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Abstract. We describe an algorithm for computing a large number of coefficients in
the asymptotic expansion of the median of the Erlang distribution. In particular, in
this paper we present the values of the first sixty coefficients which allow us to assess
the importance of the higher-order terms in the behavior of the partial sums of that
asymptotic expansion. As a consequence, we provide tight bounds for the median
of the Erlang distribution and we also see that a conjecture concerning the complete
monotonicity of a sequence of medians of the Erlang distributions is supported by
numerical results.
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1 Introduction

For any n = 0, 1, 2, . . ., let Xn be a random variable having the Erlang distribu-
tion with shape parameter n+1 and scale parameter 1, that is, its cumulative
distribution function Fn(x) := P (Xn ≤ x) is given by

Fn(x) =
1

n!

∫ x

0

tne−t dt, x ≥ 0.

The median of Xn, hereafter denoted by λn, is defined as the unique solution
of the equation Fn(λn) = 1/2. Analytical solutions of this equation are known
only for the simplest cases n = 0 and n = 1. For the former case, it is trivial
that λ0 = log 2, and, for the latter case, Jiménez and Jodrá [11] have shown
that λ1 = −W−1(−1/2e) − 1, where W−1 denotes the negative branch of the
Lambert W function. Accordingly, over the last two decades several authors
have given upper and lower bounds for λn, instead of analytical solutions,
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and, in this respect, tight bounds for λn have been obtained by considering
appropriate partial sums of the asymptotic expansion of λn.

In 1986, Chen and Rubin [7] conjectured the following bounds for the me-
dian of Xn: n+ 2/3 < λn ≤ n+ log 2, for n = 0, 1, 2, . . . . Choi [9] proved this
conjecture by showing that

n+
2

3
< λn ≤ min

(
n+ log 2, n+

2

3
+

1

2n+ 2

)
, n = 0, 1, 2, . . . .

These bounds were subsequently improved by Adell and Jodrá [1], namely,

n+
2

3
+

8

405n
− 64

5103n2
< λn < n+

2

3
+

8

405n
, n = 1, 2, . . . . (1.1)

It is interesting to note that the bounds in Eq. (1.1) are partial sums of the
asymptotic expansion of λn, and, in this regard, Choi [9] deduced the first four
coefficients in that expansion

λn = n+
2

3
+

8

405n
− 64

5103n2
+

2944

492075n3
+O

(
1

n4

)
. (1.2)

Throughout this paper, for integers j ≥ 0 we denote by qj the coefficient of
n−j in the asymptotic expansion of λn, i.e., λn = n+

∑∞
j=0 qj/n

j , where it is
understood that q0 := 2/3.

In order to obtain formula (1.2), Choi established a relation between the
median of Xn and a sequence {θn}n≥0 introduced by Ramanujan [13] in 1911
(cf. also Ramanujan [14]) and defined as the solution of the equation

θn =
n!

nn

(
en

2
−

n−1∑
k=0

nk

k!

)
, n = 1, 2, . . . ,

and setting θ0 = 1/2. More precisely, Choi [9] pointed out the following relation
between θn and λn

1− θn =
en

nn

∫ λn

n

tne−t dt, n = 1, 2, . . . , (1.3)

and he deduced formula (1.2) by considering an asymptotic expansion of θn
on the left-hand side of Eq. (1.3). Asymptotic expansions of θn have been
obtained by several authors, beginning with Ramanujan [13] who gave the first
four terms

θn =
1

3
+

4

135n
− 8

2835n2
− 16

8505n3
+O

(
1

n4

)
.

In the middle 1980s, Bowman et al. [6] found the 5th and 6th coefficients and
finally Marsaglia [12] developed a numerically stable procedure to compute a
large number of coefficients in that asymptotic expansion.

With the aim of refining the bounds given in Eq. (1.1), Adell and Jodrá [2]
computed the first seven coefficients qj in the asymptotic expansion of λn (see
Table 1) and then they derived the following upper and lower bounds for λn:
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n+2/3+
∑6

j=1 qj/n
j < λn < n+2/3+

∑7
j=1 qj/n

j , for n = 1, 2 . . . . In addition,
they considered that sharper bounds for λn can be obtained in a similar way by
considering more terms in the asymptotic expansion of λn. But, as we can see
in Table 1, the coefficients qj have a value very close to 0 for j = 5, 6 and 7, so
that if the values of the qj ’s are also very close to 0 for all j ≥ 8 it is not clear
that sharper bounds for λn, valid for all positive integers n, can be successively
obtained by considering more terms in that asymptotic expansion.

Table 1. Coefficients qj , j = 1, . . . , 7.

j qj

1 8
405

≈ 0.019753086419

2 − 64
5103

≈ −0.012541642171

3 2944
492075

≈ 0.005982827820

4 − 20182528
15345358875

≈ −0.001315220332

5 − 8465604608
12567848918625

≈ −0.000673592168

6 527611584512
1696659604014375

≈ 0.000310970794

7 101756461251198976
136284182692454671875

≈ 0.000746649091

In view of the above considerations, in this paper we pose the following
questions:

(i) Does the sequence {|qj |}j≥1 converge to 0 such as the numerical results
in Table 1 may be suggesting (| · | denotes the absolute value)?

(ii) Which is the partial sum of the asymptotic expansion of λn closest to the
true value of λn as well as its number of significant digits?

(iii) Can sharper bounds for λn be obtained by considering more terms in the
asymptotic expansion of λn as it is proposed in Adell and Jodrá [2]?

Unfortunately, as far as we know, the coefficients qj cannot be expressed
in closed form. In this paper, we study the above questions from a numerical
point of view and, to this end, first we need to compute more coefficients in
the asymptotic expansion of λn. In Section 2, we develop an algorithm for
computing a large number of coefficients in the asymptotic expansion of λn.
In Section 3, we present the numerical results obtained and, in particular, we
give tight upper and lower bounds for λn. Finally, we see that a conjecture
proposed by Alzer [4] concerning the complete monotonicity of the sequence
{λn − n}n≥0 is supported by numerical results.

2 An Algorithm for Computing the Asymptotic Expan-
sion of the Median

In this section, we present an algorithm for computing the asymptotic expan-
sion of λn which is an improved version of Choi’s procedure. First, we briefly
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describe the method outlined by Choi [9]. From Eq. (1.3), Choi showed the
following relationship between θn and λn

θn − 1 =

∞∑
k=0

ck(n)

(k + 1)!
(n− λn)

k+1, n = 1, 2, . . . , (2.1)

where the coefficients ck(n) satisfy the recurrence relation nck(n)/(1 − k) =
(ck−1(n) + ck−2(n)), for integers k ≥ 2, with initial conditions c0(n) := 1 and
c1(n) := 0. By considering Eq. (2.1), Choi proposed to compute the coefficients
in the asymptotic expansion of λn as follows. On the left-hand side of Eq. (2.1)
it is considered the asymptotic expansion of θn, and, on the right-hand side of
Eq. (2.1) the series involved is decomposed into a partial fraction expansion of
terms of order n−j , with j ≥ 0. After that decomposition step, the coefficients
corresponding to each term of order n−j in both sides of Eq. (2.1) are equated
and thereby the qj ’s in the asymptotic expansion of λn can be obtained.

In addition, Adell and Jodrá [2] noted that the terms ck(n) in Eq. (2.1)
are Charlier polynomials. We recall that Charlier polynomials can be explicitly
defined by (cf. Chihara [8, Chap. VI])

Ck(t;n) :=

k∑
j=0

(
k

j

)(
n

j

)
j!(−t)−j , k = 0, 1, . . . , (2.2)

where t > 0 and n = 0, 1, . . . . More specifically, Adell and Jodrá [2] noticed
that ck(n) = Ck(n;n) so that the coefficients ck(n) in Eq. (2.1) can also be
computed by means of Eq. (2.2).

With the help of the symbolic computer algebra system Maple Release 12,
and based on the above considerations, we have implemented the brute force
algorithm outlined by Choi. We have chosen Maple because it yields a suitable
fraction decomposition of the right-hand side of Eq. (2.1) as a sum of terms of
order n−j , with j ≥ 0. However, the running time and space required increases
dramatically and only a few coefficients in the asymptotic expansion of λn can
be computed.

Table 2. CPU time used for computing qj , j = 1, . . . , i .

Brute force algorithm

Computing {qj}ij=1 CPU time (in seconds)

i = 5 1.7
i = 10 19.4
i = 15 466.1
i = 19 4188.5

Table 2 displays the CPU time used for computing some coefficients qj .
In particular, the coefficients qj , for j ≥ 20, could not be obtained using the
brute force algorithm due to memory limitations; Maple exceeded the amount
of memory available (2.0 GB) and the execution of the algorithm was aborted.
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All of the computations were performed on an Intel Core2 Quad Q8200 at
2.33 GHz with 4 GB RAM.

In the remainder of this section, we improve Choi’s brute force algorithm.
To start with, we introduce some notation. Denote by

Ei(n) :=

2i∑
k=0

Ck(n;n)

(k + 1)!

(
n− λi(n)

)k+1
, i = 1, 2, . . . , (2.3)

where

λi(n) := n+
2

3
+

i∑
j=1

qj
nj

, i = 1, 2, . . . .

For our purpose, we need to express the function Ei(n) as a fraction decomposi-
tion of terms of order n−j , with j ≥ 0. To this end, first it can be checked from
Eq. (2.2) that the Charlier polynomials Ck(n;n), for k ≥ 2, can be expressed
as below

Ck(n;n) =

k−1∑
j=
k/2�

b
(k)
j

nj
, k = 2, 3, . . . , (2.4)

where the coefficients b
(k)
j are rational numbers; as usual, �x� denotes the ceiling

of a real number x, that is, the smallest integer not less than x. Then, by
considering Eq. (2.3) together with Eq. (2.4), it is clear that Ei(n) can be
expressed as follows

Ei(n) =

2i2+3i−1∑
j=0

β
(i)
j

nj
, i = 1, 2, . . . , (2.5)

where the coefficients β
(i)
j are rational numbers. Unfortunately, we do not know

a closed-form expression for computing the coefficients β
(i)
j in Eq. (2.5).

In addition to the previous notation, throughout this paper we also consider

E0(n) := −2/3, β
(0)
0 := −2/3, λ0(n) := n + 2/3 and, finally, we assume that

b
(1)
1 := 0 since C1(n;n) = 0.

The algorithm that we propose is sequential so that qi is calculated only
after q1, . . . , qi−1 have been obtained. For any integer i ≥ 1, it can be checked
that all of the summands on the right-hand side of Eq. (2.3) are meaningful
to compute qi because each one of these summands contributes to the finite
sum on the right-hand side of Eq. (2.5) with terms of order n−j for some
j ≤ i. In order to compute q1, . . . , qi we shall need to compute successively
the functions E1(n), . . . , Ei(n) by means of formula (2.3), which implies a large
computational effort, and to obtain these functions in a more efficient way we
derive the following relation.

Theorem 1. For any integer n ≥ 1 and i = 1, 2, . . . , we have

Ei(n) = Ei−1(n) +
C2i−1(n;n)

(2i)!

(
n− λi−1(n)

)2i
+

C2i(n;n)

(2i+ 1)!

(
n− λi−1(n)

)2i+1

+

2i∑
k=0

k+1∑
r=1

(−1)r
(
k + 1

r

)
Ck(n;n)

(k + 1)!

(
n− λi−1(n)

)k+1−r
(

qi
ni

)r

, (2.6)
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with initial conditions E0(n) := −2/3 and λ0(n) := n+ 2/3.

Proof. From Eq. (2.3) and taking into account that λi(n) = λi−1(n) + qi/n
i,

we can write Ei(n) as follows

Ei(n) =

2(i−1)∑
k=0

Ck(n;n)

(k + 1)!

(
n− λi−1(n)− qi/n

i
)k+1

(2.7)

+
C2i−1(n;n)

(2i)!

(
n− λi−1(n)− qi/n

i
)2i

+
C2i(n;n)

(2i+ 1)!

(
n− λi−1(n)− qi/n

i
)2i+1

.

Moreover, by Newton’s binomial formula, for j = 1, 2, . . . we know

(
n− λi−1(n)− qi/n

i
)j

=

j∑
r=0

(
j

r

)(
n− λi−1(n)

)j−r
(
− qi

ni

)r

. (2.8)

The statement of the theorem readily follows by considering formula (2.8) into
Eq. (2.7) and a bit of algebra. The proof is complete. �	

From a computational point of view, Eq. (2.6) highlights the large amount
of calculations required to obtain Ei(n) even when Ei−1(n) has been previously
computed. We also remark that the coefficient qi appears explicitly only in the
last term of Eq. (2.6) and it is easy to see that qi contributes to the value

of β
(i)
j in Eq. (2.5) only for j ≥ i. In addition, as we see in the following

result, the values of the coefficients β
(i)
j are known a priori for j = 0, 1, . . . , i.

Denote by cj the coefficient of n−j in the asymptotic expansion of (θn − 1),
that is, θn − 1 =

∑∞
j=0 cj/n

j . It is interesting to recall that a large number of
coefficients cj can be efficiently computed by using the algorithm proposed by
Marsaglia [12].

Corollary 1. For any integer i ≥ 1, we have β
(i)
j = cj for j = 0, 1, . . . , i.

Proof. For any integer i ≥ 1, from the relation between θn and λn given
in Eq. (2.1) and taking into account Eq. (2.3) together with the asymptotic
expansion of (θn − 1) and Theorem 1, we get

i∑
j=0

cj/n
j =

i∑
j=0

β
(i)
j /nj ,

which implies the result. �	

On the other hand, the value of each coefficient β
(i)
j in Eq. (2.5), for j =

i+1, . . . , 2i2+3i−1, can be calculated by virtue of Theorem 1 as we see below.
Before we introduce a more compact notation for the last term in Eq. (2.6).
For integers n ≥ 1 and i ≥ 1, and k = 0, 1, . . . , 2i, denote by

Di(k, r;n) := (−1)r
(
k + 1

r

)
Ck(n;n)

(k + 1)!

(
n− λi−1(n)

)k+1−r
(

qi
ni

)r

,

r = 1, . . . , k + 1.
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Denote by [nj ]f(n) the coefficient of n−j in a function f(n) =
∑

j≥0 sj/n
j .

With the preceding notations, we state the following.

Corollary 2. For any integer i ≥ 1, we have

β
(i)
j = β

(i−1)
j +

[
nj
]C2i−1(n;n)

(2i)!

(
n− λi−1(n)

)2i
+
[
nj
]C2i(n;n)

(2i+ 1)!

×(n−λi−1(n)
)2i+1

+

2i∑
k=0

k+1∑
r=1

[
nj
]
Di(k, r;n), j = i+1, . . . , 2i2+3i−1, (2.9)

with initial condition β
(0)
j := 0 for j = 2, 3 and 4.

Finally, below we give a formula to obtain the value of qi assuming that
the coefficients q1, . . . , qi−1 have been previously computed and, therefore, the

value of β
(i−1)
i has also been obtained by virtue of Corollary 2.

Corollary 3. For any integer i ≥ 1, we have

qi = β
(i−1)
i +

(
2

3

)2i
1

(2i)!
b
(2i−1)
i −

(
2

3

)2i+1
1

(2i+ 1)!
b
(2i)
i − ci,

where it is assumed that β
(0)
1 := 0.

Proof. Let us now consider Eq. (2.6). For any integer i ≥ 1, by taking into
account Eq. (2.4), it can be checked the following

[
ni
]C2i−1(n;n)

(2i)!

(
n− λi−1(n)

)2i
=

(
2

3

)2i
1

(2i)!
b
(2i−1)
i ,

[
ni
]C2i(n;n)

(2i+ 1)!

(
n− λi−1(n)

)2i+1
= −

(
2

3

)2i+1
1

(2i+ 1)!
b
(2i)
i ,

and it is also clear that
∑2i

k=0

∑k+1
r=1 [n

i]Di(k, r;n) = −qi. Then, from Eq. (2.6)
we have

[
ni
]
Ei(n) = β

(i−1)
i +

(
2

3

)2i
1

(2i)!
b
(2i−1)
i −

(
2

3

)2i+1
1

(2i+ 1)!
b
(2i)
i − qi

and, on the other hand, from Corollary 1 we also know that β
(i)
i = ci, which

implies the result. �	

Next, we give a brief description of the algorithm. In order to compute the
first m coefficients q1, . . . , qm, first, in a preprocessing step, the coefficients cj ,
for j = 1, . . . ,m, are computed using the algorithm given by Marsaglia [12].

Moreover, the coefficients b
(2j−1)
j and b

(2j)
j , for j = 1, 2, . . . ,m, can also be

computed from Eq. (2.2) in a preprocessing step. Now, let us consider a step

i ≤ m of the algorithm and let us assume that q1, . . . , qi−1 together with β
(i−1)
j ,

for j = i, . . . ,m, are known. Then, the coefficient qi can be calculated by virtue

Math. Model. Anal., 17(2):281–292, 2012.
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of Corollary 3. In the case i = m, λm(n) has been obtained and the algorithm
terminates. On the contrary, in the case i < m, after computing the coefficient

qi we calculate the value of β
(i)
j , for j = i+1, . . . ,m, according to Corollary 2.

It must also be noted that the coefficients β
(i)
j , for j = m+ 1, . . . , 2i2 + 3i− 1,

can be disregarded if we calculate only the first m coefficients q1, . . . , qm. In
this respect, an additional simplification reduces significantly the running time
and space requirements of the algorithm. For k = 0, . . . , 2i, it can be checked
that each term Di(k, r;n), r = 1, . . . , k + 1, in Eq. (2.9) can be removed if
ir + �k/2� > m because, in this case, the fraction decomposition of Di(k, r;n)
contains only terms of order n−j for some j > m.

Remark 1. In order to compute the first m coefficients q1, . . . , qm in the asymp-
totic expansion of λn, in each step i < m of the algorithm we have to calculate

and store only the coefficients β
(i)
j for j = i+ 1, . . . ,m. In particular, this im-

plies that for k = 0, . . . , 2i, each term Di(k, r;n), r = 1, . . . , k + 1, in Eq. (2.9)
can be disregarded if ir + �k/2� > m.

As a summary, Figure 1 below shows a way of doing the computations in a
pseudocode.

We have implemented in Maple Release 12 the algorithm described in this
section. With the help of Maple, each function involved in Theorem 1 can

Algorithm
comment: the algorithm computes λm(n).

comment: cj , b
(2j−1)
j and b

(2j)
j , j = 1, . . . ,m, computed in a preprocessing step.

begin
inicialize λ0(n) = n+ 2/3;
for i from 1 to m do
qi = β

(i−1)
i + ( 2

3
)2i 1

(2i)!
b
(2i−1)
i − ( 2

3
)2i+1 1

(2i+1)!
b
(2i)
i − ci;

comment: qi has been computed.
λi(n) = λi−1(n) + qi/n

i;
if (i = m) then
return λm(n);
break;
comment: the algorithm has terminated.

end if
comment: β

(i)
j , j = i+ 1, . . . ,m, must be updated.

for j from i+ 1 to m do

β
(i)
j = β

(i−1)
j + [nj ]{C2i−1(n;n)

(2i)!
(n− λi−1(n))

2i +
C2i(n;n)
(2i+1)!

(n− λi−1(n))
2i+1};

end for
for j from i+ 1 to m do
for k from 0 to 2i do
inicialize r = 1;
while (r ≤ k + 1) and (ir + 	k/2
 ≤ m) do

β
(i)
j = β

(i)
j + [nj ]Di(k, r;n);

r = r + 1;
end while

end for
end for

end for

end

Figure 1. Algorithm for computing λm(n).
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Table 3. The rational coefficients qi, i = 1, . . . , 20, and their approximate values.

i qi

1 8
405 ≈ 0.019753086419

2 − 64
5103 ≈ −0.012541642171

3 2944
492075 ≈ 0.005982827820

4 − 20182528
15345358875 ≈ −0.001315220332

5 − 8465604608
12567848918625 ≈ −0.000673592168

6 527611584512
1696659604014375 ≈ 0.000310970794

7 101756461251198976
136284182692454671875 ≈ 0.000746649092

8 − 1091865798741131264
2118599567309977171875 ≈ −0.000515371482

9 − 113445250854901086814208
103821971796025431307734375 ≈ −0.001092690197

10 188986533236068276352319488
173582350537431749959508203125 ≈ 0.001088742793

11 140359054398115632025068634112
52803751033486738337682395390625 ≈ 0.002658126584

12 − 122834986466715962736247558897664
35642531947603548377935616888671875 ≈ −0.003446303608

13 − 910021020968802126714213584465228201984
96701575214383449086435232502571220703125 ≈ −0.009410612174

14 407082682842868086242134902527542918381568
26979739484812982295115429868217370576171875 ≈ 0.015088458621

15 99080521411381459617898992340510464422132580352
2167147574117602802855146904164560291531005859375 ≈ 0.045719323683

16 − 47521101500531306640850145040380162843845159026688
543334856082341845572968973829829044519559326171875 ≈ −0.087461904879

17 − 343842430576068287990570735916021205705305145050574880768
1179124114610511061930479921215515629083611386844482421875 ≈ −0.291608344122

18 3407806529052351556350031552321433178204905245704385239973888
5252997930589826780900288049015122127567488728392169189453125 ≈ 0.648735555216

19 6243991993888021860360669674760577685646172219659776673313718272
2643213049619517384753008577390790997826004555604605133056640625 ≈ 2.362273443976

20 − 472179990608599254283064265692787651720998971554386635000540924215296
78765105665611998548254902597668180944217109752461628359954833984375 ≈ −5.994786480871

be decomposed into a partial fraction of terms of order n−j , with j ≥ 0. In
particular, we have used some functions provided in the Maple-package Poly-
nomialTools (cf. Heck [10, Chap. 5]). As a result, we have obtained exactly,
that is, as rational numbers, a large number of coefficients in the asymptotic
expansion of λn. In this paper we present only the first sixty coefficients and,
as numerators and denominators become large, for the sake of space we display
the first twenty rational coefficients in Table 3, which were computed in less
than 24.5 seconds CPU time, and approximate values for the other coefficients
in Table 4.

3 Numerical Consequences

At the end of Section 1 three questions were posed. As analytical expressions
for the coefficients in the asymptotic expansion of λn have not been found,
we use the numerical results obtained in the previous section to answer those
questions.

To answer question (i) concerning the convergence to 0 of the sequence
{|qi|}i≥1, from Tables 3 and 4 we see that the value of |qi| strictly increases as i
increases for i ≥ 10. Thereby, based on the numerical evidence, we assert that
the sequence {|qi|}i≥1 does not converge to 0, on the contrary, we conjecture
that {|qi|}i≥1 diverges.
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Table 4. The approximate value of qi, for i = 21, . . . , 60.

i qi i qi

21 −23.684361348669 41 −1.1564885959677822668958501234319231 · 1015
22 67.5418513427755 42 6.9561716365916852165241531460296780 · 1015
23 287.85895156268050 43 5.1553534410496517825406144072457824 · 1016
24 −911.509961320613176 44 −3.2644933042045415863738250108794785 · 1017
25 −4169.4873282691158125 45 −2.5227468509246430418663688747868782 · 1018
26 14517.51062315480054612 46 1.6775405047079434174954084653643242 · 1019
27 70954.77947196402774553 47 1.3495185248199705999283863810313058 · 1020
28 −2.69458840306955185 · 105 48 −9.4023020801550544877879262847600277 · 1020
29 −1.40159861100601650 · 106 49 −7.8617762090166445430502188919197474 · 1021
30 5.76579884987129503 · 106 50 5.7270790609799904579501055404994538 · 1022
31 3.18048234453219928 · 107 51 4.9702887257257575962402656022736164 · 1023
32 −1.40899461576200422 · 108 52 −3.7785791960159019135070330313173696 · 1024
33 −8.21609794289168550 · 108 53 −3.3990989824854793566420201466586793 · 1025
34 3.89998255563806189 · 109 54 2.6920880364957272549758657789254373 · 1026
35 2.3971739322341164 · 1010 55 2.5071217823317726158976924227246943 · 1027
36 −1.2138276743182051 · 1011 56 −2.0652973718779740795700093359996914 · 1028
37 −7.8442406406263566 · 1011 57 −1.9889278856682013624948681734354735 · 1029
38 4.2206394905418625 · 1012 58 1.7016236284887685450280925006068876 · 1030
39 2.8609375093053603 · 1013 59 1.6927062244703204737287295257032487 · 1031
40 −1.6300691594774892 · 1014 60 −1.5019853275923149545469547291382864 · 1032

To answer question (ii), that is, which is the partial sum λi(n) of the asymp-
totic expansion of λn closest to the true value of λn, for small values of n we
have checked that the series of partial sums {λi(n)}i≥1 behaves as asymptotic
series often do. The partial sums λi(n) approach the true value of λn, reach the
point of closest approach and then become increasingly worse. Table 5 shows
the results obtained for a few small values of n. We highlight that small values
of n are the most frequent cases in real applications of the Erlang distribution.

Table 5. Partial sums λi(n) approaching λn, for n = 1, . . . , 9.

Partial sum λi(n) closest to λn Number of correct
n i significant digits

1 10th 3
2 16th 6
3 22nd 10
4 28th 11
5 34th 15
6 40th 17
7 48th 21
8 54th 24
9 60th 27

Now, we answer question (iii) related to the bounds of the median of the
Erlang distribution. As it was said in Section 1, Adell and Jodrá [2] have given
upper and lower bounds for λn, specifically λ6(n) < λn < λ7(n) for n ≥ 1.
Moreover, Adell and Jodrá [2, Section 4] remark that the same methodology
can be used to obtain sharper bounds for λn if we consider more terms in the
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asymptotic expansion of λn. From the numerical results presented in Tables 3
and 4, we have assessed the importance of the higher-order coefficients in that
asymptotic expansion in order to derive sharper bounds for λn and, in this
regard, we have checked that those bounds are not always valid for small values
of n. This possibility has not been considered by Adell and Jodrá [2] and,
accordingly, the results obtained using their methodology must be rewritten in
a more convenient form. To this end, from Tables 3 and 4, we observe that the
sequence {qi}i≥1 has a sign pattern of period four (− − ++) for i ≥ 4. Then,
taking into account this sign pattern, we enunciate the following.

Theorem 2. For any integer m ≥ 5, there exists a positive integer n(m) such
that :

(i) if qm−1 > 0 and qm > 0, then λm−1(n) < λn < λm(n) for n ≥ n(m),
and

(ii) if qm−1 < 0 and qm < 0, then λm(n) < λn < λm−1(n) for n ≥ n(m),
where λm(n) := n+ 2/3 +

∑m
i=1 qi/n

i.

The proof of Theorem 2 follows exactly the same lines of reasoning that led
to the results given in Adell and Jodrá [2]. Table 6 presents tight upper and
lower bounds for λn together with a few values n(m). As we can see, the best
rational bounds for λn valid for all integers n ≥ 1 are obtained by considering
the first nine coefficients in the asymptotic expansion of λn.

Table 6. Upper and lower bounds for λn.

Sharper bounds for λn for n ≥ n(m)

λ9(n) < λn < λ8(n) n ≥ 1
λ14(n) < λn < λ15(n) n ≥ 2
λ22(n) < λn < λ23(n) n ≥ 3
λ29(n) < λn < λ28(n) n ≥ 4
λ34(n) < λn < λ35(n) n ≥ 5
λ41(n) < λn < λ40(n) n ≥ 6
λ46(n) < λn < λ47(n) n ≥ 7
λ53(n) < λn < λ52(n) n ≥ 8
λ58(n) < λn < λ59(n) n ≥ 9

Final remark. Chen and Rubin [7] conjectured that the sequence {λn −
n}n≥0 is strictly decreasing, which was proved by Alm [3] (cf. also Alzer [4] and
Adell and Jodrá [1] for alternative proofs). In addition, Alzer [4] conjectured
that the sequence {λn − n}n≥0 is completely monotone and, in this respect,
Alzer [5] has shown that the sequence {λn−n}n≥0 is strictly convex. We recall
that a sequence {αn}n≥0 is said completely monotone if (−1)k�kαn ≥ 0 for k =
0, 1, . . . and n = 0, 1, . . . , where�0αn := αn and�kαn := �k−1αn+1−�k−1αn

(k = 1, 2, . . . ; n = 0, 1, . . .); in particular, the case k = 1 (k = 2) corresponds
to a decreasing (convex) sequence. By using the upper and lower bounds for
λn presented in this paper, we have checked that (−1)k �k (λn − n) > 0 for
k = 3, 4, . . . , 60, which strongly suggests that Alzer’s conjecture is true.
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