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Abstract. In this work, we construct a novel weighted reproducing kernel space and
give the expression of reproducing kernel function skillfully. Based on the orthogonal
basis established in the reproducing kernel space, an efficient algorithm is provided to
solve the nonlinear multi-point boundary value problem on the half-line. Uniformly
convergence of the approximate solution and convergence estimation of our algorithm
are studied. Numerical results show our method has high accuracy and efficiency.
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1 Introduction

We are concerned with the approximate solution of the following multi-point
boundary value problem posed on the positive half-line [13]:⎧⎪⎨⎪⎩

x′′(t)− px′(t)− qx(t) = f(t, x(t)), t ∈ [0,∞),

αx(0)− βx′(0)−
n∑

i=1

kix(ξi) = a0, lim
t→+∞

x(t)

ert
= b0.

(1.1)

Here p, q, ξi, a, b are some nonnegative real numbers, r ∈ (0, p+
√

p2+4q

2

]
, f is

a continuous function and α, β, ki ≥ 0 satisfy α2 + β2 �= 0.
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Approximate Solution of Nonlinear Multi-Point Boundary Value Problem 191

Boundary value problems(BVPs) on the half-line arise in various applica-
tions of physical phenomena and in chemistry, epidemiology [1, 10, 11]. Thus,
there have been so much work devoted to the existence of solutions for bound-
ary value problem on the half-line, see, for example, [2, 7, 9] and the references
therein. The main methods used to tackle these problems are upper and lower
solutions techniques [9, 12, 14], fixed point theorems in special Banach spaces
and recent fixed point theory on cones of Banach spaces [5, 6, 10, 13]. They
all discussed the existence and multiplicity of positive solutions of nonlinear
differential equations with BVPs on the half-line. The aim of the paper is to
seek a numerical solution of such BVPs in a reproducing kernel Hilbert space.

Recently, Cui and Lin [4] presented an iterative reproducing kernel method
(RKM) used for obtaining approximate solutions of differential and integral
equations with initial or boundary value conditions. For example, a class of
linear Volterra integral equation with weakly singular kernel is discussed in [3].
Lin and Zhou [8] have solved the nonlinear pseudoparabolic equations with non-
local boundary conditions numerically. Two point boundary value problems
of 2m th-order nonlinear differential equations are considered in [15]. How-
ever, due to the multi-point boundary value conditions with a limit form in
Eq. (1.1), especially on the half-line, it is difficult to find the corresponding
reproducing kernel space by applying traditional RKM. The aim of our work
is to extend RKM to the nonlinear multi-point boundary value problem on the
half-line. One important improvement is that the range space of our method
is L2[0,+∞) on the half-line, while traditional RKM is L2[a, b] of finite inter-
val [3, 8, 15]. Actually, it is an essential difficulty for discussing the problem
with this transition. Meanwhile, because traditional RKM [3, 4, 8, 15] are
all based on reproducing kernel space included bounded functions. The em-
phasis of the result is that we construct a reproducing kernel space included

unbounded functions so as to overcome difficulties with limt→+∞
x(t)
ert = b0.

Therefore, the application of our method is more extensive than traditional
RKM.

Motivated by all the works above, firstly the authors successfully construct
a novel weighted reproducing kernel space which includes boundary conditions
with the limit form and give the expression of the reproducing kernel func-
tion. Secondly, we establish an orthogonal basis in the weighted reproducing
kernel space and estimate the complexity of the orthogonal basis. And then
the approximate solution is obtained by the iteration technique. Uniformly
convergence and the error estimation are provided for the numerical scheme.
Finally, the numerical results are given to demonstrate the effectiveness and
accuracy of the method. Furthermore, the numerical algorithms introduced in
this study can be well suited for handling nonlinear differential equations with
various multi-point boundary conditions on the half-line.

2 A Novel Weighted Reproducing Kernel Space

Definition 1. [4] Let H be a Hilbert function space on a set X. H is called
a reproducing kernel space if and only if for any x ∈ X, there exists a unique
function Rx(y) ∈ H, such that 〈f,Rx〉 = f(x) for any f ∈ H. Meanwhile,
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R(x, y) � Rx(y) is called a reproducing kernel function.

Due to the complex boundary conditions of (1.1), the following weighted
reproducing kernel space is constructed firstly.

Definition 2. H � H([0,+∞), e−rt) = {x(t) | x′′(t) is absolutely continuous

and limt→∞
x(t)
ert = 0,

∫ +∞
0

e−rt[x(3)(t)]2 dt < +∞}. The inner product is
defined respectively by

〈
x(t), y(t)

〉
H

=

2∑
i=0

x(i)(0)y(i)(0) +

∫ +∞

0

e−rtx(3)(t)y(3)(t) dt.

Theorem 1. H is a Hilbert reproducing kernel space and its reproducing kernel
function is as following :

R(t, s) =

{
r1(t, s) = ert

∑3
i=1 a1i(s)t

i−1 +
∑6

i=4 a1i(s)t
i−4, t ≤ s,

r2(t, s) = ert
∑3

i=1 a2i(s)t
i−1 +

∑6
i=4 a2i(s)t

i−4, s ≤ t.

According to the definition of reproducing kernel space, H is a generaliza-
tion of [4, Theorems 1.3.1, 1.3.2] with essentially the same proofs. Therefore,
we omit the proof of Theorem 1.

Theorem 2. The subspace H0 � H0([0,+∞), e−rt) = {x(t) | x(t) ∈ H,
αx(0) − βx′(0) −∑n

i=1 kix(ξi) = 0} of H is a reproducing kernel space and
its reproducing kernel function is

K(t, s) = R(t, s)− f(t)f(s)

αf(0)− βf ′(0)−∑n
i=1 kif(ξi)

(2.1)

where f(t) = αR(t, 0) − β∂sR(t, 0) −∑n
i=1 kiR(t, ξi) and R(t, s) is the repro-

ducing kernel function of H.

Proof. Since H0 is a closed subspace of reproducing kernel space H, H0 is a
reproducing kernel space. Next we shall prove that K(t, s) is the reproducing
kernel of H0. At first we prove that αf(0) − βf ′(0) −∑n

i=1 kif(ξi) �= 0. The
proof is done by using the contradiction method. In the view of the reproducing
property, it is clear that

〈
f(t), f(t)

〉
H

=
〈
f(t), αR(t, 0)− β∂sR(t, 0)−

n∑
i=1

kiR(t, ξi)
〉
H

= α
〈
f(t), R(t, 0)

〉
H
− β

〈
f(t), ∂sR(t, 0)

〉
H
−

n∑
i=1

ki
〈
f(t), R(t, ξi)

〉
H

= αf(0)− βf ′(0)−
n∑

i=1

kif(ξi) = 0.

Consequently it follows that f(t) = 0. Then for any y(t) ∈ H, we get

αy(0)−βy′(0)−
n∑

i=1

kiy(ξi) =
〈
y(t), αR(t, 0)−β∂sR(t, 0)−

n∑
i=1

kiR(t, ξi)
〉
H
≡ 0
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which indicates y(t) ∈ H0. This contradicts that H0 is a proper subspace of H.
Second, we need to show for any s ∈ [0,+∞), K(t, s) ∈ H0. In fact, it

follows that

αK(0, s)− β∂tK(0, s)−
n∑

i=1

kiK(ξi, s) = αR(0, s)− β∂tR(0, s)

−
n∑

i=1

kiR(ξi, s)− (αf(0)− βf ′(0)−∑n
i=1 kif(ξi))f(s)

αf(0)− βf ′(0)−∑n
i=1 kif(ξi)

= αR(0, s)− β∂tR(0, s)−
n∑

i=1

kiR(ξi, s)− f(s) = f(s)− f(s) = 0.

Finally, for any x(t) ∈ H0, there holds that

〈
x(t),K(t, s)

〉
H

=
〈
x(t), R(t, s)− f(t)f(s)

αf(0)− βf ′(0)−∑n
i=1 kif(ξi)

〉
H

= x(s)− f(s)

αf(0)− βf ′(0)−∑n
i=1 kif(ξi)

×
〈
x(t), αR(t, 0)− β∂sR(t, 0)−

n∑
i=1

kiR(t, ξi)
〉
H

= x(s)− f(s)

αf(0)− βf ′(0)−∑n
i=1 kif(ξi)

(
αx(0)− βx′(0)−

n∑
i=1

kix(ξi)
)

= x(s).

That is, K(t, s) is the reproducing kernel function of H0. �	

3 The Numerical Method

According to [13], we know the existence of solutions for the problem (1.1) only
if it satisfies the following condition:

(H1) f is continuous such that f(t, x) ≤ c(t) + d(t)x for (t, x) ∈ [0,+∞) ×
C
(
[0,+∞), [0,+∞)

)
, and c, d : [0,+∞) → [0,+∞) are continuous func-

tions;

(H2) α − βλ1 −
∑n

i=1 kie
λ1ξi > 0 and

(α−βλ2)
∫∞
0

d(s)e−λ1s ds

(λ1−λ2)(α−βλ2−
∑n

i=1 kieλ2ξi )
< 1, where

λ1 =
p+
√

p2+4q

2 , λ2 =
p−
√

p2+4q

2 .

Here the approximate solution of Eq. (1.1) in H0 is obtained step by step.
At first we homogenize the boundary value conditions of Eq. (1.1) so that it
can be discussed in the reproducing kernel space. Next we give an operator
equation which is equivalent to Eq. (1.1) and the operator is proved to be
bounded. Then a normal orthogonal basis is established. Finally, these are
used to successively find the numerical solution in H0.

Math. Model. Anal., 17(2):190–202, 2012.
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We observe from boundary conditions that Eq. (1.1) can be transformed to
the following form:⎧⎪⎨⎪⎩

y′′(t)− py′(t)− qy(t) = g(t, y(t)), t ∈ [0,+∞),

αy(0)− βy′(0)−
n∑

i=1

kiy(ξi) = 0, lim
t→+∞

y(t)

ert
= 0.

Definition 3. L2 � L2([0,+∞), e−μt) =
{
y(t) | ∫ +∞

0
e−μty2(t) dt < +∞}.

The inner product is defined respectively by

〈
y(t), z(t)

〉
L2 =

∫ +∞

0

e−μty(t)z(t) dt.

It is easy to see that this L2 space is a Hilbert space.

Theorem 3. Let L : H0 → L2, (Ly)(t) � y′′(t) − py′(t) − qy(t). (1) If μ > r,
then L is a bounded linear operator ; (2) If (H1), (H2) hold, then L is invertible.

Proof. (1) Since

∣∣y′′(t)∣∣ ≤ ∣∣y′′(0)∣∣+ ∫ t

0

∣∣y(3)(s)∣∣ ds ≤ ∣∣y′′(0)∣∣+√t
( t∫
0

[
y(3)(s)

]2
ds
)1/2

≤ ‖y‖H +
√
tert

∫ t

0

e−rs
[
y(3)(s)

]2
ds

≤ (1 +√tert
)‖y‖H = nt‖y‖H , nt = 1 +

√
tert∣∣y′(t)∣∣ ≤ ∣∣y′(0)∣∣+ ∫ t

0

∣∣y′′(s)∣∣ ds ≤ ∣∣y′(0)∣∣+ ∫ t

0

ns‖y‖H ds

≤ ‖y‖H +

∫ t

0

ns ds‖y‖H ≤ mt‖y‖H , mt = 1 +

∫ t

0

ns ds

∣∣y(t)∣∣ ≤ ∣∣y(0)∣∣+ ∫ t

0

∣∣y′(s)∣∣ ds ≤ ∣∣y(0)∣∣+ ∫ t

0

ms‖y‖H ds

≤ ‖y‖H +

∫ t

0

ms ds‖y‖H ≤ vt‖y‖H , vt = 1 +

∫ t

0

ms ds,

we readily have

‖Ly‖L2 ≤ ∥∥y′′∥∥
L2 + p

∥∥y′∥∥
L2 + q

∥∥y∥∥
L2

≤
√∫ +∞

0

e−μty′′(t)2 dt+ p

√∫ +∞

0

e−μty′(t)2 dt+ q

√∫ +∞

0

e−μty(t)2 dt

≤
√∫ +∞

0

e−μtn2
t‖y‖2H dt+ p

√∫ +∞

0

e−μtm2
t‖y‖2H dt+ q

√∫ +∞

0

e−μtv2t ‖y‖2H dt
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≤ ‖y‖H
(√∫ +∞

0

e−μtn2
t dt+ p

√∫ +∞

0

e−μtm2
t dt+ q

√∫ +∞

0

e−μtv2t dt

)
Notice that, as μ > r, we have∫ +∞

0

e−μtn2
t dt < +∞,

∫ +∞

0

e−μtm2
t dt < +∞,

∫ +∞

0

e−μtv2t dt < +∞.

Thus it follows that ‖Ly‖L2 ≤ M ‖y‖H , which means that L is a bounded
linear operator.

(2) In order to evaluate invertibility, we need to get that if (Ly)(t) = 0,
then y(t) = 0. In fact, according to (Ly)(t) = y′′(t)−py′(t)− qy(t), y(t) can be

expressed as y(t) = c1e
λ1t+c2e

λ2t, here λ1 =
p+
√

p2+4q

2 > 0, λ2 =
p−
√

p2+4q

2 <
0. Noting that y(t) ∈ H0, we get

lim
t→+∞

c1e
λ1t + c2e

λ2t

ert
= 0, r ∈ [0, λ1]

which indicates c1 = 0. On the other hand, in view of the fact that αy(0) −
βy′(0)−∑n

i=1 kiy(ξi) = 0, it follows that

c2α− c2βλ2 − c2

n∑
i=1

kie
λ2ξi = 0,

thus from (H2) we have c2 = 0 and hence y(t) = 0. �	

Therefore Eq. (1.1) is turned into the following operator equation in H0

(Ly)(t) = g
(
t, y(t)

)
. (3.1)

Let K(t, s) be the reproducing kernel function of H0. Then for ti ∈ [0,+∞),
we define ψi(t) ∈ H0 by

ψi(t) �
(
LK

(
t, (·)))(ti).

Lemma 1. If S = {t1, t2, . . .} be a dense subset on [0,+∞), then {ψi(t)}∞i=1 is
a complete system of H0.

Proof. For every i, according to the reproducing property of K(t, s),

0 =
〈
y(t), ψi(t)

〉
H

=
〈
y(t), (LK

(
t, (·))(ti)〉H

= L
〈
y(t),K

(
t, (·))(ti)〉H = L

(
y(·))(ti) = (Ly)(ti).

Noting that ti ∈ S and S is a dense set, then (Ly)(t) = 0. y(t) ≡ 0 is hold
from the existence of L−1. Namely, {ψi(t)}∞i=1 is a complete system. �	

By the Gram–Schmidt process a normal orthogonal basis {ψ̃i(t)}∞i=1 of H0

is given by

ψ̃i(t) =

i∑
k=1

βikψk(t). (3.2)

Math. Model. Anal., 17(2):190–202, 2012.
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Furthermore, we provide the complexity estimation of the orthogonal basis in
Appendix.

Here the approximate solution of (3.1) is constructed by a function sequence:

yn(t) =

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
ψ̃i(t), (3.3)

where y(t) is the exact solution, Pn is an orthogonal projector from H0 to
span{ψ̃1, ψ̃2, . . . , ψ̃n} and P0y denotes any fixed function in H0 .

Lemma 2. Suppose {ti}∞i=1 is dense on [0,+∞). Then yn(t) in (3.3) is con-
vergent to the y(t).

Proof. Suppose j ≤ n, due to

Lyn(tj) =

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
Lψ̃i(tj)

=

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)〈
ψ̃i,LK(t, tj)

〉
H

=

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)〈ψ̃i, ψj〉H

it follows that

j∑
p=1

βjpLyn(tp) =

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)〈
ψ̃i,

j∑
p=1

βjpψp

〉
H

=

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)〈ψ̃i, ψ̃j〉H

=

j∑
k=1

βjkg
(
tk,Pk−1y(tk)

)
.

Considering j = 1, we have (Lyn)(t1) = g
(
t1,P0y(t1)

)
. When j = 2, then

β21(Lyn)(t1) + β22(Lyn)(t2) = β21g
(
t1,P0y(t1)

)
+ β22g

(
t2,P1y(t2)

)
.

One gets that (Lyn)(t2) = g
(
t2,P1y(t2)

)
. Hence it can be obtained by induction

(Lyn)(tj) = g
(
tj ,Pj−1y(tj)

)
.

Since {ti}∞i=1 is dense , for any t ∈ [0,+∞) there exists a subsequence {tnj}∞j=1

such that tnj
→ t, as j →∞. Based on the convergence of Pn and the continuity

of g(·,·), it follows that
lim

j→+∞
(Lyn)(tnj

) = lim
j→+∞

g
(
tnj

,Pnj−1y(tnj
)
)

= g
(
t, y(t)

)
= Ly(t).
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Moreover, according to (3.3) we have

lim
j→+∞

(Lyn)(tnj ) = lim
j→+∞

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
Lψ̃i(tnj )

=
∞∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
Lψ̃i(t)

= lim
n→+∞L

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
ψ̃i(t) = lim

n→+∞Lyn(t).

Therefore, we get

lim
n→+∞Lyn(t) = Ly(t). (3.4)

We can use (3.4) to prove that Lyn(t) converges to Ly(t) in L2. This together
with the boundedness of L−1 implies that

lim
n→+∞ yn(t) = L−1 lim

n→+∞
(
Lyn(t)

)
= L−1

(
Ly(t)

)
= y(t).

This completes the proof of the convergence of formula (3.3). �	

Thus, we claim that

y(t) = lim
n→+∞ yn(t) =

∞∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
ψ̃i(t). (3.5)

Furthermore, from the property of orthogonal projector Pn, it follows from
(3.5) that

Pny(t) =

n∑
i=1

i∑
k=1

βikg
(
tk,Pk−1y(tk)

)
ψ̃i(t) = yn(t),

and consequently, yn(t) is the orthogonal projection of y(t). Substituting
Pny(t) = yn(t) into (3.3), we get

yn(t) =

n∑
i=1

i∑
k=1

βikg
(
tk, yk−1(tk)

)
ψ̃i(t) (3.6)

where y0(t) = P0y(t) ∈ H0.

Theorem 4. The approximate solution yn(t) and its derivatives y′n(t), y′′n(t)
inner-closed uniformly converge to exact solution y(t) and its derivatives y′(t),
y′′(t) on [0,+∞), respectively.

Proof. For any t ∈ [0, T ] ⊂ [0,+∞), i = 0, 1, 2, using the boundedness of
‖∂i

tK(t, s)‖H and reproducing property of K(t, s), we have∣∣y(i)n (t)− y(i)(t)
∣∣ = ∣∣(yn(t)− y(t)

)(i)∣∣ = ∣∣∂i
t

〈
yn(s)− y(s),K(t, s)

〉
H

∣∣
=
∣∣〈yn(s)− y(s), ∂i

tK(t, s)
〉
H

∣∣
≤ ‖yn − y‖H

∥∥∂i
tK(t, s)

∥∥
H
≤M‖yn − y‖H → 0. �	

Math. Model. Anal., 17(2):190–202, 2012.
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Theorem 5. |yn(t)− y(t)| = o(1/n).

Proof. Firstly, by using the denseness, for any t ∈ [0,+∞) and n ∈ N , we can
take ti ∈ {t1, t2, . . .}, i ≤ n such that |t − ti| < 1/n. Using the reproducing
property, we obtain

yn(t) =
〈
yn(·),K(t, ·)〉

H
. (3.7)

With the help of (3.7), we now get Lyn(t) =
〈
yn(·),LK(t, ·)〉

H
. Together with

the property of projector yields

Lyn(ti) =
〈
yn(·),LK(ti, ·)

〉
H

=
〈
Pny(·), ψi(·)

〉
H

=
〈
y(·),Pnψi(·)

〉
H

=
〈
y(·), ψi(·)

〉
H

= L
〈
y(·),K(ti, ·)

〉
H

= Ly(ti).

Therefore

Lyn(t)− Ly(t) = Lyn(t)− Lyn(ti)− (Ly(t)− Ly(ti))

=
〈
yn(·),LK(t, ·)− LK(ti, ·)

〉
H
− 〈y(·),LK(t, ·)− LK(ti, ·)

〉
H

=
〈
yn(·)− y(·),LK(t, ·)− LK(ti, ·)

〉
H
.

By the mean value theorem, we have

LK(t, ·)− LK(ti, ·) = (t− ti)
∂

∂s
LK(s, ·).

Finally, the following conclusion follows from above:∣∣yn(t)− y(t)
∣∣ = 〈yn − y,L−1

(
LK(t, ·)− LK(ti, ·)

)〉
H

≤ ∥∥L−1
∥∥
H
‖yn − y‖H

∥∥LK(t, ·)− LK(ti, ·)
∥∥
H

≤ ∥∥L−1
∥∥
H
‖yn − y‖H |t− ti|

∥∥∥ ∂

∂s
LK(s, ·)

∥∥∥
H
.

Thus, according to ‖yn − y‖H → 0, |t − ti| < 1/n and the boundedness of
‖ ∂
∂sLK(s, ·)‖H , we get |yn(t)− y(t)| = o(1/n). �	

4 Numerical Example

In this section we will give some numerical examples of multi-point boundary
value problem that show the exactness and usefulness of our presented process.

Example 1. Consider a system of second-order nonlinear multi-point boundary
value problem as following:⎧⎨⎩

y′′(t)− y′(t)− 2y(t) + e−3t
(
sin y(t) + 169t4 + 62t3 + 18t2 + 19

)
= 0,

10y(0)− 1

4
y′(0)− y

(
1

2

)
− 1

9
y(2) = 0, lim

t→+∞
y(t)

et
= 0.

(4.1)

Applying the method presented in Section 3, we calculate the approximate
solution yn(t) of Eq. (4.1) as following:
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Table 1. |Lxn(t)− f(t, xn(t))| for Example 1.

t k = 1, h = 5/4 k = 2, h = 5/8 k = 4, h = 5/32

5.00 2.53 E-10 1.27 E-12 4.19 E-13
2.50 1.85 E-09 1.07 E-09 2.56 E-13
3.75 1.48 E-07 1.05 E-11 3.70 E-12
6.25 4.33 E-12 5.82 E-13 8.61 E-12
7.50 3.19 E-12 1.69 E-12 2.37 E-12
8.75 5.85 E-13 1.35 E-11 2.37 E-12

10.00 2.29 E-12 1.62 E-12 3.02 E-12
3.13 1.24 E-10 1.32 E-12
4.38 1.88 E-12 6.32 E-13
5.63 8.20 E-12 9.72 E-13
6.88 1.53 E-12 1.09 E-12

10.63 5.60 E-13 4.07 E-13
11.25 7.18 E-12 4.61 E-12
12.50 1.19 E-11 6.98 E-12
13.13 5.22 E-12 6.66 E-12
14.38 1.67 E-11 7.35 E-12
15.00 9.60 E-12 2.74 E-13
2.81 7.65 E-13
8.44 2.73 E-12

11.72 7.58 E-12
16.06 4.44 E-11
20.16 9.26 E-11
22.50 1.41 E-11
23.13 1.09 E-11
25.00 1.81 E-12

CPU 4.672 9.453 83.922

1. A weighted reproducing kernel Hilbert space is constructed to solve the
problem (4.1) and the reproducing kernel can be calculated by formula (2.1).

2. Choosing a dense subset S = {ti}∞i=1 in [0,+∞), t1 = a > 0 (a = 5),

t2 = a
2 , tk2k+m = 2m−1

2k+1 a (1 ≤ m ≤ k2k), tk2k+1+n = k2k+1+n
2k+1 a (1 ≤ n ≤ 2k+1),

k = 1, 2, 3 . . . , it can be seen that Sk = {t1, t2, . . . , t(k+1)2k+1} ⊂ S,

lim
k→+∞

t(k+1)2k+1 = lim
k→+∞

(k + 1)a = +∞

and for the step of Sk,

lim
k→+∞

hk = lim
k→+∞

a/2k+1 = 0.

By using (3.2) we get the orthogonalization coefficients βik and ψ̃i(t).

3. Then taking y0(t) = 0 the approximate solution yn(t) can be given
iteratively by formula (3.6). The absolute errors for k = 1, 2, 4 illustrate that
accuracy of numerical computation is higher (see Table 1). Also it explains
clear superiority of CPU time from Table 1.

Example 2. Consider the following special case of Eq. (1.1) with three-point

Math. Model. Anal., 17(2):190–202, 2012.
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Table 2. |Lxn(t)− f(t, xn(t))| for Example 2.

t k = 1, h = 3/2 k = 4, h = 3/16 k = 5, h = 3/32

6.00 3.20 E-13 4.55 E-14 1.39 E-14
3.00 3.55 E-13 3.27 E-13 3.41 E-13
1.50 8.88 E-13 9.95 E-14 6.75 E-14
4.50 1.03 E-12 1.69 E-13 1.27 E-13
7.50 2.17 E-12 1.31 E-12 1.24 E-14
9.00 5.50 E-12 3.84 E-12 3.76 E-12

10.25 1.99 E-12 5.83 E-12 2.37 E-12
12.00 4.12 E-12 3.94 E-13 3.13 E-13
0.75 5.77 E-14 1.29 E-14
2.25 1.74 E-13 5.33 E-13
8.25 3.48 E-12 3.57 E-12

15.00 4.94 E-11 4.60 E-11
18.00 8.42 E-11 9.33 E-11
21.00 7.49 E-11 2.47 E-11
23.63 1.40 E-11 7.87 E-12
0.19 6.26 E-13 1.32 E-13
5.44 1.01 E-12 1.28 E-13

30.00 4.93 E-11 1.69 E-11
0.09 1.31 E-13
1.03 1.77 E-15
7.22 1.67 E-12

29.16 2.92 E-11
33.56 1.38 E-11
35.81 3.41 E-11
36.00 1.09 E-11

CPU 0.34 11.218 69.734

boundary condition:⎧⎨⎩y′′(t)− 2y′(t)− 3y(t) + 9t+ t2 −
√

y(t) = 0, t > 0,

y(0)− 2y(1) = 0, lim
t→+∞

y′(t)
et

= 0.

According to the numerical algorithm given above, the numerical solution of
this problem is obtained by the improvement of RKM on the half-line. From
Table 2, our approach clearly yields a reliable numerical solution. We also list
the CPU cost in Table 2.

Appendix

In this section, the estimates of the complexity for construction the orthogonal
basis are discussed. We know that the orthogonal basis ψ̃i(t) =

∑i
k=1 βikψk(t)

is obtained by orthogonalization of complete system. The algorithm with time
complexity may be analyzed as following:

Step 1: Computing 〈ψi(t), ψk(t)〉H . In fact, according to the properties of
reproducing kernel and bounded linear operator, we have〈

ψi(t), ψk(t)
〉
H

= Lψi(tk).
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Thus, we only need to calculate the specific function value Lψi(tk) to avoid
the complex integral. In order to calculate the approximate solution yn(t) for

Eq. (3.1), it takes n(n+1)
2 times of computing time of the specific function value.

Step 2: Orthogonalization can be obtained by the following cycle:

(1) Let β11 = 1
‖ψ1‖

(2) Consider 2 ≤ i≤ n. For 1 ≤ j ≤ i− 1, we denote

Cij = 〈ψi, ψ̃j〉H =
〈
ψi,

i∑
k=1

βjkψk

〉
H

=

i∑
k=1

βjk〈ψi, ψk〉H

It needs i(i−1)
2 multiplication operations to compute Cij .

For 1 ≤ m ≤ i− 1, we denote βim = −∑i−1
k=m Cikβkm/‖ψ̃i‖, where

‖ψ̃i‖ =
(
‖ψi‖2 −

i−1∑
k=1

|Cik|2
)1/2

=

(
〈ψi, ψi〉H −

i−1∑
k=1

C2
ik

)1/2

Here (i+2)(i−1)
2 multiplication and division operations are required to com-

pute βim.

The cycle in (2) uses n(n−1)(2n+3)
4 multiplication and division operations.

To sum up, from Step 1 and Step 2 we get that the total orthogonal basis

complexity is given by n(n−1)(2n+3)
4 multiplication and division operations plus

n(n+1)
2 operations for computing the specific function value. Therefore, the

construction of orthogonal basis costs a total of O(n3) operations.
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