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Abstract. In 1975, S.M. Voronin proved that the Riemann zeta-function ζ(s) is
universal in the sense that its shifts approximate uniformly on some sets any analytic
function. Let h be a fixed positive number such that exp{ 2πk

h
} is irrational for all

k ∈ Z\{0}. In the paper, the classes of functions F such that the shifts F (ζ(s+imh)),
m ∈ N ∪ {0}, approximate any analytic function are presented. For the proof of
theorems, some elements of the space of analytic functions are applied.
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1 Introduction

Let s = σ + it denote a complex variable. The Riemann zeta-function ζ(s) is
defined, for σ > 1, by the Dirichlet series

ζ(s) =

∞∑
m=1

1

ms
,

and is analytically continuable to the whole complex plane, except for a simple
pole at s = 1 with residue 1. Moreover, the function ζ(s), for σ > 1, can be
written as the Euler product over primes, namely,

ζ(s) =
∏
p

(
1− 1

ps

)−1

.

In 1975, S.M. Voronin discovered [11] a remarkable universality property of the
function ζ(s). Roughly speaking, he proved that every analytic function can
be approximated with a given accuracy uniformly on some sets of the strip
D = {s ∈ C : 1

2 < σ < 1} by shifts ζ(s + iτ), τ ∈ R. A modern version of the
Voronin theorem has the following form [6]. We will denote by meas{A} the
Lebesgue measure of a measurable set A ⊂ R.
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Theorem 1. Suppose that K is a compact subset of the strip D with connected
complement, and f(s) is a continuous non-vanishing function on K which is
analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣ζ(s+ iτ)− f(s)
∣∣ < ε

}
> 0.

The inequality of Theorem 1 shows that the set of shifts ζ(s+ iτ) approx-
imating a given analytic function is sufficiently wide: it has a positive lower
density.

A. Reich observed [9], see also [10], that another, discrete, universality of
the function ζ(s) is possible. In this case, τ in the shifts ζ(s+ iτ) runs not the
interval [0, T ] but some discrete set, for example, takes values in an arithmetic
progression.

Let h > 0 be a fixed number. We will limit ourselves by the case when the
number exp{ 2πkh } is irrational for all k ∈ Z \ {0}.
Theorem 2. Let the set K and function f(s) satisfy the hypotheses of Theo-
rem 1. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
"
{
0 ≤ m ≤ N : sup

s∈K

∣∣ζ(s+ imh)− f(s)
∣∣ < ε

}
> 0.

Theorem 2 under stronger hypotheses on the set K has been obtained in [2],
however, it is easy to replace these hypotheses by those of Theorem 2.

The initial Voronin’s proof of the universality theorem for the Riemann zeta-
function is based on the analogue of the Riemann theorem on rearrangement of
terms in series in Hilbert space [8]. Also, another approach using probabilistic
limit theorems in the space of analytic functions for the proof of universality
theorems is known [2, 6, 10]. Both these approaches are examples of application
of functional analysis.

It is not difficult to see that some functions of ζ(s) also preserve the uni-
versality property. Define log ζ(s) in the strip D by continuous variation from
log ζ(2) ∈ R along the line segments [2, 2+ it] and [2 + it, σ+ it] provided that
the path does not pass a possible zero or pole s = 1. If this does, then we take

log ζ(σ + it) = lim
ε→+0

log ζ
(
σ + i(t+ ε)

)
.

Then Theorems 1 and 2 hold for log ζ(s), however, in this case, the require-
ment that f(s) is non-vanishing on K is not needed. By the way, in [1], the
universality for the function ζ(s) is derived from that of log ζ(s). Also, a sim-
ple application of the integral Cauchy formula leads to the universality of the
derivative ζ ′(s) with the same remark on the non-vanishing of an approximated
function. Therefore, a problem arises to describe some classes of functions F
such that the composite function F (ζ(s)) remains universal in the above sense.
In the case of Theorem 1, this was done in [7]. The aim of this paper is to
prove that the propery of discrete universality is valid for composite functions
F (ζ(s)).

Let G be a region on the complex plane. Let denote by H(G) the space of
analytic functions on G equipped with the topology of uniform convergence on
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compacta. The space H(G) is metrizable. It is well known, see, for example,
[4], that there exists a sequence of compact subsets {Kl : l ∈ N} ⊂ G such that
G =

⋃∞
l=1 Kl, Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ G is a compact subset, then

K ⊂ Kl for some l ∈ N. Define

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)| , g1, g2 ∈ H(G).

Then ρ is a metric in the space H(G) which induces the topology of uniform
convergence on compacta. Let

S =
{
g ∈ H(D) : g−1(s) ∈ H(D) or g(s) ≡ 0

}
.

Let denote by U the class of continuous functions F : H(D) → H(D) such
that, for every open set G ⊂ H(D), the intersection (F−1G)∩ S is non-empty.

Theorem 3. Suppose that the number exp{ 2πkh } is irrational for all k ∈ Z\{0},
and that F ∈ U . Let K ⊂ D be a compact subset with connected complement,
and f(s) be a continuous function on K and analytic in the interior of K.
Then, for every ε > 0,

lim inf
N→∞

1

N + 1
"
{
0 ≤ m ≤ N : sup

s∈K

∣∣F (ζ(s+ imh)
)− f(s)

∣∣ < ε
}

> 0.

We note, that the statement of Theorem 3 is theoretical, it is difficult to check
the hypothesis of the class U . We will give a simplification of the class U . Let
denote by U1 the class of continuous functions F : H(D) → H(D) such that,
for each polynomial p = p(s), the intersection (F−1{p}) ∩ S is non-empty.

Theorem 4. Suppose that the number h, set K and function f(s) satisfy the
hypotheses of Theorem 3, and that F ∈ U1. Then the assertion of Theorem 3
is true.

The condition of the class U1 is related to the non-vanishing of the preimage
F−1{p} for each polynomial p. Obviously, if the absolute value of the constant
term of a polynomial is sufficiently large, then this polynomial has no roots
in a bounded region. This observation leads to the following simplification of
Theorem 4.

Let V be an arbitrary positive number. Define

DV =
{
s ∈ C : 1/2 < σ < 1, |t| < V

}
and SV =

{
g ∈ H(DV ) : g

−1(s) ∈ H(DV ) or g(s) ≡ 0
}
. Let consider the

class U1,V of continuous functions F : H(DV ) → H(DV ) such that, for each
polynomial p = p(s), the intersection (F−1{p}) ∩ SV is non-empty.

Theorem 5. Suppose that the number h, set K and function f(s) satisfy the
hypotheses of Theorem 3, and V > 0 is such that K ⊂ DV . If F ∈ U1,V , then
the assertion of Theorem 3 is true.

Math. Model. Anal., 17(2):271–280, 2012.
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We give an example. Let

F (g) = c1g
′ + · · ·+ crg

(r), g ∈ H(DV ), c1, . . . , cr ∈ C \ {0}.
In view of the integral Cauchy formula, the function F is continuous. Moreover,
it is easy to check that, for every polynomial p = p(s), there exists a polynomial
q = q(s) such that q ∈ F−1{p} and q(s) �= 0 for s ∈ DV . Then, by Theorem 5,
the function c1ζ

′(s) + · · ·+ crζ
(r)(s) is universal in the sense of Theorem 3.

Let define one more class of continuous functions F : H(D) → H(D). For
a1, . . . , ar ∈ C, let

HF (0);a1,...,ar
(D) =

{
g ∈ H(D) : (g(s)−aj)

−1 ∈ H(D), j = 1, . . . , r
}∪{F (0)

}
.

Let denote by Ua1,...,ar
the class of continuous functions F : H(D) → H(D)

such that F (S) ⊃ HF (0);a1,...,ar
(D).

Theorem 6. Suppose that F ∈ Ua1,...,ar
, and that the number h satisfies the

hypothesis of Theorem 3. For r = 1, let the set K satisfy the hypotheses of
Theorem 3, and the function f(s) be continuous and �= a1 on K, and analytic
in the interior of K. For r ≥ 2, let K be an arbitrary compact subset of D,
and f(s) ∈ HF (0);a1,...,ar

(D). Then the assertion of Theorem 3 is true.

It follows from Theorem 6 that, for the functions ζN (s), N ∈ N, (r = 1,
a1 = 0) and sin(ζ(s)), cos(ζ(s)), sinh(ζ(s)), cosh(ζ(s)), (r = 2, a1 = −1,
a2 = 1) the assertion of Theorem 3 holds.

2 Limit Theorems

In this section, we present probabilistic limit theorems which are applied for
the proof of universality. Let B(X) be the class of Borel sets of the space X
and let define

Ω =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} for all primes p. By the Tikhonov theorem, the
infinite-dimensional torus Ω with the product topology and pointwise multipli-
cation is a compact topological Abelian group. Therefore, on (Ω,B(Ω)), the
unique probability Haar measure mH exists. This gives the probability space
(Ω,B(Ω),mH). Let denote by ω(p) the projection of ω ∈ Ω to the coordinate
space γp, and on (Ω,B(Ω),mH), define the H(D) – valued random element
ζ(s, ω) by the formula

ζ(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

.

We note that the latter product, for almost all ω ∈ Ω with respect to the
measure mH , converges uniformly on compact subsets of the strip D. All
above statements can be found in [6]. Let Pζ be the distribution of the random
element ζ(s, ω), i.e.,

Pζ(A) = mH

(
ω ∈ Ω : ζ(s, ω) ∈ A

)
, A ∈ B

(
H(D)

)
.



On Discrete Universality of Composite Functions 275

Lemma 1. Suppose that the number exp{ 2πkh } is irrational for all k ∈ Z \ {0}.
Then the probability measure

PN (A)
def
=

1

N + 1
"
{
0 ≤ m ≤ N : ζ(s+ imh) ∈ A

}
, A ∈ B

(
H(D)

)
converges weakly to Pζ as N →∞.

Proof. The assertion of the lemma is known, however, its direct proof is not
fixed in literature. The proof runs with obvious changes in the same way as
that of a continuous limit theorem [6] for the measure

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ) ∈ A

}
, A ∈ B

(
H(D)

)
,

as T →∞. On the other hand, Lemma 1 is a corollary of an analogous theorem
from [5] obtained for the Matsumoto zeta-function, since the Riemann zeta-
function is a particular case of the Matsumoto zeta-function. �	

In the sequel, we will use several times the following well-known fact. Let
X1 and X2 be two metric spaces, and u : X1 → X2 be a (B(X1),B(X2))
– measurable function. Then every probability measure P on (X1,B(X1))
induces on (X2,B(X2)) the unique probability measure Pu−1 defined by the
formula

Pu−1(A) = P
(
u−1A

)
, A ∈ B(X2).

Lemma 2. Let Pn, n ∈ N, and P be probability measures on (X1,B(X1)), and
u : X1 → X2 be a continuous function. Suppose that Pn converges weakly to P
as n→∞. Then Pnu

−1 also converges weakly to Pu−1 as n→∞.

The lemma is a particular case of Theorem 5.1 from [3].

Lemma 3. Suppose that F : H(D)→ H(D) is a continuous function, and that
the number h is the same as in Lemma 1. Then the probability measure

PN,F (A)
def
=

1

N + 1
"
{
0 ≤ m ≤ N : F

(
ζ(s+ imh)

) ∈ A
}
, A ∈ B

(
H(D)

)
,

converges weakly to the distribution of the random element F (ζ(s, ω)) as
N →∞.

Proof. The lemma is an immediate corollary of Lemmas 1 and 2. Really, we
have that PN,F = PNF−1. Since the function F is continuous, Lemmas 1
and 2 imply the weak convergence of the measure PN,F to PζF

−1 as N →∞.
However, since

PζF
−1(A) = Pζ(F

−1A) = mH

(
ω ∈ Ω : ζ(s, ω) ∈ F−1A

)
= mH

(
ω ∈ Ω : F

(
ζ(s, ω)

) ∈ A
)
, A ∈ B

(
H(D)

)
,

PζF
−1 is the distribution of the random element F (ζ(s, ω)). �	

For V > 0, we denote by PN,V and Pζ,V the restrictions to the space
(H(DV ),B(H(DV ))) for the measures PN and Pζ , respectively.

Math. Model. Anal., 17(2):271–280, 2012.
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Lemma 4. For every V > 0, the measure PN,V converges weakly to Pζ,V as
N →∞.

Proof. Obviously, the function u : H(D) → H(DV ) given by the formula
u(g(s)) = g(s)|s∈DV

, g ∈ H(D), is continuous. Therefore, the lemma follows
from Lemmas 1 and 2. �	

Lemma 5. Suppose that the function F : H(DV ) → H(DV ) is continuous.
Then the probability measure

PT,F,V (A)
def
=

1

N + 1
"
{
0 ≤ m ≤ N : F

(
ζ(s+ imh)

) ∈ A
}
, A ∈ B

(
H(DV )

)
,

converges weakly to the distribution of the random element F (ζV (s, ω)).

Proof. We use Lemmas 2 and 4, and repeat the proof of Lemma 3. �	

3 Supports

In this section, we discuss the supports of the limit measures in limit theorems
of Section 2. For this, we will use the properties of the classes U , U1, U1,V and
Ua1,...,ar

. We remind that if X is a separable metric space, and P is a probabil-
ity measure on (X,B(X)), then a minimal closed set SP such that P (SP ) = 1
is called the support of the measure P . The support of the distribution of a
random element is called the support of that element.

Lemma 6. The support of the random element ζ(s, ω) is the set S.

Proof of the lemma is given in [6, Lemma 6.5.5].

Lemma 7. The support of the random element ζV (s, ω) is the set SV .

Proof of the lemma completely coincides with that of Lemma 6.

Lemma 8. Suppose that F ∈ U . Then the support of the random element
F (ζ(s, ω)) is the whole of H(D).

Proof. Let g be arbitrary element of H(D), and G be an open neighbourhood
of g. Since the function F is continuous, the set F−1G is open as well. More-
over, by the definition of the class U , there exists an element g1 ∈ S which
is also an element of F−1G. Thus, F−1G is an open neighbourhood of the
element g1. However, the support of the random element ζ(s, ω) consists of all
elements g1 such that, for every open neighbourhood G1 of g1, the inequality
Pζ(G1) > 0 is satisfied. Therefore, by Lemma 6,

mH

(
ω ∈ Ω : F

(
ζ(s, ω)

) ∈ G
)
= mH

(
ω ∈ Ω : ζ(s, ω) ∈ F−1G

)
> 0.

Since g and G are arbitrary, this proves the lemma. �	

For the investigation of supports of other random elements, we will apply the
Mergelyan theorem on the approximation of analytic functions by polynomials.



On Discrete Universality of Composite Functions 277

Lemma 9. Let K ⊂ C be a compact subset with connected complement, and
let f(s) be a continuous function on K which is analytic in the interior of K.
Then, for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K

∣∣f(s)− p(s)
∣∣ < ε.

Proof of the lemma can be found in [7, 12].

Lemma 10. Suppose that F ∈ U1. Then the support of the random element
F (ζ(s, ω)) is the whole of H(D).

Proof. We will prove that F ∈ U . Then the lemma will follow from
Lemma 8. �	

Let ε be an arbitrary fixed number. We fix l0 ∈ N such that∑
l>l0

2−l <
ε

2
. (3.1)

Let {Kl : l ∈ N} be a sequence of compact subsets of D which occur in the
definition of the metric in the space H(D). Suppose that, for f, g ∈ H(D),

sup
s∈Kl0

∣∣f(s)− g(s)
∣∣ < ε

2
.

Then, in view of the relation Kl ⊂ Kl+1, l ∈ N, we find that

sup
s∈Kl

∣∣f(s)− g(s)
∣∣ < ε

2

for all l = 1, . . . , l0. Thus, in view of (3.1),

ρ(f, g) ≤
l0∑
l=1

2−l sups∈Kl
|f(s)− g(s)|

1 + sups∈Kl
|f(s)− g(s)| +

∑
l>l0

2−l < ε.

This shows that, in the space H(D), the function g approximates a function f
with a given accuracy if g approximates f with a suitable accuracy uniformly
on Kl for sufficiently large l. Clearly, the sets Kl can be chosen to be with
connected complements. Therefore, in the space H(D), we can limit ourselves
by uniform approximation on compact subsets with connected complements.

Let g be an arbitrary element of H(D), and G be an open neighbourhood
of g. Then F−1G is also an open set. We will prove that the set (F−1G) ∩ S
is non-empty.

Let K ⊂ D be a compact subset with connected complement. Then, by
Lemma 9, there exists a polynomial p = p(s) which approximates the function
g uniformly on K with desired accuracy. Therefore, since g ∈ G, we may
assume that p ∈ G, too. Since F ∈ U1, we have that (F−1{p})∩S �= ∅. Thus,
(F−1G) ∩ S �= ∅, and the lemma follows from Lemma 8.

Math. Model. Anal., 17(2):271–280, 2012.
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Lemma 11. Suppose that F ∈ U1,V . Then the support of the random element
F (ζV (s, ω)) is the whole of H(DV ).

Proof. Let g be an arbitrary element of H(DV ), and G is an open neigh-
bourhood of g. Then the set F−1G is open as well. Repeating the proof of
Lemma 10, we obtain that (F−1G)∩SV �= ∅. Therefore, there exists an element
g1 ∈ SV which also belongs to F−1G. Thus, F−1G is an open neighbourhood
of the element g1. Hence, using Lemma 7, we have that

mH

(
ω ∈ Ω : F

(
ζV (s, ω)

) ∈ G
)
= mH

(
ω ∈ Ω : ζV (s, ω) ∈ F−1G

)
> 0,

and the lemma is proved. �	

Lemma 12. Suppose that F ∈ Ua1,...,ar
. Then the support of the random ele-

ment F (ζ(s, ω)) contains the closure of the set HF (0);a1,...,ar
(D).

Proof. By the definition of the class Ua1,...,ar
, we have that, for each element

h ∈ HF (0);a1,...,ar
(D), there exists an element g ∈ S such that F (g) = h.

Therefore, for every open neighbourhood G of h, in view of Lemma 6,

mH

(
ω ∈ Ω : F

(
ζ(s, ω)

) ∈ G
)
= mH

(
ω ∈ Ω : ζ(s, ω) ∈ F−1G

)
> 0.

This shows that h is an element of the support of random element F (ζ(s, ω)).
Hence, it follows that the set HF (0);a1,...,ar

(D) and its closure is a subset of the
support of F (ζ(s, ω)). �	

4 Proof of the Theorems

Proof of Theorems 3–6 uses the corresponding limit theorems, explicit forms
of supports of the limit measures in them, and Lemma 9.

First we remind an equivalent of the weak convergence of probability mea-
sures in terms of open sets.

Lemma 13. Let Pn, n ∈ N, and P be probability measures on (X,B(X)).
Then Pn converges weakly to P as n → ∞ if and only if, for every open set
G ⊂ X,

lim inf
n→∞ Pn(G) ≥ P (G).

The lemma is a part of Theorem 2.1 from [3].

Proof of Theorem 3. By Lemma 9, there exists a polynomial p(s) such that

sup
s∈K

∣∣f(s)− p(s)
∣∣ < ε

2
. (4.1)

Define the set

G =

{
g ∈ H(D) : sup

s∈K

∣∣p(s)− g(s)
∣∣ < ε

2

}
.
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Let denote by Pζ,F the distribution of the random element F (ζ(s, ω)). Since
the set G is open, Lemmas 3 and 13 imply the inequality

lim inf
N→∞

1

N + 1
"
{
0 ≤ m ≤ N : F

(
ζ(s+ imh)

) ∈ G
} ≥ Pζ,F (G). (4.2)

In virtue of Lemma 8, the polynomial p(s) is an element of the support of the
random element F (ζ(s, ω)). Since G is an open neighbourhood of the polyno-
mial p(s), the properties of the support imply the inequality Pζ,F (G) > 0. This
together with (4.2) shows that

lim inf
N→∞

1

N + 1
"

{
0 ≤ m ≤ N : sup

s∈K

∣∣F (ζ(s+ imh)
)− p(s)

∣∣ < ε

2

}
> 0.

Hence and from (4.1) the theorem follows. �	

Proof of Theorem 4. We repeat the arguments of the proof of Theorem 3, and
in place of Lemma 8 we apply Lemma 10. �	

Proof of Theorem 5. We argue with obvious changes similarly to the proof of
Theorem 3, and in place of Lemmas 3 and 8 we use Lemmas 4 and 11. �	

Proof of Theorem 6. We begin with the case r = 1. Using Lemma 9, we fix a
polynomial p(s) such that

sup
s∈K

∣∣f(s)− p(s)
∣∣ < ε

4
. (4.3)

Since f(s) �= a1 on K, we have that p(s) �= a1 on K as well if ε is small enough.
Thus, we can define a continuous branch of log(p(s) − a1) which will be an
analytic function in the interior of K. Again, in view of Lemma 9, there exists
a polynomial p1(s) such that

sup
s∈K

∣∣p(s)− a1 − ep1(s)
∣∣ < ε

4
. (4.4)

For brevity, we put ha1(s) = ep1(s) + a1. Then we have that ha1 ∈ H(D) and,
obviously, ha1

(s) �= a1. Therefore, by Lemma 12, ha1
(s) is an element of the

support of the random element F (ζ(s, ω)). Moreover, the inequalities (4.3) and
(4.4) imply that

sup
s∈K

∣∣f(s)− ha1
(s)
∣∣ < ε

2
. (4.5)

Let define the set

G1 =

{
g ∈ H(D) : sup

s∈K

∣∣ha1
(s)− g(s)

∣∣ < ε

2

}
.

Then Pζ,F (G) > 0, thus, by Lemmas 3 and 13,

lim inf
T→∞

1

N + 1
"

{
0 ≤ m ≤ N : sup

s∈K

∣∣F (ζ(s+ imh)
)− ha1(s)

∣∣ < ε

2

}
> 0.

Math. Model. Anal., 17(2):271–280, 2012.
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This and (4.5) give the assertion of the theorem.
Now let r ≥ 2. Define the set

G2 =
{
g ∈ H(D) : sup

s∈K

∣∣f(s)− g(s)
∣∣ < ε

}
.

Since f(s) ∈ HF (0);a1,...,ar
(D), Lemma 12 shows that f(s) is an element of the

support of the random element F (ζ(s, ω)), i.e., is an element of the support of
the measure Pζ,F . Since G2 is an open set, hence we have that Pζ,F (G) > 0.
Therefore, Lemmas 3 and 13 give the inequality

lim inf
N→∞

1

N + 1
"
{
0 ≤ m ≤ N : sup

s∈K

∣∣F (ζ(s+ imh)
)− f(s)

∣∣ < ε
}
≥ Pζ,F (G2) > 0.

The theorem is proved. �	
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