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Abstract. We show that classical smoothing problems with obstacles and weights
have always the solution. These problems are considered in quite general case, namely,
we allow arbitrary dimension of variable and arbitrary degree in derivative part of
functional to minimize. While the existence is proved without any assumption about
the uniqueness of solution, some conditions assuring the uniqueness are also analyzed.
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1 Introduction

There are several works where smoothing problems with obstacles and weights
are studied (see [1, 3, 4, 5, 7] and references to research papers therein). In
any of them it is assumed to be satisfied some conditions which guarantee the
uniqueness of solution. Usually they are assumptions about unique solvability
of polynomial interpolation problem. It is quite well known that the solutions
of both smoothing problems are natural splines. The problem with weights is
a linear one in nature, because it leads to the solution of a linear system with
respect to spline parameters.

The problem with obstacles is more practical because obstacle values arise
naturally while weights cannot be determined from given data. At the same
time, the methods of solution for obstacle problems are under research (see,
e.g., [3, 4, 5]).

Anyway, it is always important to answer the principal question when the
solution of problem exists. In this work, as main results, we show that classical
smoothing problem with obstacles and also the problem with weights have
always a solution which is a natural spline. In addition, we give necessary and
sufficient conditions for the uniqueness of solution. Note that, in the problem
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with weights, we allow nonnegative weights, not necessarily positive ones. This
generalizes somewhat the position of problem (cf. [1, 3]) and is important in
establishing the equivalence of problems [1, 4].

2 Classical Smoothing Problems

For given integers r and n, 2r > n ≥ 1, let us denote by L
(r)
2 (Rn) the space of

functions defined on Rn having all partial (distributional) derivatives of order r
in L2(Rn), i.e.,

L
(r)
2 (Rn) = {f : Rn → R | Dαf ∈ L2(Rn), |α| = r} ,

where α = (α1, . . . , αn), αi ≥ 0 and |α| = α1 + · · ·+αn. The space L
(r)
2 (Rn) is

called Beppo Levi space. Define the operator

T : L
(r)
2 (Rn)→ L2(Rn)× · · · × L2(Rn)

as

Tf =

{√
r!

α!
Dαf

∣∣∣ |α| = r

}
with α! = α1! · · ·αn!. We also need the semi-inner product

(Tf, Tg) =
∑
|α|=r

r!

α!

∫
Rn

Dαf Dαg dX, f, g ∈ L(r)
2 (Rn),

and the corresponding seminorm ‖Tf‖ =
√

(Tf, Tf).
Let Pr−1 be the space of all polynomials of degree not exceeding r − 1.

A function of the form

S(X) = P (X) +
∑
i∈I

diG(X −Xi), X ∈ Rn, (2.1)

with P ∈ Pr−1, ∑
i∈I

diQ(Xi) = 0 ∀Q ∈ Pr−1, (2.2)

I a finite set and arbitrary Xi ∈ Rn, Xi 6= Xj for i 6= j, is called a natu-
ral spline. Here G is the fundamental solution of the operator ∆r, where ∆
is the n-dimensional Laplace operator. It is known that, for n odd, G(X) =
cnr‖X‖2r−n and, for n even, G(X) = cnr‖X‖2r−n log ‖X‖ with some constants

cnr > 0 and ‖X‖ =
√
x21 + · · ·+ x2n (see [6, p. 521]). Although G does not

belong to L
(r)
2 (Rn), the linear combinations of type (2.1) belong to it due to

condition (2.2), thus any natural spline belongs to L
(r)
2 (Rn). In case n = 1,

a reader can easily check this himself; a proof in general case can be found,
e.g., in [3, p. 21].

For given sets of indexes I0, I1, I0 ∩ I1 = ∅, I0 ∪ I1 = I, weights wi ≥ 0,
i ∈ I1, pairwise distinct points Xi ∈ Rn, i ∈ I, and values zi ∈ R, i ∈ I, define

Ω0 = {f ∈ L(r)
2 (Rn) | f(Xi) = zi, i ∈ I0}.
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We consider the minimization problem

min
f∈Ω0

(
‖Tf‖2 +

∑
i∈I1

wi|f(Xi)− zi|2
)

(2.3)

as the classical smoothing problem with weights.

For given I0, I1, I and Xi as above, values zi ∈ R, i ∈ I0, and obstacles αi,
βi, αi < βi, i ∈ I1 (it may be that αi = −∞ or βi =∞ for some i ∈ I1), define

Ωαβ = {f ∈ L(r)
2 (Rn) | f(Xi) = zi, i ∈ I0, αi ≤ f(Xi) ≤ βi, i ∈ I1}.

Then we consider the minimization problem

min
f∈Ωαβ

‖Tf‖2 (2.4)

as the classical smoothing problem with obstacles.

3 Existence of the Solution of the Problem with Obstacles

Let ΩSαβ be the set of natural splines S of the form (2.1) such that S ∈ Ωαβ .
Consider the auxiliary problem

min
S∈ΩSαβ

‖TS‖2, (3.1)

which is actually the restriction of problem (2.4) to the space of natural splines.
We will use the following result of characterization (see, e.g., [3, p. 66]).

Lemma 1. A natural spline S ∈ ΩSαβ is a solution of problem (3.1) if and only
if the coefficients di, i ∈ I1, of S satisfy the conditions

di = 0, if αi < S(Xi) < βi,

(−1)rdi ≥ 0, if S(Xi) = αi, (3.2)

(−1)rdi ≤ 0, if S(Xi) = βi.

Although in [3] the result is presented under some assumptions about the
unique solvability of polynomial interpolation, the assertion is valid without
these assumptions.

Proposition 1. For any data, problem (2.4) has a solution.

Proof. Consider the problem (3.1) with the data from problem (2.4). Choose
a basis Q1, . . . , Qp in the space Pr−1 and define

D =

{
d ∈ R|I|

∣∣∣ ∑
i∈I

diQj(Xi) = 0, j = 1, . . . , p

}
.

It is known (see, e.g., [3, p. 22]) that for all f ∈ L
(r)
2 (Rn) and any natural

spline S of the form (2.1) it holds

(TS, Tf) = (−1)r
∑
i∈I

dif(Xi). (3.3)
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By this property, the functional to minimize in (3.1) takes the form

‖TS‖2 = (TS, TS) = (−1)r
∑
i∈I

diS(Xi)

= (−1)r
∑
i∈I

di

(
p∑
j=1

cjQj(Xi) +
∑
j∈I

djG(Xi −Xj)

)
= (−1)r

∑
i,j∈I

didjG(Xi −Xj), d ∈ D. (3.4)

It can be considered as a quadratic functional (c, d) → Φ(d) with c ∈ Rp as
vector of coefficients in polynomial part of S and d ∈ D ⊂ RI (we have seen
that ‖TS‖2 does not depend on c). Thus, problem (3.1) reduces to a problem
of quadratic programming subject to linear constraints for c and d which are
determined by the conditions S ∈ Ωαβ . The functional Φ is bounded from
below as Φ(d) ≥ 0 for all d ∈ D. The feasible set ΩSαβ is nonempty since it
contains a natural spline interpolant satisfying conditions

p∑
j=1

cjQj(Xi) +
∑
j∈I

djG(Xi −Xj) = zi, i ∈ I0,

p∑
j=1

cjQj(Xi) +
∑
j∈I

djG(Xi −Xj) = γi, i ∈ I1, αi ≤ γi ≤ βi,∑
i∈I

diQj(Xi) = 0, j = 1, . . . , p.

It is important to note that the natural spline interpolant always exists because
the radial basis function G has necessary properties (see [8, pp. 113, 117]). Now
we use the fact that the minimization problem of quadratic programming with
linear constraints has the solution if the functional is bounded from below on
nonempty feasible set (see [2, p. 111]). This proves that problem (3.1) has the
solution S∗.

We will show that S∗ is also a solution of problem (2.4). Again, for all

f ∈ L(r)
2 (Rn), using (3.3) we have

‖Tf‖2 − ‖TS∗‖2 = ‖Tf − TS∗‖2 + 2(TS∗, T f − TS∗)

= ‖Tf − TS∗‖2 + 2(−1)r
∑
i∈I

di (f(Xi)− S∗(Xi)) . (3.5)

Now, taking f ∈ Ωαβ , for i ∈ I0, it holds f(Xi) = S∗(Xi) = zi; for i ∈ I1
we use Lemma 1 and get that in case αi < S∗(Xi) < βi it holds di = 0, if
S∗(Xi) = αi then f(Xi) − S∗(Xi) ≥ 0 and (−1)rdi ≥ 0, if S∗(Xi) = βi then
f(Xi)− S∗(Xi) ≤ 0 and (−1)rdi ≤ 0, which means that the sum term in (3.5)
is nonnegative and ‖Tf‖ ≥ ‖TS∗‖. ut

Let us remark that we did not need any assumptions about uniqueness of
solution in Proposition 1. The uniqueness yields the following condition:

P ∈ Pr−1, P (Xi) = 0, i ∈ I ⇒ P = 0. (3.6)
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Indeed, assuming the contrary there is P0 ∈ Pr−1, P0(Xi) = 0, i ∈ I, but
P0 6= 0. For a solution S of problem (2.4), by Lemma 1, the conditions (3.2)
are satisfied and this also holds for S+P0 because of di(S+P0) = di(S), i ∈ I1.
By Lemma 1, S + P0 is a solution of problem (2.4), which contradicts to the
assumption about uniqueness of solution.

4 Existence of the Solution of the Problem with Weights

In this section we will prove the existence of the solution of problem (2.3). We
need

Lemma 2. A natural spline of the form (2.1) is a solution of problem (2.3) if
and only if it satisfies the conditions

(−1)rdi + wiS(Xi) = wizi, i ∈ I1,
S(Xi) = zi, i ∈ I0. (4.1)

Proof. Let S be a natural spline satisfying (4.1). Each element in Ω0 may be

represented as S + h, where h ∈ L(r)
2 (Rn) and h(Xi) = 0, i ∈ I0. Denote by F

the functional to minimize in (2.3). Then, using (3.3), we have

F (S + h) = ‖T (S + h)‖2 +
∑
i∈I1

wi|S(Xi) + h(Xi)− zi|2

= ‖TS‖2 + 2(TS, Th) + ‖Th‖2 +
∑
i∈I1

wi|S(Xi)− zi|2

+ 2
∑
i∈I1

wi(S(Xi)− zi)h(Xi) +
∑
i∈I1

wi|h(Xi)|2

= F (S) + 2
∑
i∈I1

((−1)rdi(S) + wiS(Xi)− wizi)h(Xi)

+ ‖Th‖2 +
∑
i∈I1

wi|h(Xi)|2. (4.2)

Hence, according to (4.1), we see that F (S + h) ≥ F (S), which means that S
is a solution of problem (2.3).

Let S be a solution of problem (2.3). We have to show that (4.1) holds.
Suppose there is an index k ∈ I1 such that (−1)rdk + wkS(Xk) 6= wkzk. Take

h ∈ L(r)
2 (Rn) such that h(Xk) = 1 and h(Xi) = 0, i ∈ I0 ∪ (I1 \ {k}) (e.g., we

can take a natural spline interpolant). Let hδ = δh, δ 6= 0, δ → 0. Clearly,
S + hδ ∈ Ω0. Then, according to (4.2), we have

F (S + hδ) = F (S) + 2 ((−1)rdk + wkS(Xk)− wkzk) δ + δ2‖Th‖2 + wkδ
2.

Choosing δ so that ((−1)rdk + wkS(Xk)− wkzk) δ < 0, we get for sufficiently
small δ a contradiction F (S + hδ) < F (S). ut

Proposition 2. For any data, problem (2.3) has a solution.
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Proof. Consider the problem

min
S∈ΩS0

(
‖TS‖2 +

∑
i∈I1

wi|S(Xi)− zi|2
)

(4.3)

where ΩS0 denotes the set of natural splines belonging to Ω0. Taking into ac-
count the spline representation (2.1) with coefficients c and d together with (3.4)
we have

‖TS‖2 +
∑
i∈I1

wi |S(Xi)− zi|2 = (−1)r
∑
i,j∈I

didjG(Xi −Xj)

+
∑
i∈I1

wi

∣∣∣∣∣
p∑
j=1

cjQj(Xi) +
∑
j∈I

diG(Xi −Xj)− zi

∣∣∣∣∣
2

.

This is a quadratic functional (c, d) → Φ(c, d) bounded from below (namely
Φ(c, d) ≥ 0) on a nonempty feasible set of (c, d) corresponding to ΩS0 6= ∅ (note
that ΩSαβ ⊂ ΩS0 and we have seen that ΩSαβ 6= ∅). Thus, the problem (4.3) has
a solution.

We claim that the solution S of problem (4.3) satisfies conditions (4.1). If
this would not be the case, we could repeat second part of the proof of Lemma 2
and get a contradiction (note, that in this proof hδ may be taken as natural
spline).

Finally, we use Lemma 2 and obtain that the solution S of problem (4.3) is
a solution of problem (2.3). ut

We note that Proposition 2 is established without any assumption about
uniqueness of solution.

Denote I+1 = {i ∈ I1 | wi 6= 0} and consider the following condition about
polynomial interpolation:

P ∈ Pr−1, P (Xi) = 0, i ∈ I0 ∪ I+1 ⇒ P = 0. (4.4)

Proposition 3. The solution of problem (2.3) is unique if and only if the con-
dition (4.4) is satisfied.

Proof. Let S be a solution of problem (2.3) and let (4.4) do not hold, i.e.,
there is P0 ∈ Pr−1 such that P0(Xi) = 0, i ∈ I0 ∪ I+1 , but P0 6= 0. Then, as
S satisfies (4.1) by Lemma 2, S + P0 is a solution of problem (2.3), different
from S. We have shown that condition (4.4) is necessary for the uniqueness of
solution in problem (2.3).

Suppose now that condition (4.4) is satisfied. We will show that the homo-
geneous system corresponding to (4.1) has only trivial solution. Let S0 be a
natural spline such that

(−1)rdi(S0) + wiS0(Xi) = 0, i ∈ I1,
S0(Xi) = 0, i ∈ I0.
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If di(S0) 6= 0, then wi 6= 0 and S0(Xi) = −(−1)r di(S0)
wi

. From (3.3) with
S = f = S0, we obtain

0 ≤ (TS0, TS0) = (−1)r
∑
i∈I

di(S0)S0(Xi)

= (−1)r
∑

i∈I1, di(S0)6=0

di(S0)S0(Xi)

= −(−1)2r
∑

i∈I1, di(S0)6=0

d2i (S0)

wi
,

which implies that di(S0) = 0 for all i ∈ I1 and ‖TS0‖ = 0. This gives (see [8,
p. 162]) that S0 ∈ Pr−1. Since wiS0(Xi) = 0, i ∈ I1, and S0(Xi) = 0, i ∈ I0,
we have S0(Xi) = 0, i ∈ I0 ∪ I+1 , and (4.4) implies S0 = 0. Thus, the solution
of system (4.1) is unique and, by Lemma 2, such is the solution of (2.3). ut

Note that condition (4.4) implies (3.6) but, in general, the inverse does not
hold.
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