y − y1)
∂ui
∂x

+ µ(x1 − x)
∂ui
∂y

, (2.2)

where

x∈[a1, b1], y∈[a2, b2], x1=
a1 + b1

2
, y1=

a2 + b2
2

, µ =
2π

b− a
, t ∈ [T0, T1].

The spatial domain is a square with side length 500 km (a1 = a2 = 0 =: a,
b1 = b2 = 500 =: b) and the time span is a whole day. The time is measured in
minutes, hence the length of the time interval is 1440 min. This problem can be
considered as a special case of the Unified Danish Eulerian Model (cf. [4, 14]),
and is proposed in [7] as a proper model for testing numerical methods for
air pollution problems. In particular, the original number of species ` = 56 is
simplified to ` = 10 using the most characteristic pollutants in the process, and
an explicit circular wind field is involved.

2.2 The chemical part of the model

The main part of the model Eq. (2.1) comes from chemistry. It consists of a
source term for each pollutant and a nonlinear reaction term:

Ri(t, x, y, u1, . . . , u`) = Ei(t, x, y) +Qi(x, y, u1, . . . , u`).

This part causes both the nonlinearity and the coupling. The emission Ei
may depend on t, but not all chemical species are emitted, some of them are
created by the chemical reactions during the transport in the atmosphere. For
this experiment we have chosen zero emission for all pollutants (a so-called
puff), hence the reaction part Qi equals to Ri. The chemistry of the simplified
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model is defined in such a way that the number of chemical components can be
kept on a minimal level. It is noted in [8] that the obtained chemical module
is not claimed to reconstruct the complete real process, i.e. the computed
concentrations do not necessarily reflect factual values of chemical species in the
atmosphere. As mentioned before, this simplified model reflects the essential
behaviour and can serve as a proper test problem for numerical computations.

The chemical scheme used in the model can be found in [8, Tab. 1], but we
repeat them in Table 1 for the sake of completeness.

Table 1. The chemical scheme.

1. HC + OH −−→ 4 RO2 + 2 ALD 6. NO + O3 −−→ NO2 + O2
2. ALD + hν −−→ 2 HO2 + CO 7. O3 + hν −−→ O2 + O(1D)
3. RO2 + NO −−→ NO2 + ALD + HO2 8. O(1D) + H2O −−→ 2 OH
4. NO + HO2 −−→ NO2 + OH 9. NO2 + OH −−→ HNO3
5. NO2 + hν −−→ NO + O3 10. CO + OH −−→ CO2 + HO2

The rate coefficients can be found in Table 2. Some of the coefficients
belong to photochemical reactions (the ones with the term hν), which means
that these reactions depend on the light, more precisely on the position of the
Sun relative to the horizon: in k2, k5 and k7 the angle θ denotes the solar
zenith angle, which is the angle of the Sun measured from vertical.

Table 2. The coefficients of the chemical reactions.

k1 6.0 · 10−12 k6 1.6 · 10−14

k2 7.8 · 10−05 · exp(−0.87/ cos θ) k7 1.9 · 10−04 · exp(−1.9/ cos θ)
k3 8.0 · 10−12 k8 2.3 · 10−10

k4 8.0 · 10−12 k9 1.0 · 10−11

k5 1.0 · 10−02 · exp(−0.39/ cos θ) k10 2.9 · 10−13

The chemical species involved in the simplified reaction are written in Table 3.

Table 3. The chemical species in the model.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

NO NO2 HC ALD O3 HNO3 HO2 RO2 OH O(1D)

The mathematical description of the nonlinear chemistry part of Eq. (2.1),
which is readily derived from the chemical scheme, is the system of ODEs
∂tu +R(u) = 0, where u = (u1, . . . , u10), R = (R1, . . . , R10) and

R1(u1, . . . , u10) = −k5u2 + (k6u5 + k4u7 + k3u8)u1,

R2(u1, . . . , u10) = −(k6u5 + k4u7 + k3u8)u1 + (k5 + k9u9)u2,

R3(u1, . . . , u10) = k1u3u9, R4(u1, . . . , u10) = −2k1u3u9 − k3u8u1 + k2u4,

R5(u1, . . . , u10) = −k5u2 + (k6u1 + k7)u5, R6(u1, . . . , u10) = −k9u2u9,
R7(u1, . . . , u10) = −2k2u4 − k3u1u8 − ĉk10u9 + k4u1u7,

R8(u1, . . . , u10) = −4k1u9u3 + k3u8u1,
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R9(u1, . . . , u10) = −k4u1u7 − 2k8ĥu10 + (k1u3 + k9u2 + ĉk10)u9,

R10(u1, . . . , u10) = −k7u5 + k8ĥu10. (2.3)

Here ĉ and ĥ denote the concentrations of CO and H2O, respectively. These
species are omitted from Table 3, since the reactions they are involved in do
not essentially change their concentrations in the atmosphere.

3 FEM discretization and iterative solution

First we apply implicit time discretization to Eq. (2.1), and the nonhomo-
geneous boundary condition can be transformed into a homogeneous one by
ui → ui − γi. Hence we now assume that the boundary condition is homoge-
neous. Then our system has the form

−K∆ui + bi · ∇ui + fi(x, y, u1, . . . , u`) = gi, i = 1, . . . , `, ui
∣∣
∂Ω

= 0 (3.1)

on each time level, which is a nonlinear elliptic system. Its more concrete form
will be recalled later in (4.2), including the form of the functions fi; the presence
of the factor 1/τ implies the coercivity of the problem for small enough τ and
thus the uniform ellipticity of the linearized systems.

For brevity, we write (3.1) as

−K∆u + b · ∇u + f(x, y,u) = g, u
∣∣
∂Ω

= 0 (3.2)

using the vector notation. For any u ∈ H1
0 (Ω)` let

〈F (u),v〉H1
D

=

∫
Ω

(
K∇u · ∇v+ (b · ∇u) · v+f(x, y,u) · v

) (
v ∈ H1

0 (Ω)`
)
.

(3.3)

We apply the finite element method (FEM) for the discretization of (3.3) using
the N -dimensional FEM subspace Vh = span{ϕ1, . . . , ϕN} ⊂ H1

0 (Ω) and seek
the FEM solution uh ∈ V `h satisfying〈

F (uh),vh
〉
H1

0
=

∫
Ω

g · vh
(
vh ∈ V `h

)
.

We note that such a standard Galerkin method will prove to be appropriate,
since the diffusion term is not negligible in the model, therefore no oscilla-
tions will appear in the numerical tests even without using some stabilization
technique.

3.1 Outer iteration: Newton’s method

The operator Fh : V `h → V `h and the function gh ∈ V `h are defined by the
identities 〈

Fh(uh),vh
〉
H1

0
=
〈
F (uh),vh

〉
H1

0

(
vh ∈ V `h

)
,

〈gh,vh〉H1
0

=

∫
Ω

g · vh
(
vh ∈ V `h

)
Math. Model. Anal., 18(5):641–653, 2013.
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via the Riesz representation theorem, thus the problem can be written as a
nonlinear algebraic system

Fh(uh) = gh. (3.4)

We apply the damped inexact Newton method (DIN) for the iterative solution
of problem (3.4). The construction of the DIN method and the related conver-
gence results are well-known, for completeness we briefly summarize them as
follows.

Algorithm 1 [DIN]. Let u0 ∈ V `h be arbitrary. The sequence (un) ⊂ V `h is
constructed as follows:

• Denoting the residual by rh = gh − Fh(un), the vector pn is the approx-
imate solution of problem F ′h(un)pn = rh, i.e.∥∥F ′h(un)pn − rh

∥∥
H1

0
≤ δn‖rh‖H1

0
with 0 < δn ≤ δ0 < 1,

• σn = min

{
1,

1− δn
(1 + δn)2

K2

L‖Fh(un)− gh‖H1
0

}
,

• un+1 = un + σnpn.

Under suitable smoothness, growth and coercivity conditions the following the-
orem holds, for the proof see [1], or [6, Thm. 5.12] for a more general case.

Theorem 1. If δn ≤ const ·‖Fh(un) − gh‖γH1
0

with some 0 < γ ≤ 1, then the

convergence is locally of order 1+γ, that is the convergence is linear for n0 steps

until ‖Fh(un) − gh‖γH1
0
≤ ε, where ε ≤ (1 − δ0)K

2

2L (here and in the definition

of σn the constant L comes from the Lipschitz continuity of F ′), and further
on (as σn ≡ 1)

‖un − uh‖H1
0
≤ d1q(1+γ)

n−n0

with some d1 > 0, 0 < q < 1.

We note that the order 1+γ of convergence depends on the order of accuracy
in the inner solution, i.e. on the estimate δn ≤ const ·‖Fh(un) − gh‖γH1

0
that

appears in the condition of the theorem. Here γ = 1 is the optimal choice since
1 + γ can equal at most 2.

3.2 Inner iteration: preconditioned CG for the linearized problems

In each step the construction of un requires the approximate solution of the
linearized problem

F ′h(un)ph = rh, (3.5)

which is equivalent to the FEM solution in V `h of the linear elliptic system

−K∆pi + bi · ∇pi +
∑̀
j=1

∂jfi(x, y,un)pj = ri, i = 1, . . . , `, (3.6)

pi
∣∣
∂Ω

= 0,
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where ri = gi + K∆un,i − bi · ∇un,i − fi(x, y,un). Denoting by c and d the
coefficient vectors of ph and rh with respect to the FEM basis {ϕ1, . . . , ϕN},
and by L

(n)
h the stiffness matrix corresponding to the left-hand side of (3.6),

Eq. (3.5) turns into the linear algebraic system

L
(n)
h c = d. (3.7)

The theory of equivalent operators (cf. [2]) can be applied to the auxiliary
linear problem (3.6) which can be solved by a conjugate gradient (CG) method
using a suitable preconditioner. Let ηi ∈ L∞(Ω), ηi ≥ 0 be suitable functions
and

Sipi := −Ki∆pi + ηipi (i = 1, . . . , `) (3.8)

for pi
∣∣
∂Ω

= 0, and define the `-tuple of independent elliptic operators

Sp =
(
S1p1 S2p2 . . . S`p`

)
. (3.9)

The terms ηipi approximate the lower order term in the ith component of the
system: since the system comes from a discretized parabolic problem, a natural
choice is the constant coefficient ηi ≡ 1/τ , see in the tests in Subsection 4.2. The
preconditioner for the discrete system (3.7) is defined as the stiffness matrix Sh
of S in H1

0 (Ω)`. Then we apply the CGN algorithm (see, e.g., [2]) for the
preconditioned nonsymmetric system

S−1h L
(n)
h c = S−1h d.

Since the operators Si are decoupled, in each Newton step the linearized
system (3.6) is preconditioned by an `-tuple of independent symmetric ellip-
tic operators, which means that the preconditioning matrix Sh has a block-
diagonal structure. This enables parallel computation of the solution of the
auxiliary problems in the CGN, which was demonstrated for a linear elliptic
test system in [10]. Moreover, combining the convergence results for the CGN
(cf. [2, 11]) and the DIN Algorithm 1, the combined iteration provides mesh
independent convergence, with superlinear convergence rate for both the inner
and outer iterations.

4 Numerical treatment of the model problem

In this section we consider Eq. (2.1) with advection (2.2) and chemistry part
(2.3) with parameters described in Subsection 2.1. We write Eq. (2.1) in the
form

∂u

∂t
+ Lu +R(x, y,u) = 0, i = 1, . . . , `, (4.1)

u
∣∣
∂Ω×R+ = γ,

where Lu := −K∆u+b ·∇u stands for the linear elliptic part of the problem.

Math. Model. Anal., 18(5):641–653, 2013.



648 J. Karátson and T. Kurics

4.1 Time discretization

We assume as before that the nonhomogeneous boundary condition is already
eliminated, i.e. γ = 0. Using the backward Euler method for time discretiza-
tion, for any j ∈ N and steplength τ > 0 we get

uj+1 − uj

τ
+ Luj+1 +R

(
x, y,uj+1

)
= 0 (j = 0, 1, 2, . . .),

that is

Luj+1 +
1

τ
uj+1 +R

(
x, y,uj+1

)
=

1

τ
uj (j = 0, 1, 2, . . .), (4.2)

which is a nonlinear elliptic problem having the form (3.2) with uj+1
∣∣
∂Ω

= 0
and

f(x, y,u) =
1

τ
uj+1 +R

(
x, y,uj+1

)
, g =

1

τ
uj .

The presence of the factor 1/τ implies the coercivity of the problem for small
enough τ and thus the uniform ellipticity of the linearized systems; moreover,
the lower order part is thus dominating in the problem if τ is small.

In the numerical experiments, based on [7, 8], the spatial domain is the
square Ω = [0, 500]2 with side length 500 km, the length of the time interval
[T0, T1] is 1440 min, the time discretization parameter τ = 5 min and the
number of equations is ` = 10. The initial conditions (on time level j = 0) are
the constant functions

u0 =
(
103 103 103 5 · 103 5 · 103 102 10−2 10−2 10−3 10−11

)
,

measured in mol/km3, and the boundary functions are chosen to be periodic:
γi has the form γi(t) = consti ·(sin(t/C) + 2), where C is a constant and the
constants consti are chosen in such a way that the compatibility of the boundary
and initial data is ensured. We use a daily average value for the solar zenith
angle θ. Finally, the diffusion coefficient is set to be K = 1.8 km2/min (as
suggested in [14]).

4.2 Numerical experiments and results

Now we solve system (4.1) with ` = 10 equations, with initial and boundary
conditions described above, using the implicit Euler method with time dis-
cretization parameter τ = 5. On each time level the obtained nonlinear elliptic
problem (4.2) is discretized by using an equidistant, piecewise linear finite el-
ement grid with spatial mesh parameter h with Nh = 500, where N is the
number of subintervals in both spatial directions.

We use Algorithm 1 as outer iteration. Since the Lipschitz constant L is
unknown, an adaptive strategy is used for choosing σn and δn. The linearized
problem in each Newton-step is solved by the CGN algorithm, where the pre-
conditioner comes from the stiffness matrix of (3.9) which consists of decoupled,
hence independent symmetric Helmholtz-type preconditioners

Sipi := −K∆pi +
1

τ
pi (i = 1, . . . , 10).
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Here the chosen preconditioner does not depend on the time level, the same
matrix Sh is used throughout the whole time interval. In each time level we
used ‖rh,n‖H1

0
≤ 10−3‖rh,0‖H1

0
as stopping criterion for the Newton method.

Inside each Newton-step the auxiliary linear equations (3.5) were solved up to
the relative precision δn.

Numerical experiments were carried out in the cases N = 4, 8, 16, 32,
where N denotes the number of subintervals in each spatial directions. In
Table 4 the spatial convergence is illustrated, where the numbers reflect a
kind of worst case scenario. This means that – considering all the four mesh
parameters – the maximum number of Newton iterations was 10 during the
time integration. We have calculated on each time level jτ the values of the
relative errors

Q
(j)
h,n := ‖rh,n‖H1

0
/‖rh,0‖H1

0
(4.3)

for the fixed mesh parameters h in the nth Newton-step and let Qh= maxj Q
(j)
h,n.

Table 4. The maximal relative errors and the number of PCGs.

N = 4 N = 8 N = 16 N = 32

Itr. Q500/4 pcg Q500/8 pcg Q500/16 pcg Q500/32 pcg

0 1.00000 2 1.00000 2 1.00000 2 1.00000 2
1 0.43193 2 0.76910 2 0.41007 3 0.30359 4
2 0.26974 2 0.34999 3 0.37280 3 0.08111 5
3 0.07421 3 0.17710 3 0.14207 4 0.06706 8
4 0.03912 3 0.14727 3 0.09391 5 0.01394 8
5 0.03258 3 0.03856 3 0.08028 5 0.00552 7
6 0.00333 3 0.01167 4 0.02051 5 0.00378 7
7 0.00103 3 0.00805 4 0.01067 6 0.00355 6
8 0.00060 0.00597 4 0.00915 6 0.00070
9 0.00144 4 0.00179 6

10 0.00083 0.00072

The ith row in Table 4 shows the maximal values of the quotients (4.3) and
the maximum number of PCGs needed in the ith DIN step. When the value
of Q reaches the relative tolerance 10−3, the Newton iteration terminates.

Fig. 1 shows the number of Newton iterations for all mesh parameters as
the time elapses. The apparently periodically fluctuating behaviour can be
explained by the imposed time-periodic boundary condition.

In each fixed time level jτ and in each Newton iteration step we solve the
auxiliary linear problem (3.5) approximately by a preconditioned CG method,
until the relative error

%
(j)
h,n =

‖F ′h(un)pn − rh‖H1
0

‖rh‖H1
0

≤ δn

is reached, where δn depends on the current Newton steplength σn and has
an approximate magnitude 10−2 to 10−4. In Table 5 the PCG relative errors
are shown in the last time level. The first column shows the number of the
Newton iteration steps, the second column contains the maximum number of

Math. Model. Anal., 18(5):641–653, 2013.
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Figure 1. Number of Newton iterations: (a) N = 4, (b) N = 8, (c) N = 16, (d) N = 32.

PCG iterations for all the four meshes. As it can be seen from Table 5, the
finest mesh has required the most PCG iterations, although less Newton steps
were needed in that case. This behaviour can also be seen in Table 4.

Some experiments were run with different time stepsizes τ = 20, 10, 5, 2.5,
1.25 for the meshes with parameter h = 1/16. The differences of the solutions
(in the common points of the time interval) are shown in Fig. 2, when the time
parameter is halved. It can be seen that these differences tends to zero as τ → 0,
which shows the convergence of the proposed method in time. The speed with
which the graphs of these difference functions tend to zero supports numerically
the expected first order convergence in time. It can also be noticed that the
error can be quite large, hence the choice of small values of τ is recommended
for the time integration.

Table 5: The number of PCG iterations and their relative errors
%endh,n in each Newton step in the very last time level.

Itr. pcg N = 4 N = 8 N = 16 N = 32
0 1 0.009948 0.025047 0.012451 0.014648

2 0.001855 0.003074 0.001997
1 1 0.039013 0.049390 0.038992 0.073412

2 0.003028 0.003137 0.007455 0.016095
continued on next page
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Itr. pcg N = 4 N = 8 N = 16 N = 32
3 0.005213

2 1 0.070087 0.054513 0.093246 0.095203
2 0.001336 0.003166 0.014881 0.041506
3 0.003662 0.014496
4 0.004508

3 1 0.064809 0.060571 0.078444 0.131617
2 0.002346 0.004034 0.016490 0.054909
3 0.004336 0.027735
4 0.011088
5 0.004329
6 0.001586

4 1 0.065185 0.066970 0.079831 0.151062
2 0.002221 0.004498 0.015575 0.065506
3 0.000012 0.000379 0.003954 0.026694
4 0.000719 0.011092
5 0.005014
6 0.002181
7 0.000795

5 1 0.065058 0.074856 0.080558 0.140726
2 0.002173 0.004790 0.013583 0.057304
3 0.000012 0.000370 0.003622 0.023379
4 0.000741 0.009849
5 0.003720
6 0.001558
7 0.000632

6 1 0.069544 0.075197 0.121793
2 0.004800 0.012736 0.036999
3 0.000353 0.002921 0.017793
4 0.000678 0.006527
5 0.000144 0.002680
6 0.001050
7 0.000424

7 1 0.063532 0.066709 0.109487
2 0.004811 0.011699 0.028184
3 0.000323 0.002833 0.011422
4 0.000638 0.004567
5 0.000121 0.001858
6 0.000689

8 1 0.058825 0.060564
2 0.004598 0.010375
3 0.000304 0.002514
4 0.000580
5 0.000102

In Fig. 3 the distribution of some characteristic pollutants are shown at the
end of the time interval. It can be seen that the constant initial values have
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Figure 2. Convergence in time.
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Figure 3. Some pollutants at the end of the time interval.

been left relatively intact in the middle of the domain, but they have been
stretched near the boundary by the sinusoidal boundary condition.

As a conclusion of the numerical experiments, we may observe that the
suggested method performs satisfactorily for this realistic model problem, in
particular, reasonable convergence has been achieved without the need of some
splitting of the reaction-convection-diffusion operator.
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