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Abstract. The formulation in the explicit form of quantum expression of the one-
dimensional translation operator as well as Hermitian operator of momentum and its
eigenfunctions are presented. The interrelation between the momentum and the wave
number has been generalized for the processes with a non-integer dimensionality α.
The proof of the fractional representation of the translation operator is considered.
Some aspects of the translations in graduate spaces and their integral representation,
as well as applications in physics are discussed. The integral representation of the
translation operator is proposed.

Keywords: traslation operator, quantum mechanics, fractional calculus.

AMS Subject Classification: 31A10, 34K37, 81Q35.

1 Introduction

The translation operator T̂a is an operator in which

T̂af(x) = f(x+ a), (1.1)

where a is a parameter of the translation. For the smooth functions f(x), the
corresponding generator is the exponential map of an ordinary derivative [2]:

T̂a = ea
d
dx . (1.2)

In the case of non-smooth functions when the ordinary derivative does not
exist, we have to generalize the corresponding representation (1.2), substituting
the ordinary derivative by the fractional one and turning to the generalized
exponential function. The idea of this generalization was first mentioned in the
monograph [19].

Axiomatization of the nation of translation operator (1.1) has resulted in
important generalization concerning spaces of functions on groups, i.e. the
concept of generalized translation operator, or hypergroup [1]. In terms of
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generalized translation operator, it is possible to formulate such important
mathematical concepts as convolution, group algebra, positively defined func-
tion, almost periodic function, etc. In particular, the theory of generalized
translation operator has essential application in abstract harmonic analysis
[11]. Worth noting that in the theory of differential equations, the concept of
translation operator along the trajectories of differential equation, which has
no direct relation to functional analysis, is also denoted as translation operator
[7]. Similarly as the concept of generalized solution, it is usually not expressed
by an explicit formula; however, numerous properties of translation operator
may be derived directly from the properties of differential equation. In the the-
ory of differential equation, the term of translation operator is not commonly
accepted; also the term “mapping for the time t0 to t” and some others are
used in this sense. On the other hand, the development of computation tech-
nologies has stimulated the application of the term “translation operator” in
the Hilbert space as sequences lp[Ω], which actually has no direct relation to
the concept of translation operator (1.1) employed in the present work.

The physical basis for the existence of quantum mechanics comprises a
series of phenomena described by the mathematical theory of the Wienerian
processes.

The Lévy stochastic process is a natural generalization of the Brownian
motion or the Wiener stochastic process [4]. The foundation for this general-
ization is the theory of stable probability distributions developed by Lévy [12].
The most fundamental property of the Lévy distributions is the stability with
respect to addition, in accordance with the generalized central limit theorem.
Thus, from the probability theory point of view, the stable probability law is a
generalization of the well-known Gaussian law. The Lévy processes are charac-
terized by the Lévy index α, which takes values 0 < α 6 2. At α = 2 we have
the Gaussian process or the process of the Brownian motion. Lévy process is
widely used to model a variety of processes such as anomalous diffusion [14],
turbulence [5], chaotic dynamics [22], plasma physics [24], financial dynam-
ics [15], biology and physiology [21] (for recent references see e.g. [3, 18, 23])
.

QM
α−−−−→ FQM

h

x xh
WP −−−−→

α
LP

Figure 1. Schematic representation of interrelations of Wienerian processes (WP), Lévy
processes (LP), quantum mechanics (QM) and fractional quantum mechanics (FQM).

The constantly increasing number of experimental facts in various fields
of knowledge related to classical non-Wienerian processes [4, 12, 14] evokes a
natural desire to “close” the commutative diagram shown in Fig. 1 and, at least
formally, to consider the possible existence of a quantum analogue of a more
narrow class of phenomena related to Lévy processes, the so-called fractional
quantum mechanics (FQM) [8, 10, 13].

Math. Model. Anal., 17(1):100–112, 2012.
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The present note offers a brief discussion of one of the crucial issues re-
lated to FQM, which is the one-dimensional operator of momentum. Like in
usual quantum mechanics (QM), one-dimensional problems are a kind of excess
idealization. Nevertheless, they may be used for elucidating the fundamental
features of FQM. One-dimensional problems arise while considering the three-
dimensional evolutionary equation in which the interaction potential depends
on a single coordinate. This fact allows, with the aid of a corresponding fac-
torization, to move to a simpler one-dimensional evolutionary equation.

The purpose of this paper is formulation in the explicit form quantum ex-
pression of the one-dimensional operator of momentum for the fractional prob-
ability processes. The proof of the fractional representation of the translation
operator and the corresponding integral representation is considered. Some
aspects of the translations in graduate spaces and their integral representation,
as well as applications in physics are discussed.

2 Fractional Quantum Operator of Momentum

The classical definition of momentum in QM follows from the invariance of
the Hamiltonian of the quantum system Ĥ with respect to the infinitesimal
displacements δx. Under such transformation, the wave function ψ(x) turns
into the function

ψ(x+ δx) = ψ(x) + δx ∂xψ = (1 + δx ∂x)ψ(x),

here ∂x is the differentiation operator over the space variable x [6, 9].

However, it may turn out that ∂xψ does not exist, but there exists the so-
called fractional derivative ∂αxψ in which the order of the derivative α may be
both an integer and a fractional number. For the function determined on the
whole real axis R, the right and left derivatives of the order α are derived as

∂α±ψ(x) =
{α}

Γ (1− {α})

∫ ∞
0

ψ([α])(x)− ψ([α])(x∓ ξ)
ξ1+{α}

dξ,

where [α] and {α} are the integer and the fractional parts of the parameter α
(for details, see Appendix). For the bilateral derivatives to exist, it is sufficient
that ψ(x) ∈ C [α](Ω), where C [α](Ω) is a set of continuously differentiated
functions of the order [α] determined on the domain Ω [18].

Another peculiarity related to the operator of momentum is the expansion
of the wave-function ψ(x) into a Taylor series by fractional powers [23]

ψ(x) =

[α]∑
n=0

c(α)n (x− x0)α+n +Rn(x), (2.1)

where c
(α)
n are numerical coefficients and Rn(x) is the residual term, which pro-

vides a better approach to the initial function. In all such cases, determination
of the quantum operator of momentum should be specified.
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It is reasonable to suppose that the momentum operator should be propor-
tional to the fractional derivative:

p̂ = C∂α+ψ(x) (2.2)

here C is a certain coefficient of proportionality. For α→ 0, we must obtain a
usual quantum operator of momentum, p̂ = −i~∂x. Thus, in FMQ we always
deal with two kinds of limit transitions: (1) ~ → 0, when we shift to classical
mechanics, and (2) α→ 0, when we turn to usual QM (see Fig. 1).

The kind of the coefficient C in the expression for the momentum (2.2) is
best defined if on the whole real axis we consider a flat wave of the form

ψ(x, t) = Aeiκ x−i
E
~ t, κ =

(
p

~lα−10

) 1
α

, (2.3)

there ~ is the Planck constant and l0 is a certain peculiar scale of the length of
the nonlocal process under consideration.

Let us impose a requirement for the momentum operator (2.2) to obey
the eigenvalue equation p̂ψ = pψ. Applying the property of the fractional
derivatives, ∂α+e

κx = καeκx (Reκ > 0) (see Appendix), we obtain that

C = (−i)α~lα−10 . (2.4)

For the eigenvalues observed in QM to be real, the corresponding operators
should be Hermitian. It is easy to see that the quantum operator of momentum
(2.2) with the constant C from (2.4) is non-Hermitian. In order to obtain a
Hermitian operator of momentum, to the type (2.2) operator we will add a
Hermite-conjugated operator p̂+; then, the momentum operator determined in
this way

p̂ =
~lα−10

2

[
(−i∂+)α + (i∂̃−)α

]
, (2.5)

here ∼ is the symbol of transposition, will be clearly Hermitian. Indeed, the
momentum operator (2.5) p̂ = (p̂+ + p̂−)/2 will be Hermitian because of the
idempotency of the operation of Hermitian conjugation ((p̂+)+ = p̂) and the
structure of the operator itself (p̂− = (p̂+)+). On the other hand, employing
the rule of fractional integration by parts (see Appendix),

p∗ =

∫ +∞

−∞
ϕ∗ p̂+ψ dx =

1

2

∫ +∞

−∞
ϕ∗(p̂− + p̂+)ψ dx = p,

we directly see that the momentum operator is Hermitian for the different
functions of state ϕ and ψ.

Thus, we obtain that the operator (2.5) is Hermitian and its eigenvalues on
the whole real axis are flat waves of the (2.3) type. Like in the classical case,
the eigenvalues of the momentum operator do not belong to the class L2(R).
Therefore, they don’t describe the physically realizable states of the quantum
particle. These eigenfunctions should be regarded as the basic functions, which
comprise the complete system of functions.

Math. Model. Anal., 17(1):100–112, 2012.
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3 Wave Function Normalization

To determine the constant normalization A in the expression for the flat wave
(2.3), we will take that

∫
ψ∗0ψp dx = δ(p). This is a particular case of the

conventional condition
∫
ψp′ψpdx = δ(p′ − p) for p′ ≡ 0. Using the property of

the δ-function, we shall obtain that

A =

√
|κ|

2π|p|
, κ ≡

(
p

~lα−10

) 1
α

. (3.1)

Let us specify the peculiarities of such normalization. Firstly, generally
speaking, the amplitude is a complex magnitude; secondly, it depends on the
eigenvalue of the momentum p . Only when α → 1, as the case should be,
A→ 1/

√
2π~ .

Inasmuch as the physical sense applies not to the amplitude itself but
to |A|2, the complex nature of A does not contradict unitarity. However, be-
cause of the complex nature of the amplitude we may get an impression that
we deal with a damping wave; however, actually there is no damping, because
A 6= A(x, t). Besides, the same conclusion results from analysis of the disper-
sion expression of the corresponding Hamiltonian. The dependence A = A(p)
is not a matter of principle and may be avoided by a suitable choice of the
normalization condition. For instance, under condition

∫
ψ∗κ′ψκ dx = δ(κ′−κ),

the dependence A(p) is absent.
Another important circumstance should be noted as regards the type of the

momentum operator. Transition to momentum representation is not a Fourier
transformation. Momentum representation should be understood in the sense
of f -representation:

ψ(x) =

∫
afψf (x) df,

∫
ψ∗f ′ψf dx = δ(f ′ − f).

4 Fractional Translation Operator

Lastly, let us derive the formula to express, through the momentum operator p̂,
the parallel translation operator in space to any finite (not only infinitesimal)
distance. From the definition of such an operator it follows:

iT̂αa+ψ(x) = ψ(x− a), T̂αb−ψ(x) = ψ(x+ b).

In this case, a and b denote the values of finite displacements but not the
coordinate ends of the interval.

Expanding the function ψ(x− a) in the neighbourhood of the point x into
a Taylor series by fractional powers as in (2.1) and employing the expression
for the “right-hand” and “left-hand” parts of the momentum operator,

p̂α+ = −i~lα−10 ∂α+, p̂α− = i~lα−10 ∂̃α−,

we obtain that

T̂αa+ =

∞∑
k=0

(ia)α+k−1

(~lα−10 )(α+k−1)/α
p̂
(α+k−1)
+

Γ (α+ k)
≡ Eκap̂

α
+

1−α ,
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where Ezµ is the generalized exponential function (see Appendix). These are
exactly the finite displacement operators we have been searching for.

For α→ 1, for T̂αa+ we obtain that

T̂αa+ →
∞∑
k=0

(
ia

~

)k p̂k+
k!
≡ ei a~ p̂+ , (4.1)

The expression T̂αb− could be obtain by substituting in equation (4.1) a → −b
and p̂α+ → p̂α−.

5 Integral Representation of the Translation Operator

Thus, in both the classical and quantum cases, the translation operator may
be represented as an exponent (see (1.2) and (4.1)). An exponent, and in a
broader sense also a power series, may be represented as an integral.

Lemma 1. The residue of the Euler γ-function is

Resn Γ (−z) = (−1)n+1/n!.

Proof. Let us use the identity Γ (z)Γ (1 − z) = π/sinπz, which is valid not
only for real, but also for complex z ∈ C. From it, let us express Γ (z) and
substitute −z for z:

Γ (−z) = − π

sinπz

1

Γ (1 + z)
.

Let us calculate the residue at the point z = n:

Resn Γ (−z) = lim
z→n

Γ (−z)(z − n) = − 1

cosπn

1

Γ (1 + n)
=

(−1)(n+1)

n!
. (5.1)

The lemma is proved. ut

The above lemma allows finding an integral representation of the power
series for which Theorem 1 is valid.

Theorem 1.
∞∑
n=0

f(n)
zn

n!
=

1

2πi

∮
γ

f(t)Γ (−t)(−z)t dt. (5.2)

Proof. In a complex plane, let us consider the integral
∮
γ
f(t)Γ (−t)(−z)t dt,

in which the contour γ does not cover the singularities of the complex-valued
function f(z). Suppose that it is possible to close the contour γ on the right
side, i.e. the contour is circumvent in the negative direction (Fig. 2). From the
theorem of the residue of the complex function f(z) [17] and the above lemma
it follows:∮

γ

f(t)Γ (−t)(−z)t dt = −2πi

∞∑
n=0

f(n)
(−1)(n+1)

n!
(−z)n = 2πi

∞∑
n=0

f(n)
zn

n!
.

Dividing both parts of this expression by 2πi gives the statement of the theorem.
ut

Math. Model. Anal., 17(1):100–112, 2012.



106 P. Mǐskinis

Figure 2. The singular points of the function Γ (−z) on the complex plane C are marked
with a dot “•”. The possible singular points of the function f(z) are marked with “×”. The

contour γ is supposed to be closed on the right side.

Corollary 1. The classical right-translation operator has the following integral
representation

T̂a+ = e−a
d
dx =

1

2πi

∮
γ

Γ (−t)at∂tx+ dt. (5.3)

Corollary 2.

T̂αa+ = E
κap̂

α
+

1−α =
1

2πi

∮
γ

Γ (−t)aα+t∂α+tx+ dt. (5.4)

Corollary 3.
d

dx
= log

[ 1

2πi

∮
γ

Γ (−t)∂tx+ dt
]
. (5.5)

Corollary 4.

∂αx+ = log
[ 1

2πi

∮
γ

Γ (−t)∂α+t−1x+ dt
]
. (5.6)

Proof. By applying (5.2) to the exponential representation (1.2) we obtain the
statement of Corollary 1. Note here, the order of the fractional derivative in
(5.3) and below is a complex value. The effect of the fractional derivative ∂αx+ on
both sides of expression (5.3) gives Corollary 2. The logarithmic function from
both parts of expression (5.3) for a = 1 gives (5.5). Finally, substituting f(x)→
∂α−1x+ f(x) in expression (5.5) for df/dx results in (5.6). Thus, Corollaries 1–4
are proved. ut

6 The Simplest Nonlocal Superalgebra

The simplest nonlocal supergroup generators have the following representation

{Qασ , Qαρ } = 2 (γµC)σρ P
α
µ ,

[
Qασ , P

α
µ

]
= 0,
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where Qασ is the generator of supertranslations, σ, ρ = 1, 2, γµ are the Dirac
γ-matrices, Cσρ is the matrix of charge conjugation and P α

µ is the four-dimen-
sional operator of momenta with fractional order α.

We are interested in the explicit form of these generators, similarly as the
generator

P α
µ =

1

2

[
(−i∂µ+)α + (i∂̃µ−)α

]
≡ ∂ αµ ,

is a translation generator in the space Xα 3 x with fractional dimension α
(~ = lα−10 = 1). Now we have to expand the concept of space-time so as
it could include the supersymmetric partner of coordinate x. Let us denote
the superspace produced by the couple xµ, θσ. The supersymmetry generator
would be defined as follows:

Qασ =
∂

∂θ̄σ
+ (γµθ)σ ∂

α
µ ,

where θ is the Grassmann number. We choose exactly this representation, be-
cause, as could be expected, the anticommutator between two such generators,
gives the space translation

{Qασ , Qαρ } = 2 (γµC)σρ ∂
α
µ .

Note that ε̄Q performs superspace transformations:

xµ → xµ − ε̄γµθ, θ σ → θ σ + εσ.

Also, note that it is possible to create the operator

Dα
σ =

∂

∂θ̄σ
+
(
γµ∂ αµ θ

)
σ
,

which anticommutes with the supersymmetry generator
{
Qα
σ , D

α
ρ

}
= 0. It is

very important, because we may impose constraints on supersymmetry rep-
resentations without destroying this symmetry. This allows deriving reduced
representations from nonreduced ones.

7 Conclusions

Note that the classical restriction on the smoothness of the wave function
ψ(x) ∈ C2([a, b]) does not hold here. The restriction on ψ(x) follows from
the continuity equation; however, in the case of fractional dimension we can
show that the condition of continuity is changed, and the limitation on ψ(x) is
reduced to ψ(x) ∈ C [α]([a, b]).

Another note pertains to the structure of the momentum operator. It seems
highly significant that the momentum operator consists of two parts—the right
and left displacements. In classical fractional mechanics, it is quite possible to
limit ourselves to one of these two components, p̂+ or p̂−. In the quantum case,
it is impossible to take such a limit, because the full operator of momentum is
a Hermitian.

Math. Model. Anal., 17(1):100–112, 2012.
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The limit transition ~ → 0 for {α} 6= 0 means transition to classical frac-
tional mechanics. However, the form of the momentum operator undergoes
no qualitative change: p̂ = 1

2 (p̂+ + p̂−), i.e. it consists of two parts, each be-
ing proportional to its one-sided derivative. For linear evolutionary equations
of classical (not quantum) fractional mechanics this type of structure of the
momentum operator may be simplified if p̂ = p̂+ or p̂ = p̂−. However, here
additional considerations are necessary. For the nonlinear fractional evolution-
ary processes it is impossible in principle, because p̂+ = p̂− is the condition of
smoothness.

From the definition of κ there follows an interrelation between the momen-
tum and the wave number p = ~lα−10 κα, for α → 1, κ → k this expression
turns into p = ~k.

The appearance of the characteristic length scale of l0 and the power depen-
dence of the quantum particle momentum on the wave number directly indicate
the fractional character of quantum mechanics.

Thus we have the Hermitian quantum operator of momentum (2.5) with
the eigenfunctions (2.3). This allows us to construct the quadratic form of
the Hamiltonian Ĥ ∝ p̂ 2 instead of the nonlinear form Ĥ ∝ Dα|p|α [8], and
the Hermitian Hamiltonian instead of non-Hermitian proposed in [10], and the
Unitarian Hamiltonian instead of non-unitarian proposed in [13].

The following aspect deserves special attention. According to the theory of
dynamical systems, there is a strict border-line between the local and nonlocal
evolutionary systems. Therefore, the integral presentation of the translation
operator and the resulting consequences seem very intriguing. It appears that
the classical local operator of the derivative may be presented in an absolutely
nonlocal form (see (5.5)). This implies that local dynamical systems are a
particular case of nonlocal systems which are much less studied.

Appendix A

The right and left fractional derivatives are defined in the form

∂α±f(x) =
{α}

Γ (1− {α})

∫ +∞

0

f [α](x)− f [α](x∓ ξ)
ξ1+{α}

dξ, (A.1)

where Γ (z) is the Euler γ-function, α = [α] + {α} are the integer and the
fractional parts of the real number α ∈ R. These are the so-called Marchaud
derivatives [16], which on the whole real axis are more natural than, e.g., the
Riemann–Liouville derivatives. For instance, for the functions determined on
R : f(x) ∈ Lp, where 1 6 p < 1/α,

∂α±I
α
±f(x) = f(x), (A.2)

here Iα±f(x) is a fractional integral of the order α, whereas for the Riemann–
Liouville derivatives the property (A.2) holds only if α = 1. The Marchaud
derivatives, on sufficiently “good” functions, coincide with the Riemann–Liou-
ville derivatives, however, in contrast to the latter, they allow even an increase
of the functions of the order below α on the infinity. The differences between
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the Riemann–Liouville and Marchaud functions, related to the behaviour on
the infinity, are absent in the case of a finite interval [20].

Remind here that the one-parametrical family of linear limited operators
{Tα}, α > 0 in the Banach space X comprises a semi-group, if

TαTβ = Tα+β , α > 0, β > 0, T0ϕ = ϕ, ∀ϕ ∈ X.

A semigroup of operators is called strongly continuous if

lim
α→α0

‖Tαϕ− Tα0ϕ‖ = 0, 0 6 α0 <∞, ∀ϕ ∈ X.

From the semigroup character of the family {∂α±} (A.1) it follows that if a
semigroup is strongly continuous when α = 0, it is inevitably strongly contin-
uous for all α > 0.

From the definition of the fractional operators it follows that fractional
integration operators comprise in Lp(a, b), p > 1 a semigroup, which is contin-
uous in the uniform topology for all α > 0. Lp(a, b), as usual, denote a set of
functions |f |p in the p power, which are measurable according to Lebesgue.

The form of the approximation of the operator Iαa+ to unity when α→ 0 is
conditioned by the form of the generating operator L(x) ≡ limα→+0 ‖Iαa+ϕ −
ϕ‖/α. The expression for the operator is calculated from the definition using
the L‘Hôpital rule. The calculation gives the following expression for the form
of Iαa+ϕ approximation:

L(x) =
d

dx

∫ x

a

ln(x− t)ϕ(x) dt− Γ ′(1)ϕ(x),

for almost all x. It is convenient to make use of unified designation also for the
other integrals and derivatives, considering that

∂α+f = I−α+ f =
(
Iα+
)
f, α > 0.

The semigroup character of the fractional derivatives is

∂α±∂
β
±f(x) = ∂β±∂

α
±f(x) = ∂α+β± f(x).

The fractional integration by parts is∫ b

a

ϕ(x)∂α+ψ(x) dx =

∫ b

a

ψ(x)∂α−ϕ(x) dx,

Example 1a: ∂α+e
λx+µ = λαeλx+µ (Reλ > 0),

Example 1b: ∂α−e
λx+µ = (−λ)αeλx+µ (Reλ < 0).

Some special functions are a very convenient tool for applications, e.g., the
Mittag-Leffler function:

Eα,β(z) =

∞∑
k=0

zk

Γ (αk + β)
, α > 0, β > 0.

Math. Model. Anal., 17(1):100–112, 2012.
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It is obvious that E1,1(z) = ez.
Another example is the fractional exponential function:

Ezµ =

∞∑
k=0

zk−µ

Γ (k − µ+ 1)
= e−µE1,1−µ(z) = ∂

(µ)
+ ez, α > 0, β > 0.

Note here that the Ezµ function for the fractional translation operator T̂α plays
the same role as a usual exponent function ez for the translation operator of
the integer order. The list could be supplemented by Wright function, Fox
H-functions, etc., [23].

Appendix B

Traditional symmetries in physics are generated by objects that transform un-
der the tensor representations of the Poincaré group and internal symmetries.
Supersymmetries, on the other hand, are generated by objects that transform
under the spinor representations. According to the spin-statistics theorem,
bosonic fields commute while fermionic fields anticommute. Combining the two
kinds of fields into a single algebra requires the introduction of a Z2-grading
under which the bosons are the even elements and the fermions are the odd
elements. Such algebra is called a Lie superalgebra. Thus, superalgebra is
a Z2-graded algebra over a commutative ring or field with a decomposition
into “even” and “odd” pieces and a multiplication operator that respects the
grading.

Formal definition. Let K be a fixed commutative ring. In most applications,
K is a field such as R or C. A superalgebra over K is a K-module A with a
direct sum decomposition A = A0⊕A1, together with a bilinear multiplication
A×A → A such that

AiAj = Ai+j ,

where the subscripts are read modulo 2.
A superring, or Z2-graded ring, is a superalgebra over the ring of integers Z.
The elements of Ai are said to be homogeneous. The parity of a homo-

geneous element x, denoted by |x|, is 0 or 1 according to whether it is in A0

or A1. Elements of parity 0 are said to be even and those of parity 1 to be odd.
If x and y are both homogeneous then so is the product xy and |xy| = |x|+ |y|.

An associative superalgebra is one whose multiplication is associative and a
unital superalgebra is one with a multiplicative identity element. The identity
element in a unital superalgebra is necessarily even. A commutative superalge-
bra is one which satisfies a graded version of commutativity. Specifically, A is
commutative if

yx = (−1)|x| |y|xy,

for all homogeneous elements x and y of A.
Some examples.

• any exterior algebra over K is a superalgebra. The exterior algebra is the
standard example of a supercommutative algebra.



Translation Operator 111

• Clifford algebras are superalgebras. They are generally noncommutative.

• Lie superalgebras are a graded analog of Lie algebras. Lie superalgebras
re nonunital and nonassociative; however, one may construct the analog
of a universal enveloping algebra of a Lie superalgebra which is a unite,
associative superalgebra. There are representations of a Lie superalgebra
that are analogous to representations of a Lie algebra. Each Lie algebra
has an associated Lie group and a Lie superalgebra can sometimes be
extended into representations of a Lie supergroup.

The prefix super- comes from the theory of supersymmetry in theoretical
physics. Superalgebras and their representations, supermodules, provide an
algebraic framework for formulating supersymmetry. The study of such objects
is sometimes called super linear algebra. Superalgebras also play an important
role in related field of supergeometry where they enter into the definitions of
graded manifolds, supermanifolds and superschemes.
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