MATHEMATICAL MODELLING AND ANALYSIS Volume 17 Number 2, April 2012, 245–250 http://dx.doi.org/10.3846/13926292.2012.662532 © Vilnius Gediminas Technical University, 2012

Zeros of the Lerch Transcendent Function*

Ramūnas Garunkštis and Andrius Grigutis

Vilnius University Naugarduko 24, LT-03225 Vilnius, Lithuania E-mail: ramunas.garunkstis@mif.vu.lt E-mail(corresp.): andrius.grigutis@mif.stud.vu.lt

Received August 29, 2011; revised January 3, 2012; published online April 1, 2012

Abstract. We investigate the distribution of zeros of the Lerch transcendent function $\Phi(q, s, \alpha) = \sum_{n=0}^{\infty} q^n (n+\alpha)^{-s}$. We find an upper and lower estimates of zeros of the function $\Phi(q, s, \alpha)$ in any rectangle $\{s : \sigma_1 < \text{Re } s < \sigma_2 \leq 1.73..., 0 < \text{Im } s \leq T\}$. Further we are interested in a computer calculations concerning the zeros of $\Phi(q, s, \alpha)$ in $\{s : \text{Re } s > 1, 0 < \text{Im } s \leq 1000\}$.

Keywords: polylogarithm, Lerch transcendent, zero distribution.

AMS Subject Classification: 11M41.

1 Introduction

Let $s = \sigma + it$ denotes a complex variable. The Lerch transcendent function is the analytic continuation of the series

$$\varPhi(q,s,\alpha) = \sum_{n=0}^{\infty} q^n (n+\alpha)^{-s},$$

which converges for any real number $\alpha > 0$ if q and s are complex numbers with either |q| < 1, or |q| = 1 and $\sigma > 1$. Here we consider $\Phi(q, s, \alpha)$ as a function of s with the parameters $q \in \mathbb{C}$, $0 < |q| \le 1$, and $0 < \alpha \le 1$. Special cases include the Riemann zeta-function $\zeta(s) = \Phi(1, s, 1)$, the Hurwitz zeta-function $\zeta(s, \alpha) = \Phi(1, s, \alpha)$, the polylogarithm function $Li_s(q) = q\Phi(q, s, 1)$, and the Lerch zeta-function $L(\lambda, \alpha, s) = \Phi(\exp(2\pi i\lambda), s, \alpha)$.

The Riemann zeta-function has no zeros in the right-half-plane $\sigma \geq 1$. In the left-half-plane $\sigma \leq 0$ it has only trivial zeros at even negative integers. The famous Riemann hypothesis (RH) asserts that the remaining, nontrivial, zeros lie on the critical line $\sigma = 1/2$.

The Hurwitz zeta-function $\zeta(s, \alpha)$ has infinitely many zeros in $1 < \sigma < 1 + \alpha$ if α is transcendental or rational $\neq 1/2$, 1 (Davenport and Heilbronn [2]). This

^{*} Supported by grant No. MIP-94 from the Research Council of Lithuania.

result was extended by Cassels [1] for α algebraic irrational. Let $1/2 < \sigma_1 < \sigma_2 < 1$. Then Voronin [16] (for rational $\alpha \neq 1/2, 1$) and Gonek [10] (for transcendental α) proved that the number of zeros of $\zeta(s, \alpha)$ in the rectangle $\sigma_1 < \sigma < \sigma_2, 0 < t < T$ is approximately equal to T for sufficiently large T. Gonek [11] also showed that for certain values of α the proportion of zeros of $\zeta(s, \alpha)$ on $\sigma = 1/2$ is definitely less than 1. In the complex s-plane trajectories of zeros $\rho = \rho(\alpha)$ of the Hurwitz zeta function were considered in [8] and [9]. Based on these trajectories, the classification of nontrivial zeros of the Riemann zeta function were introduced. For the zero distribution of the Lerch zeta-function see [4, 5, 6, 7, 12].

Fornberg and Kölbig [3] investigated trajectories of zeros $\rho = \rho(q)$ of the polylogarithm function $Li_s(q)$ for real q with |q| < 1. They found that some trajectories tend towards the zeros of $\zeta(s)$ as $q \to -1$, and approach these zeros closely as $q \to 1 - \delta$ for small but finite $\delta > 0$. However, the later trajectories appear to descend to the point s = 1 as $\delta \to 0$. Both, for $q \to -1$ and $q \to 1$, there are trajectories which do not tend towards zeros of $\zeta(s)$.

Next we consider the zeros of $\Phi(q, s, \alpha)$ for $0 < \alpha < 1$ and $q \in \mathbb{C}$, 0 < |q| < 1. Let $N_{\Phi}(\sigma_1, \sigma_2, T) = N_{\Phi}(\sigma_1, \sigma_2, T, q, \alpha)$ denote the number of zeros of $\Phi(q, s, \alpha)$ in the region $\{s: \sigma_1 < \operatorname{Re} s < \sigma_2, 0 < \operatorname{Im} s \leq T\}$. Let $\sigma_0 = \sigma_0(q, \alpha)$ be a real number defined by the equality

$$\sum_{n=1}^{\infty} \frac{|q|^n}{(n/\alpha + 1)^{\sigma_0}} = 1.$$

It is easy to see that $\sigma_0 \leq c = 1.73...$, where $\zeta(c) = \sum_{n=1}^{\infty} n^{-c} = 2$, and that σ_0 can take any value between $-\infty$ and c.

Theorem 1. Let $q \in \mathbb{C}$, 0 < |q| < 1. Let $0 < \alpha < 1$ be a transcendental number. Then we have that, for any fixed strip $\sigma_1 < \sigma < \sigma_2 \leq \sigma_0$,

$$T \ll N_{\Phi}(\sigma_1, \sigma_2, T) \ll T$$

and $\Phi(q, s, \alpha)$ has no zeros for $\sigma > \sigma_0$.

The theorem is proved in Section 3.

Wiener and Wintner [17, Section 4] pointed to a possible relationship between the behaviour of the zeros in the right-half-plane $\sigma > 1$ of the polylogarithm function and the Riemann Hypothesis. They proved that the Riemann Hypothesis is true if there exists a number $0 < \varepsilon < 1$ such that $\sum_{n=1}^{\infty} q^n n^{-s} \neq 0$ for $\sigma > 1$ and $1 - \varepsilon < q < 1$. However, Montgomery [13] pointed that the polylogarithm function $Li_s(e^{-1/N})$ has zeros in the region $\sigma > 1$ for all sufficiently large integers N, making Wiener and Winter theorem vacuous. Theorem 1 shows that the Lerch transcendent function $\Phi(q, s, \alpha)$ also has zeros in the region $\sigma > 1$ for 0.92 < q < 1 and transcendental α , $1/2 < \alpha < 1$. In the next section, we try to find explicit zeros in $\sigma > 1$. We see that it is relatively easy to find zeros if $\alpha \neq 1$. In the case $\alpha = 1$ the zeros in the right half-lane, $\sigma > 1$ currently are out of reach.

2 Calculations

The calculations of this section were done with programme MATHEMATICA. To calculate the number N of zeros of $\Phi(q, s, \alpha)$ inside the contour Γ we have used the well known formula

$$N = \frac{1}{2\pi i} \int_{\Gamma} \frac{(\Phi(q, s, \alpha))'_s}{\Phi(q, s, \alpha)} \, ds.$$

If the interior of the contour Γ contains one zero ρ , then we find this zero using the following expression

$$\rho = \frac{1}{2\pi i} \int_{\Gamma} s \frac{(\varPhi(q, s, \alpha))'_s}{\varPhi(q, s, \alpha)} \, ds.$$

The zero ρ can be adjusted by MATHEMATICA command *FindRoot*.

Let $R = \{s: \operatorname{Re} s > 1, 0 < \operatorname{Im} s \leq 1000\}$. In Table 1, we present the number of zeros of function $\Phi(q, s, \alpha)$ for chosen q and α in the region R. For example, we see that $\Phi(0.99, s, 0.9)$ has 34 zeros in R. In Table 1, the last column describes zeros of the Hurwitz zeta-function, and the last row describes zeros of the polylogarithm function. In view of Montgomery's result [13] we expect that $\Phi(q, s, 1)$ has zeros in $\sigma > 1$ for $q \geq 0.9$. If so, then Table 1 possibly indicates the different behaviour of zeros of $\Phi(q, s, \alpha)$ in $\sigma > 1$ dependently on $\alpha = 1$ or $\alpha \neq 1$.

$\alpha \setminus \mathbf{q}$	0.9	0.95	0.99	1
0.9	2	8	34	40
0.95	4	10	37	46
0.99	14	27	41	45
1	0	0	0	0

Table 1. Number of zeros of the function $\Phi(q, s, \alpha)$ in the region R.

In Table 2, we present zeros of functions $\Phi(0.9, s, 0.9)$, $\Phi(0.9, s, 0.95)$, $\Phi(0.9, s, 0.99)$. In this table numbers were rounded up to two decimal places.

3 Proof of Theorem 1

First we formulate theorems of Kronecker and Rouché (see Tichmarsh [15, Section 8.3] and Tichmarsh [14, Section 3.42]).

Lemma 1 [Kronecker's theorem]. Let a_1, a_2, \ldots, a_N be linearly independent real numbers, i.e. numbers such that relation $\lambda_1 a_1 + \cdots + \lambda_N a_N = 0$ is possible only if $\lambda_1 = \cdots = \lambda_N = 0$. Let b_1, \ldots, b_N be any real numbers, and ε a given positive number. Then we can find a number t and integers x_1, \ldots, x_N such that $|ta_n - b_n - x_n| < \varepsilon$, $n = 1, \ldots, N$.

	$\varPhi(0.9,s,0.9)$	$\varPhi(0.9,s,0.95)$	$\varPhi(0.9,s,0.99)$
1	1.02 + 550.55i	1.07 + 108.39i	1.05 + 480.29i
2	1.02 + 609.75i	1.01 + 135.21i	1.11 + 525.79i
3	-	1.09 + 169.68i	1.08 + 588.57i
4	-	1.07 + 196.67i	1.06 + 616.03i
5	-	_	1.11 + 651.27i
6	-	_	1.11 + 696.71i
7	-	-	1.13 + 724.38i
8	-	_	1.05 + 759.64i
9	-	_	1.15 + 787.05i
10	-	_	1.02 + 805.00i
11	-	-	1.12 + 849.96i
12	-	-	1.17 + 895.31i
13	-	-	1.09 + 958.10i
14	_	_	1.00 + 985.50i
_			

Table 2. Coordinates of zeros of the function $\Phi(q, s, \alpha)$ in the region R.

Lemma 2 [Rouché's theorem]. Suppose that f(s) and g(s) are analytic functions inside and on a regular closed curve γ , and that |f(s)| > |g(s)| for all $s \in \gamma$. Then f(s) + g(s) and f(s) have the same number of zeros inside γ .

The next lemma will be useful in the proof of Theorem 1.

Lemma 3. Let $q \in \mathbb{C}$, 0 < |q| < 1, and $0 < \alpha < 1$ be a transcendental number. Let σ' be a real number. Let a(n) be a sequence of complex numbers such that |a(n)| = 1. Let $\Phi_a(q, s, \alpha) = \sum_{n=0}^{\infty} a(n)q^n(n+\alpha)^{-s}$. Then for any $\varepsilon > 0$ there exist $\tau \in \mathbb{R}$ such that

$$\left|\Phi(q,s+i\tau,\alpha) - \Phi_a(q,s,\alpha)\right| < \varepsilon$$

for $\operatorname{Re} s \geq \sigma'$.

Proof. The Dirichlet series of the Lerch transcendent function converges absolutely for any s if |q| < 1. Therefore, for given σ' there is a positive integer N such that, for any real number u and $\sigma \geq \sigma'$,

$$\left|\sum_{n=N+1}^{\infty} \frac{q^n}{(n+\alpha)^{s+iu}} - \sum_{n=N+1}^{\infty} \frac{q^n a(n)}{(n+\alpha)^s}\right| \le 2\sum_{n=N+1}^{\infty} \frac{|q|^n}{(n+\alpha)^{\sigma}} < \frac{\varepsilon}{2}.$$
 (3.1)

Let $A = \sum_{n=0}^{N} |q|^n / (n+\alpha)^{\sigma'}$. There is a sequence of real numbers b(n) such that $e^{-2\pi i b(n)} = a(n)$. The numbers $\log(n+\alpha)$ are linearly independent over \mathbb{Q} since α is the transcendental number. By Kronecker's theorem (Lemma 1), there exist a real number τ and integers x_n such that

$$\left|\frac{\tau \log(n+\alpha)}{2\pi} - b(n) - x_n\right| < \frac{\varepsilon}{8\pi A}.$$

In view of the inequality $|e^z - 1| \le 2|z|$, where |z| < 1, we obtain

$$|(n+\alpha)^{-i\tau} - a(n)| = |e^{-2\pi i(\tau \log(n+\alpha)/2\pi - b(n) - x_n)} - 1| < \frac{\varepsilon}{2A}$$

By above we see that there is τ such that, for $\operatorname{Re} s \geq \sigma'$,

$$\left|\sum_{n=0}^{N} \frac{q^{n}}{(n+\alpha)^{s+i\tau}} - \sum_{n=0}^{N} \frac{q^{n}a(n)}{(n+\alpha)^{s}}\right| \le \sum_{n=0}^{N} \frac{|q|^{n}}{(n+\alpha)^{\sigma'}} \left| (n+\alpha)^{-i\tau} - a(n) \right| < \frac{\varepsilon}{2}.$$

This and inequality (3.1) in view of triangle inequality, prove Lemma 3. \Box

Proof of Theorem 1. For fixed q and α the function $\Phi(q, s, \alpha)$ is bounded in any right half-plane, of complex numbers. This together with Theorem 9.62 of Titchmarsh [14] give the bound

$$N_{\Phi}(\sigma_1, \sigma_2, T) \ll T.$$

Further, if the strip $\sigma_1 < \sigma < \sigma_2$ contains a zero of $\Phi(q, s, \alpha)$ then, arguing as in Lemma 1 of [4], we get the bound

$$N_{\Phi}(\sigma_1, \sigma_2, T) \gg T$$

Next we will show that the function $\Phi(q, s, \alpha)$ has a zero in the strip $\sigma_1 < \sigma < \sigma_2$. We consider an auxiliary function $\Phi_a(q, \sigma, \alpha) = \sum_{n=0}^{\infty} a(n)q^n(n+\alpha)^{-\sigma}$. For fixed σ , q and α , let V be a set of values taken by $\Phi_a(q, \sigma, \alpha)$ for independent $a(0), a(1), \ldots$, where $a(n) \in \mathbb{C}$ and |a(n)| = 1. If $\sigma < \sigma_0$, then by Tichmarsh [15, Section 11.5, p. 297] we see that

$$V = \left\{ z \colon |z| \le \sum_{n=0}^{\infty} |q|^n (n+\alpha)^{-\sigma} \right\}.$$

Thus for $\sigma_1 < \sigma' < \sigma_2$, q, and α there is a sequence $a(1), a(2), \ldots$, such that $\Phi_a(q, \sigma', \alpha) = 0$.

Let $0 < \varepsilon' < \min(\sigma' - \sigma_1, \sigma_2 - \sigma')$ be such that $\Phi_a(q, s, \alpha) \neq 0$ for $|s - \sigma'| = \varepsilon'$. Let

$$\varepsilon = \min_{|s-\sigma'|=\varepsilon'} |\Phi_a(q,s,\alpha)|.$$

By Lemma 3 there is a real shift τ such that

$$\left|\Phi(q,s+i\tau,\alpha) - \Phi_a(q,s,\alpha)\right| < \varepsilon$$

for $\operatorname{Re} s \geq \sigma_1$. Hence Rouché's theorem gives that $\Phi(q, s, \alpha)$ has a zero in the disk $|s - \sigma' - i\tau| < \varepsilon'$, which is contained in the strip $\sigma_1 < \sigma < \sigma_2$. By this Theorem 1 is proved. \Box

4 Conclusions

Let 0 < q < 1 and $1/2 < \alpha \leq 1$. We expect that the Lerch transcendent function $\Phi(q, s, \alpha)$ has zeros in Res > 1, if q is sufficiently near to 1. For $\alpha = 1$ this is due to Montgomery [13]. Here we prove the case when α is a transcendental number. However, computer calculations indicate the different behaviour of zeros of $\Phi(q, s, \alpha)$ in Res > 1 dependently on $\alpha = 1$ or $\alpha \neq 1$.

References

- J.W.S. Cassels. Footnote to a note of Davenport and Heillbronn. J. London Math. Soc., 36:177–184, 1961. http://dx.doi.org/10.1112/jlms/s1-36.1.177.
- [2] H. Davenport and H. Heillbronn. On the zeros of certain Dirichlet series I, II. J. London Math. Soc., 11:111–115, 307–312, 1936.
- [3] B. Fornberg and K.S. Kölbig. Complex zeros of the Jonquiere or polylogarithm function. *Math. Comput.*, 29:582–599, 1975.
- [4] R. Garunkštis. On zeros of the Lerch zeta-function. II. In B. Grigelionis et al.(Ed.), Probability Theory and Mathematical Statistics, Proceedings of the Seventh Vilnius Conf. 1998, pp. 267–276. TEV/Vilnius, VSP/Utrecht, 1999.
- [5] R. Garunkštis. On zeros of the Lerch zeta-function. III. Liet. Matem. Rink., supl.:24–30, 1999.
- [6] R. Garunkštis and A. Laurinčikas. On zeros of the Lerch zeta-function. In S. Kanemitsu and K. Győry(Eds.), *Number Theory and Its Applications*, pp. 129–143. Kluwer Academic Publishers, 1999.
- [7] R. Garunkštis and J. Steuding. On the zero distributions of Lerch zeta-functions. Analysis, 22:1–12, 2002.
- [8] R. Garunkštis and J. Steuding. On the distribution of zeros of the Hurwitz zetafunction. Math. Comput., 76:323–337, 2007. http://dx.doi.org/10.1090/S0025-5718-06-01882-5.
- [9] R. Garunkštis and J. Steuding. Questions around the nontrivial zeros of the Riemann zeta-function – computations and classifications. *Math. Model. Anal.*, 16(1):72–81, 2011. http://dx.doi.org/10.3846/13926292.2011.560616.
- [10] S.M. Gonek. Analytic properties of zeta and L-functions. PhD thesis, University of Michigan, 1979.
- [11] S.M. Gonek. The zeros of Hurwitz's zeta-function on σ = 1/2. In Analytic Number Theory, Proc. Conf., Temple Univ./Phila. 1980, volume 899 of Lect. Notes Math., pp. 129–140, 1981.
- [12] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer Academic Publishers, 2002.
- [13] H.L. Montgomery. Zeros of approximations to the zeta function. In Stud. Pure Math., pp. 497–506. Birkhäuser, Basel, 1983.
- [14] E.C. Titchmarsh. The Theory of Functions. Oxford, 1939.
- [15] E.C. Titchmarsh. The Theory of the Riemann Zeta-Function. Oxford, 1951.
- [16] S.M. Voronin. Analytical properties of the Dirichlet generating series of arithmetical objects. PhD thesis, Moskow, 1977. (in Russian)
- [17] N. Wiener and A. Wintner. Notes on Pólya's and Turán's hypotheses concerning Liouville's factor. *Rend. Circ. Mat. Palermo*, 6(2):240–248, 1957. http://dx.doi.org/10.1007/BF02843849.