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Abstract. Dynamics of an elongated droplet under the action of a rotating mag-
netic field is considered by mathematical modelling. The actual shape of a droplet is
obtained by solving the initial-boundary value problem of a nonlinear singularly per-
turbed partial differential equation (PDE). For the discretization in space the finite
difference scheme (FDS) is applied. Time evolution of numerical solutions is obtained
with MATLAB by solving a large system of ordinary differential equations (ODE).
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1 Introduction

In the second half of the last century, the physics of liquid magnetic materials
has become more and more popular. Ferromagnetic particle-based suspensions
have achieved the wide usage within the automobile brake and transmission
systems. Ferro-fluids, which are the colloids of the ferromagnetic nanoparticles,
are being used to produce the seals, to cool the audio speaker coils, as well in
biomedicine. Nowadays there is an increasing interest in various soft materials
that are created on the basis of the magnetic nanoparticles and have various
possibilities of application in mechanics and biomedicine. For these reasons
the intensity of the research in the field of soft magnetic materials is rapidly
increasing.

The studies of dynamics of the magnetic liquid droplet in a rotating mag-
netic field was pioneered in [1]. An intriguing reentrant droplet shape trans-
formation was described, in the course of which the oblate shape assumed by
the droplet at small strength of the rotating field gets unstable at the critical
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value of magnetic field strength, exceeding which the droplet takes a worm-like
shape. The oblate shape is re-assumed at reaching the second critical value
of the field strength, however, with a much larger radius than at small field
strength. This experimental observation was in remarkable agreement with
the theoretical analysis of the stability of equilibrium shapes of droplet in ro-
tating field carried out by virial method [1] (more details of this analysis may be
found in [3]). Later this phenomenon was confirmed for other types of magnetic
liquid in [9, 10]. In addition to the previous findings in [9, 10], it was found
that the oblate-prolate transition is supercritical for the magnetic permeability
µ less than 11 and subcritical for µ > 11. Similar phenomenon is remarked
for reentrant transition prolate-oblate at large field strength, which becomes
subcritical at µ > 14.

Apart from the oblate-prolate-oblate reentrant transition there is a lot
of complex phenomena that take place above the critical values of the field
strength. Due to axisymmetric shape instability at field strength above the
critical for prolate-oblate transition, the star-fish configurations of the mag-
netic fluid droplets are formed [1]. Complex dynamics takes place in the range
of field strengths where prolate worm-like droplet shape exists [1]. At inter-
mediate field strengths S-like droplet configuration is formed [11], which may
break into three daughter droplets [6]. The spirals may be formed on both ends
of the droplet [6]. The phase diagram of the experimentally observed shapes
of the droplets in a rotating magnetic field is given in [6].

In [2] the mathematical model for the description of the dynamics of worm-
like magnetic liquid droplet shapes based on the slender body approach was
proposed. The resulting equation for the tangent angle of the center line of
the droplet that contains contributions due to viscous, capillary and magnetic
forces was regularized introducing the small term due to intrinsic viscosity of
the droplet. As a result the steady shapes formed by the propagating shock
waves of tangent angle similar to observed in experiments [6] were obtained by
numerical calculations.

Here a MATLAB simulation of magnetic droplet dynamics is carried out.
The mathematical model from [2] is approximated by using the finite difference
scheme (FDS) and method of lines. The central difference FDS is used to
approximate the nonlinear second order and the linear fourth order differential
spatial operators. The obtained system of ODEs is solved by using MATLAB
tool.

2 Mathematical Model

In [2], the cross section of the droplet of the length 2L is assumed to be circular
with constant radius a. The tangential forces along the droplet are neglected.
The shape of the droplet is described by the position of its centerline. The PDE
for the tangent angle β = β(l, t) of the center line of the magnetic droplet under
the action of capillary, magnetic and viscous forces is derived in the following
form:

ω =
∂β

∂t
− 1

δ

∂2

∂l2
(
πγaβ +M sin(2β)

)
+

3πa4ηi
4δ

∂5β

∂4l∂t
, (2.1)
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where l ∈ (−L,L), t ∈ (0, tf ), here l, t, tf are the arc length of the droplet,
the time and the final time moment, β = ωt − θ is the phase lag with angle
θ between the local tangent to the centerline of the droplet and the abciss
axis, ω is the angular frequency, M = 2π2χ2H2

0a
2/(µ+ 1) is the magnetic

torque, δ = 4πη
ln(L/a)+c is the hydrodynamic drag coefficient, ηi is the intrinsic

viscosity of the droplet, γ is the surface tension, χ, µ are magnetic susceptibility
and permeability of magnetic liquid respectively, H0 = (cos(ωt), sin(ωt)) is the
rotating field, η is the viscosity of the surrounding fluid, c is a constant of the
order of unity.

A shape of the droplet from the known tangent angle is calculated by inte-
gration of the following equations

dx

dl
= cos(β),

dy

dl
= − sin(β). (2.2)

The unknown constants of integration are determined from the condition that
mass center of the droplet is motionless.

In order to present the equation (2.1) in dimensionless form, the charac-
teristic time scale τ = δL2/M is introduced. Arc length is scaled by L. As a
result the equation reads

ωτ =
∂β

∂t
− ∂2F (β)

∂l2
+ ε

∂5β

∂4l∂t
, (2.3)

where F (β) = 1
Bmβ + sin(2β) is the nonlinear function, ε = 3πa4ηi

4δL4 is a small

coefficient (of order 10−4), Bm =
2π2χ2H2

0a
2

(µ+1)γ is the magnetic Bond number

given by the ratio of the magnetic and capillary forces, l ∈ (−1, 1), t ∈ (0, tf ).
The regularization term in (2.3) is added from physical considerations using

the analogy between bending stress in elastic and viscous filaments [12]. This
gives the estimate of parameter ε ≈ 10−4, which works remarkably well as the
numerical experiments show. We note that the function F (β) is not monotonic
for values of Bm larger than 0.5 (see Fig. 1).

The equation (2.3) is supplemented with boundary conditions corresponding
to the absence of normal forces and torques at the ends of the droplet.

By setting ε = 0 and shifting l to l + 1, we obtain the following problem:
∂β

∂t
=
∂2F (β)

∂l2
+ ωτ,

β(0, t) = β(2, t) = 0, β(l, 0) = 0, l ∈ (0, 2), t ∈ (0, tf ).

(2.4)

In the absence of the last term in equation (2.3) the problem (2.4) is ill posed.

3 Solution of the Problem

In [2] the numerical solution of (2.3) is obtained by using an implicit scheme
with the spatial derivatives approximated with central differences. The nonlin-
ear term due to the function F (β) is resolved by the Newton iterations at each
time step. Numerical method for the reduced problem (2.4) shows instabilities.

Math. Model. Anal., 17(1):47–57, 2012.



50 A. Cebers and H. Kalis

The stationary solution βs(l) of the equation (2.3) with the boundary con-
dition β(±1, t) = 0 is given by F (βs) = 0.5ωτ(1− l2). For the problem (2.4) we
obtain that F (βs) = 0.5ωτl(2 − l). The maximal value βm is obtained as the
solution of the transcendental equation F (βm) = 0.5ωτ.

The solution (β(l, t) ≥ 0) is symmetrical with respect to l = 1, i.e. β(1 −
l, t) = β(1 + l, t), l ∈ (0, l) or ∂β(1,t)

∂l = 0.
The angle β as a function of the arc length variable l is discontinuous for

ωτ > 2F (β0), where β0 are the roots of equation F ′(β) = 0 (they define the
local maxima of the function F (β)). The values wc = (ωτ)0 = 2F (β0), define
the critical frequencies.

We modify the nonlinear function F (u) in the following way (see Fig. 14):

1) F (u) = 1
Bmu + sin(2u), u ∈ [0, u1], where u1 = π

2 − 0.5 arccos(0.5/Bm),
is the first local maxima of function F (u) obtained as the solution of the
equations F ′(u1) = 1

Bm + 2 cos(2u1) = 0,

2) F (u) = F (u1) = F1, u ∈ [u1, u2], where u2 is the solution of the tran-
scendental equation F (u) = F1 at the interval (u1, u3), u3 = 3π

2 −
0.5 arccos(0.5/Bm),

3) F (u) = 1
Bmu+ sin(2u), u ∈ [u2, u3],

4) F (u) = F (u3) = F3, u ∈ [u3, u4], where u4 is the solution of the tran-
scendental equation F (u) = F3 at the interval (u3, u5), u5 = 5π

2 −
0.5 arccos(0.5/Bm).

This process can be continued. Therefore in the segment [u2k−1, u2k], k =
1, 2, . . . the function F (u) is replaced with line segment F (u) = F (u2k−1) =

F2k−1, where u2k−1 = (2k−1)π
2 − 0.5 arccos(0.5/Bm) are the local maxima of

the function F (u). The ends of the segment u2k−1, u2k satisfy the following
conditions:

u2k−1 = u1 + (k − 1)π; u2k = u2 + (k − 1)π, k = 2, 3, . . . .

The maximal value of F ′(u) is equal to F ′(0) = 2 + 1
Bm because F ′(u2k) =

F ′(u2) ≤ F ′(0).
The critical frequencies wc are defined by the expression wc = 2F (u2k−1),

k = 1, 2, . . . . As an example, for Bm = 1.5 we have: u1 = 0.95532, u2 =
2.94480, u3 = 4.09691, u4 = 6.08639, F1 = 1.57969, F3 = 3.67408, F ′(0) =
2.66667, F ′(u2) = 2.51374.

The modified function F (β) is monotonic (0 ≤ F ′(β) ≤ 2+1/Bm) and from
(2.4) we can obtain that for fixed time t the solution β(l, t) is quadratically
integrable together with their first order generalized partial derivatives with

respect to l or β, i.e. it belongs to the Sobolev space
◦
W 1

2(0, l). This fact
follows from the integral representations

d

dt

∫ 2

0

β(l, t) dl = −2

(
2 +

1

Bm

)
∂β(0, t)

∂l
+ 2ωτ, (3.1)

1

2

d

dt

∫ 2

0

β2(l, t) dl = −
∫ 2

0

F ′(β(l, t))

(
∂β(l, t)

∂l

)2

dl + ωτ

∫ 2

0

β(l, t) dl. (3.2)
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If t = 0 then from (2.4) follows that ∂β(l,0)
∂t = ωτ > 0 and the function β is

increasing in time. This follows also from (3.1), (3.2) when the right side of the
equations is positive (for stationary solution βs(l) is equal to zero). For modified
function F (β) we can prove that the weak solution for fixed t is bounded in

the norm of space
◦
W 1

2(0, l) and the problem (2.4) is uniquely soluble. Similarly
results can be obtained for equation (2.3).

The problems (2.3), (2.4) are solved by the MATLAB, using the method of
lines and finite difference method for the approximation of the spatial deriva-
tives.

A full analysis of the ill-posed problem (2.4) is beyond the scope of the
present work. Here we note that the discretization by finite differences and
regularization of function F introduces some numerical bending elasticity which
stabilizes the solution for ε = 0.

4 Approximation

We consider the uniform grid in the space lj = jh, j = 0, N , Nh = L̄. Using
the central finite differences of second order for approximation of partial deriva-
tives of second and fourth order with respect to l, we approximate differential

equation (2.3) and boundary conditions β = ∂2β
∂l2 = 0 by a semi-discrete prob-

lem. We write the initial value problem for the system of nonlinear ordinary
differential equations (ODEs) of the first order in the following matrix form{

(E + εB)U̇(t) +AF (U(t)) = G,

U(0) = 0,
(4.1)

where E is the unit matrix of the size (N −1)× (N −1), A is a standard three-
diagonal matrix of N −1 order with the elements 1

h2 {−1, 2,−1} approximating

the derivative − ∂2

∂l2 , B is the 5-diagonal matrix of N−1 order with the elements
1
h4 {1,−4, 6,−4, 1} approximating the derivative ∂4

∂l4 . The first and last elements
of matrix B are changed due to approximations of the boundary conditions
(2.3)), they are given by u1(t) = uN (t) = 0, u0(t) = −u2(t), uN+1 = −uN−1.
Here U(t), U̇(t), U0, F (U), G are the column-vectors of N − 1 order with the

elements uj(t) ≈ β(lj , t), u̇j(t) ≈ ∂β(lj ,t)
∂t , uj(0) = 0, fj ≈ F (uj(t)), gj =

ωτ, j = 1, N − 1.
The discrete approximation of (2.4) is obtained from (4.1) by taking ε = 0.

The equation (4.1) can be rewritten in the form

U̇(t) = (E + εB)−1
(
G−AF (U(t))

)
.

It is well-known that approximation of the second order derivatives by central
differences introduces an artificial numerical diffusion

1

h2
(Fj+1 − 2Fj + Fj−1) =

∂2Fj
∂l2

+
h2

12

∂4Fj
∂l4

,

where Fj = F (βj , t), βj = β(lj , t).

Math. Model. Anal., 17(1):47–57, 2012.
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In a similar way a high-order approximation can be constructed for differ-
ential problem (2.3) and (2.4). In the case ε = 0, the following initial value
problem for a system of nonlinear ODEs is obtained:U̇(t) = (E + εB)−1

(
G−

(
A+

h2

12
B

)
F (U(t))

)
,

U(0) = 0,

(4.2)

The finite difference approximations can be modified using schemes with
the exact spectrum (FDSES) [8]. Then in (4.1) the matrix A is replaced with
the matrix PDP , where P = P−1 is the symmetrical orthogonal matrix with

elements pj,k=
√

2
N sin πjk

N , j, k = 1, N − 1 and the diagonal matrix D contains

the N − 1 eigenvalues dk = (kπ/L̄)2 of the differential operator (− ∂2

∂l2 ).

Note, that FDSES are also used in [7] to solve hyperbolic heat conduction
problems. It is shown in [7] that such schemes can be more efficient than the
classical finite difference schemes [4, 5] and they can add a numerical diffusion
required to regularize ill-posed problems.

For modified vector-function F (U) (see Fig. 14) the ODEs of (4.1) are
implemented in the following form:

if u2k−1 − ε1 ≤ um ≤ u2k−1 + ε1 then AF (U(t)) = 0,

else AF (U(t)) 6= 0, where um = max(uj) > 0, ε1 = 10−7.

The shape of a droplet in the plane x, y is found by numerical integration
of equation (2.2)

x̄(l, t) =

∫ l

0

cos(β(ξ, t)) dξ, ȳ(l, t) = −
∫ l

0

sin(β(ξ, t)) dξ,

and the center of mass is computed as

Mx(t) =
1

2

∫ 2

0

x̄(l, t) dl, My(t) =
1

2

∫ 2

0

ȳ(l, t) dl.

Then x(l, t) = x̄(l, t)−Mx(t), y(l, t) = ȳ(l, t)−My(t).

In the discrete case the trapezoid formula is used to compute integrals:

x̄j = x̄j−1 +
h

2
(cos(βj−1) + cos(βj)), ȳj = ȳj−1 −

h

2
(sin(βj−1) + sin(βj)),

Mx =
h

4

N∑
j=1

(x̄j−1 + x̄j), My =
h

4

N∑
j=1

(ȳj−1 + ȳj),

xj = x̄j −Mx, yj = ȳj −My,

where x̄j = x̄(lj , t), ȳj = ȳ(lj , t), xj = x(lj , t), yj = y(lj , t), βj = β(lj , t),
j = 1, N , x̄0 = ȳ0 = 0. Therefore, the mass center of the droplet is motionless.
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Figure 3. Stationary solutions at
Bm = 1.5, ωτ = 8.

l
0,0 0,5 1,0 1,5 2,0

b

0

1

2

3

4

5

6

7

8

9

Function beta(l)

Figure 4. Stationary solutions at
Bm = 1.5, ωτ = 15.

5 Some Numerical Results

The numerical solutions are obtained with the MATLAB for N = 80, L̄ = 2,
Bm = 1.5, ωτ = 5, 8, 15, tf = 3, 5, 6, ε = 0, 10−5, 10−4 (see Figs. 5–13). The
values tf are the final time moments, when the non-steady solution converges
to the stationary solution

In Figs. 1–4 we show the function F (β), the stationary solution βs(l) for
Bm = 1.5, ωτ = 5, 8, 15 and the modified vector-function F (u) (see Fig. 14).

Figs. 6, 9, 10, 12 illustrate the formation of the shock wave of tangent angle
and its propagation in dependence on t. Temporal dynamics of the droplet
shape evolution for the given parameters Bm = 1.5, ωτ = 5, 8, 15 is shown in
Figs. 7, 11, 13. With the increase of the frequency ωτ = 8, 15 of a rotating
field several subsegment shock waves develop as it is illustrated in Figs. 10, 12.
The corresponding dynamics of the shapes is shown in Figs. 11, 13. At high
frequencies, the ends of the droplet become spiralized, see Figs. 11, 13.

The precision of the numerical results obtained with the modified function

Math. Model. Anal., 17(1):47–57, 2012.
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Figure 11. Droplet dynamics at
Bm = 1.5, ωτ = 8, tf = 5, ε = 10−4.
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F (u) is conserved. The FDSES with N = 80 gives the same precision, as the
FDS with N = 40 (the maximal error is 10−4).

At the critical value wc a jump of the tangent angle appears near the
droplet’s center and it propagates until a new steady shape of the droplet
is formed (see Figs. 6, 9, 10, 12). In Figs. 5, 8 we can see the dependence of
the maximal value of β on t at Bm = 1.5, ωτ = 5 and different values of ε = 0,
ε = 10−4. For ε = 10−4 the dynamics of the solution in time is smoothed. A
similar effect is seen in Figs. 6, 9 for a tangent angle.

The shapes of a droplet depend on the time and number of jumps of the
tangent angle (see Figs. 7, 11, 13). The S-like shape (Fig. 7) can be charac-
terized by two jumps, but the 8 type shape (Figs. 11, 13) is characterized by
four jumps of the tangent angle. The obtained shapes are remarkably similar
to shapes observed in real experiments [6].

In Tables 1, 2, 3 we can see the maximal value βm of β and the number
of time steps K at t = tf in dependence on the parameters ε and ωτ . All
results are obtained with the Matlab solver “ode15s” (RelTol = 10−6) corre-
spondingly from (4.1) (FDS-O(h2)), (4.2) (FDS-O(h4)), (4.1) (FDSES). The

Math. Model. Anal., 17(1):47–57, 2012.
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Table 1. βm and K by t = tf obtained with (4.1) (FDS-O(h2)).

ωτ = 5 ωτ = 8 ωτ = 15

ε K βm K βm K βm

10−3 207 3.289 288 6.204 314 9.947
10−4 415 3.294 583 6.211 612 9.948
10−5 1209 3.295 1499 6.212 1573 9.949
0 4679 3.295 7143 6.212 11 907 9.949

Table 2. βm and K by t = tf obtained with (4.2) (FDS-O(h4)).

ωτ = 5 ωτ = 8 ωτ = 15

ε K βm K βm K βm

10−3 209 3.289 291 6.205 315 9.948
10−4 454 3.294 625 6.211 579 9.949
10−5 1272 3.295 1625 6.212 1735 9.949
0 4841 3.295 7205 6.212 12 523 9.949

Table 3. βm and K by t = tf obtained with (4.1) (FDSES).

ωτ = 5 ωτ = 8 ωτ = 15

ε K βm K βm K βm

10−3 209 3.289 289 6.205 318 9.948
10−4 442 3.293 626 6.210 619 9.949
10−5 1223 3.294 1856 6.211 1829 9.949
0 4884 3.295 7127 6.212 10 290 9.949

maximal values of βm or β(1, tf ) and the number of time steps K are decreasing
in dependence on the parameter ε.

6 Conclusions

It is found that the ill-posed problem for parabolic type PDEs may be effi-
ciently solved by applying the regularization of the diffusion functional and
using the MATLAB solver “ode15” to the nonlinear system of ODEs obtained
after approximation of the spatial derivatives with finite differences.

The transition of simple droplets to more complex droplet shapes is inves-
tigated by simulating the propagation of jumps of the tangent angle.

The developed numerical method allows us to resolve the shapes of the
ferrofluid droplet in a rotating magnetic field observed experimentally, such
accuracy of simulations was not possible by using the conventional method of
regularization based on physical considerations.

A simple model of the elongated magnetic liquid droplet rotating syn-
chronously with an applied magnetic field has been proposed. Temporal dy-
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namics of the droplet shape evolution for the given parameters and the sta-
tionary state solutions corresponding to S-like shape are obtained. With the
increase of the frequency of a rotating field several shock waves develop. The
ends of the droplet become spiralized at high frequencies. At the critical value
a jump of the tangent angle appears near the droplet’s center and propagates
until a new steady shape of the droplet is established. The mathematical model
allows us to identify the critical frequencies at which the droplet’s shape tran-
sitions take place. Shapes obtained numerically are remarkably similar to the
ones found in experiments [6].
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