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Abstract. A group theoretic method is used to obtain an entire class of similar-
ity solutions to the problem of shocks propagating through a non-ideal gas and to
characterize analytically the state dependent form of the medium ahead for which
the problem is invariant and admits similarity solutions. Different cases of possible
solutions, known in the literature, with a power law, exponential or logarithmic shock
paths are recovered as special cases depending on the arbitrary constants occurring in
the expression for the generators of the transformation. Particular case of collapse of
imploding cylindrically and spherically symmetric shock in a medium in which initial
density obeys power law is worked out in detail. Numerical calculations have been
performed to obtain the similarity exponents and the profiles of the flow variables
behind the shock, and comparison is made with the known results.
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1 Introduction

Many flow fields involving wave phenomena are governed by quasi linear hy-
perbolic system of partial differential equations (PDEs). For nonlinear systems
involving discontinuities such as shocks, we do not generally have the complete
exact solutions, and we have to rely on some approximate analytical or numer-
ical methods which may be useful to provide information to understand the
physics involved. One of the most powerful methods to obtain the similarity
solutions to PDEs is similarity method which is based upon the study of their
invariance with respect to one parameter Lie group of transformations. Indeed,
with the help of infinitesimals and invariant surface conditions, one can con-
struct similarity variables which can reduce these PDEs to ordinary differential
equations (ODEs).

∗ Research fundings from the Department of Science and Technology (DST), Government of
India, New Delhi, vide sanction order no. SR/FTP/MS-12/2008 and from the CSIR, New
Delhi vide reference number 09/143 (0603)/2008-EMR-I are gratefully acknowledged.
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A theoretical study of the imploding shock wave near the center of conver-
gence, in an ideal gas was first performed by Guderley [7]. Among the extensive
work that followed, we mention the contributions of Sakurai [17], Zeldovich
and Raizer [23], Hayes [9], Ames [1], Axford and Holm [2, 3], Lazarus [11],
Hafner [8], Sharma and Radha [19], Jena and Sharma [10], Conforto [6], Mad-
humita and Sharma [14], Sharma and Arora [18], Sharma and Radha [20] and
Singh et al. [13] who presented high accuracy results and alternative approaches
for the investigation of implosion problem. Steeb [21] determined the similar-
ity solutions of the Euler equations and the Navier–Stokes equations for in-
compressible flows using the group theoretic approach outlined in the work of
Bluman and Cole [4], Ovasiannikov [16], Olver [15], Logan [12] and Bluman
and Kumei [5].

In the present paper, following Bluman and Kumei [5], and in a spirit
closer to Logan [12], we characterize the medium ahead of shock for which
the problem is invariant and admits similarity solutions. The occurrence of
arbitrary constants in the expressions for the infinitesimals of the Lie group of
transformations yields different cases of solutions with a power law, exponential
or logarithmic shock paths. We have worked out in detail one particular case
of collapse of imploding cylindrically and spherically symmetric shock in a
medium in which initial density obeys power law.

We have compared our results with those obtained by Madhumita and
Sharma [14], who employed a different technique to provide a solution to the im-
plosion problem. Madhumita and Sharma [14] studied converging shock waves
in a non-ideal medium. They have applied kinematics of one-dimensional mo-
tion to construct an evolution equation for strong cylindrical and spherical
shock waves propagating into a gas at rest, and derived an infinite hierarchy of
transport equations which describe the evolutionary behaviour of strong shocks
propagating through an unsteady flow of a non-ideal gas.

The computed values of the similarity exponent are also compared with
those obtained by using the Whitham’s rule [22]; computation of the flow field
in the region behind the shock has been carried out to determine the effects of
parameter α and shock strength β.

2 Basic Equations and Shock Conditions

The basic equations describing the one-dimensional unsteady flow of a non-ideal
gas, can be written as

ρt + uρx + ρux +mρu/x = 0,

ρ(ut + uux) + px = 0, (2.1)

(xmE)t + (xmu(E + p))x = 0,

where ρ is the gas density, u the gas velocity, p the pressure, and E = ρe +
1
2 (ρu

2) is the total energy density with e being the internal energy density; the
independent variables are the space coordinate x and time t; and m = 0, 1 and
2 correspond to planar, cylindrical and spherical symmetry, respectively; the
non-numeric subscripts denote the partial differentiation with respect to the
indicated variables unless stated otherwise.
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The equation of state, for motion in a non-ideal gas, is of the form:

p = ρRT (1 + bρ),

where b is the internal volume of the gas molecules which is known in terms of
the molecular interaction potential; in high temperature gases, it is a constant
with bρ� 1. The gas constant R and the temperature T are assumed to obey
the thermodynamic relations R = Cp−Cv, and e = CvT , where Cv = R/(γ−1)
is the specific heat at constant volume, Cp is the specific heat at constant
pressure and γ is the ratio Cp : Cv. Thus in view of these thermodynamic
relations, the equation of state can be written as:

p = ρe

(
γ − 1 + α

ρ

ρ0

)
, (2.2)

where α = (γ − 1)bρ0 is the small parameter with ρ0 being the density of
the medium ahead of the shock. It may be noticed that the equation of
state (2.2), characterizing the medium, is of Mie–Gruneisen type p = ρeΓ ( ρ

ρ0
),

with Γ ( ρ
ρ0
) = (γ − 1 + α ρ

ρ0
) as the Gruneisen coefficient.

It follows immediately from equations (2.1)1, (2.1)2, (2.2) and the definition
of E, that the equation (2.1)3 may also be written as:

pt + upx +
γp

γ − 1
Γ

(
ρ

ρ0

)
(ux +mu/x) = 0. (2.3)

Let the initial condition at time t = 0 is given by u = 0, ρ = ρ0(x) and
p = p0, where the initial gas density ρ0(x) is a function of x and p0 > 0 is an
appropriate constant.

Now we consider the motion of a strong shock front propagating into the
quiescent non-ideal gas of density ρ0 considered above. The Rankine-Hugoniot
jump conditions for the strong shock, x = ϕ(t), give conditions just behind the
shock as (see [22])

u = (1− β−1)V, ρ = βρ0, p = ρ0(1− β−1)V 2, (2.4)

where V = ϕ̇(t) is the shock speed, and β, which is a measure of the shock
strength, is given by

β =
γ + 1

γ − 1

(
1− 2α

(γ − 1)2

)
. (2.5)

3 Invariance under the Lie Group of Transformations

In order to obtain the similarity solutions of the system (2.1) we derive its sym-
metry group such that (2.1) is invariant under this group of transformations.
The idea of the calculation is to find a one-parameter infinitesimal group of
transformations (see [4, 5, 12]),

x∗ = x+ εX(x, t, ρ, u, p), t∗ = t+ εT (x, t, ρ, u, p),

u∗ = u+ ε U(x, t, ρ, u, p), ρ∗ = ρ+ εS(x, t, ρ, u, p), (3.1)

p∗ = p+ εP (x, t, ρ, u, p),

Math. Model. Anal., 17(3):351–365, 2012.
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where X, T , U , S and P are the infinitesimals which are to be determined
in such a way that the system (2.1), together with the jump conditions (2.4),
is invariant under the group of transformations (3.1); the entity ε is a small
parameter such that its square and higher powers may be neglected. The
existence of such a group reduces the number of independent variables by one,
which allows us to replace the system (2.1) of partial differential equations by
a system of ordinary differential equations.

We introduce the notation x1 = x, x2 = t, u1 = u, u2 = ρ, u3 = p and
pij = ∂ui/∂xj , where i = 1, 2, 3 and j = 1, 2. The system (2.1), which can be
represented as

Fk(xj , ui, p
i
j) = 0, k = 1, 2, 3,

is said to be constantly conformally invariant under the infinitesimal group of
transformations (3.1) if and only if

LFk = αkrFr when Fk = 0, r = 1, 2, 3, (3.2)

where L is the extended infinitesimal generator of the group of transforma-
tions (3.1), and is given by

L = ξj
∂

∂xj
+ ηi

∂

∂ui
+ βi

j

∂

∂pij
(3.3)

with ξ1 = X, ξ2 = T , η1 = U , η2 = S, η3 = P , and

βi
j =

∂ηi

∂xj
+
∂ηi

∂uk
pkj − ∂ξl

∂xj
pil −

∂ξl

∂un
pilp

n
j , (3.4)

where l = 1, 2, n = 1, 2, 3, j = 1, 2, i = 1, 2, 3, and k = 1, 2, 3; here repeated
indices imply summation convention.

Equation (3.2) implies

∂Fk

∂xj
ξj +

∂Fk

∂ui
ηi +

∂Fk

∂pij
βi
j = αkrFr, when Fk = 0, k = 1, 2, 3. (3.5)

Substitution of βi
j from (3.4) into (3.5) yields an identity in pkj and pilp

n
j ; hence

we equate to zero the coefficients of pij and p
i
lp

n
j to obtain a system of first-order

linear partial differential equations in the infinitesimals X, T , U , S and P . This
system, called the system of determining equations of the group of transforma-
tions, is solved to find the invariance group of transformations.

We apply the above procedure to the system (2.1). The invariance of the
continuity equation (2.1)1 yields

S + ρUu − ρXx + uSu = α11ρ+ α12ρu+ α13KpΓ
(
ρ/ρ0

)
,

U + ρUρ + uSρ − uXx −Xt = α11u,
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Su − ρTx = α12ρ, ρUp + uSp = α12 + α13u, (3.6)

Sρ − uTx − Tt = α11, Sp = α13,

St + uSx + ρUx + U
mρ

x
−mX

ρu

x2
= α11m

ρu

x
+ α13KpΓ

(
ρ

ρ0

)
mu

x
+ S

mu

x
,

where K = γ/(γ − 1), where the non-numeric subscripts denote partial differ-
entiation with respect to the indicated variables.

Similarly, the invariance of the momentum equation (2.1)2 yields

ρU + uS + ρuUu − ρuXx + Pu − ρXt = α21ρ+ α22ρu+ α23KpΓ
(
ρ/ρ0

)
,

Pρ + ρuUρ = α21u, Pp + ρuUp −Xx = α22 + α23u,

S − ρuTx + ρUu − ρTt = α22ρ, (3.7)

ρUρ = α21, ρUp − Tx = α23,

Px + ρUt + ρuUx = α21
mρu

x
+ α23

mu

x
KpΓ

(
ρ/ρ0

)
.

Finally, the invariance of the energy equation (2.1)3 yields

uPu + pSK
α

ρ0
+ PKΓ

(
ρ

ρ0

)
+ pKΓ

(
ρ

ρ0

)
Uu −KpΓ

(
ρ

ρ0

)
Xx

= α31ρ+ α32ρu+ α33KpΓ
(
ρ/ρ0

)
,

KpΓ
(
ρ/ρ0

)
Uρ + uPρ = α31u,

U +KpΓ
(
ρ/ρ0

)
Up + uPp − uXx −Xt = α32 + α33u,

Pu −KpΓ
(
ρ/ρ0

)
Tx = α32ρ, (3.8)

Pρ = α31, Pp − uTx − Tt = α33,(
Pt −XKpΓ

(
ρ/ρ0

)mu
x2

+ SKp
α

ρ0

mu

x
+ PKΓ

(
ρ/ρ0

)mu
x

+KpΓ
(
ρ/ρ0

)
Ux + uPx + pUKΓ

(
ρ/ρ0

)m
x

)
= α31

mρu

x
+ α33KpΓ (ρ/ρ0)

mu

x
,

where K = γ/(γ − 1). We solve the system of determining equations (3.6),
(3.7) and (3.8) to obtain

X =

{
(α22 + 2a)x+ c2t+ c3, if α �= 0,

(α22 − α11 + a)x+ c2t+ c3, if α = 0, T = at+ b,

S =

{
0, if α �= 0,

(α11 + a)ρ, if α = 0,
U =

{
(α22 + a)u+ c2, if α �= 0,

(α22 − α11)u+ c2, if α = 0,

P =

{
2(α22 + a)p, if α �= 0,

(2α22 − α11 + a)p, if α = 0,
(3.9)

where α11, α22, a, b, c2 and c3 are arbitrary constants. It is also found that
α11 = −a for α �= 0. Thus, the infinitesimals of the invariant group of trans-
formations are completely known.

Math. Model. Anal., 17(3):351–365, 2012.
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4 Similarity Solutions

The arbitrary constants, which appear in the expressions for the infinitesimals
of the invariant group of transformations, lead to various cases of possible
solutions as discussed below.

Case I. When α22 + 2a �= 0 and a �= 0 for α �= 0, (α22 − α11 + a �= 0 and
a �= 0 for α = 0), using the translational invariance of x and t, we obtain from
equation (3.9)

X =

{
(α22 + 2a)x+ c2t, if α �= 0,

(α22 − α11 + a)x+ c2t, if α = 0, T = at.
(4.1)

However, the infinitesimals U , S and P in set (3.9) remain unchanged. To
obtain the similarity solutions, we use the invariant surface conditions (see [4]
and [12]), which yield

Xρx + Tρt = S, Xux + Tut = U, Xpx + Tpt = P. (4.2)

Using (3.9) and (4.1), we integrate (4.2) to obtain for planar flow:

ρ =

{
Ŝ(ξ) if α �= 0,

t(α11+a)/aŜ(ξ) if α = 0,
u =

{
t(δ−1)Û(ξ) if m = 1, 2,

t(δ−1)Û(ξ)− k∗ if m = 0,

p =

{
t2(δ−1)P̂ (ξ) if α �= 0,

t(2δ−1+α11/a)P̂ (ξ) if α = 0,
(4.3)

where Ŝ, Û and P̂ are the functions of a similarity variable ξ, which is found
as

ξ =

{
x/(Atδ) if m = 1, 2,

(x+A∗t)(Atδ) if m = 0,
(4.4)

where A is a dimensional constant. Let ξ = 1 be the basic position of the
shock; then the shock path ϕ(t) and the shock velocity V are obtained as

ϕ=

{
Atδ if m = 1, 2,

At(tδ−1 −A∗/A) if m = 0,
V=

{
δϕ/t if m = 1, 2,

Aδtδ−1 −A∗ if m = 0.
(4.5)

The boundary conditions at the shock become

ρ|ξ=1=

{
Ŝ(1) if α �= 0,

t(α11+a)/aŜ(1) if α = 0,
u|ξ=1=

{
t(δ−1)Û(1) if m = 1, 2,

t(δ−1)Û(1)− k∗ if m = 0,

p|ξ=1 =

{
t2(δ−1)P̂ (1) if α �= 0,

t(2δ−1+α11/a)P̂ (1) if α = 0.

Invariance of the jump conditions suggests that ρ0(x) must be of the following
form

ρ0 =

{
ρc if α �= 0,

ρc(x/x1)
μ if α = 0,

(4.6)
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where ρc and x1 �= 0 are dimensional constants and μ is a dimensionless con-
stant.

Now applying the jump conditions (2.4) and using (4.5), we obtain

Ŝ(1) =

{
βρc if α �= 0,

βρc(A/x1)
μ if α = 0,

Û(1) = Aδ(1− 1/β),

P̂ (1) =

{
ρcA

2δ2(1− 1/β) if α �= 0,

ρcA
2δ2(A/x1)

μ(1− 1/β) if α = 0,
(4.7)

where δ = (α22+2a)/a. Thus, substituting (4.5) and (4.6) into (4.3), we obtain
the following functional form of ρ, u and p in the entire flow field:

ρ =

{
ρcS

∗(ξ) if α �= 0,

ρ0(ϕ(t))S
∗(ξ) if α = 0,

p =

{
ρcV

2P ∗(ξ) if α �= 0,

ρ0(ϕ(t))V
2P ∗(ξ) if α = 0,

u = V U∗(ξ), (4.8)

where

S∗(ξ)=

{
Ŝ(ξ)/ρc if α �=0,

xμ1 Ŝ(ξ)/(ρcA
μ) if α=0,

P ∗(ξ)=

{
P̂ (ξ)/(ρcδ

2A2) if α �= 0,

xμ1 P̂ (ξ)/(ρcδ
2Aμ+2) if α = 0.

U∗(ξ) = Û(ξ)/(Aδ),

Substitution of (4.8) into system (2.1) of governing equation and use of (4.6)
yield the following system of ordinary differential equations in S, U and P :

(U − ξ)S′ + S
(
U ′ +

mU

ξ

)
= 0,

(δ − 1)

δ
U + (U − ξ)U ′ +

P ′

S
= 0, (4.9)

2
(δ − 1)

δ
P + (U − ξ)P ′ +

(
γP +

αγ

γ − 1
PS

)(
U ′ +

mU

ξ

)
= 0,

where ′ denotes the differentiation with respect to the similarity variable ξ.
Also the following conditions are obtained from the jump conditions (2.4),

S(1) = β, U(1) = 1− β−1, P (1) = 1− β−1. (4.10)

In the next section the system (4.9) together with the initial conditions (4.10)
is integrated numerically to obtain the flow field.

Case II. When α22 �= 0 and a = 0 for α �= 0 (α22 − α11 �= 0 and a = 0 for
α = 0), using the translational invariance of x and t, we obtain the following
forms of the similarity solutions

ρ =

{
ρc S(ξ) if α �= 0,

ρ0(ϕ(t))S(ξ) if α = 0,
p =

{
ρcV

2 P (ξ) if α �= 0,

ρ0(ϕ(t))V
2P (ξ) if α = 0,

u = V U(ξ), (4.11)

Math. Model. Anal., 17(3):351–365, 2012.
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where S, U and P are the functions of a similarity variable ξ, which is found
as ξ = x

x1
e−δt/A, where x1 and A are arbitrary dimensional constants and

δ =

{
α22/b if α �= 0,

(α22 − α11)/b if α = 0.

Let ξ = 1 be the basic position of the shock; then the shock path x = ϕ(t) and
the shock velocity V are found as

ϕ(t) = x1e
δt/A, V (t) =

x1δ

A
eδt/A. (4.12)

It may be noticed that in this case the shock path is exponential and is given
by (4.12)1. Invariance of the jump conditions (2.4) suggests that ρ0(x) must
be of the following form

ρ0 =

{
ρc if α �= 0,

ρc(x/x1)
μ if α = 0,

(4.13)

where ρc is arbitrary dimensional constant, and

μ =

{
α11/α22 if α �= 0,

α11/(α22 − α11) if α = 0.
(4.14)

Substitution of (4.11) into system (2.1) of governing equation and use of (4.13)
yield the following system of ordinary differential equations in S, U and P for
α �= 0:

(U − ξ)S′ + S
(
U ′ +

mU

ξ

)
= 0,

U + (U − ξ)U ′ +
P ′

S
= 0, (4.15)

2P + (U − ξ)P ′ +
(
γP +

αγ

γ − 1
PS

)(
U ′ +

mU

ξ

)
= 0,

where ′ denotes the differentiation with respect to the similarity variable ξ.
System (4.15), together with the initial conditions (4.10), may be integrated
numerically to obtain the flow field.

Case III. Let us consider the case when α22 + 2a = 0 and a �= 0 for α �= 0
(α22 − α11 + a = 0 and a �= 0 for α = 0). In this case, there does not exist
any similarity solution for the non-planar flows; however, for the planar flow
similarity solution does exist. The following similarity solution for the present
case is found from (3.9) and (4.2) for the planar flow

ρ =

{
ρcS(ξ) if α �= 0,

ρ0(ϕ(t))S(ξ) if α = 0,
p =

{
ρcV

2P (ξ) if α �= 0,

ρ0(ϕ(t))V
2P (ξ) if α = 0,

u = V U(ξ), (4.16)

where S, U and P are the functions of a similarity variable ξ, which is found
as ξ = (x−x1δ ln(t/A))/x1, here x1 and A are arbitrary dimensional constants
and δ = c3/a.
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Let ξ = 0 be the basic position of the shock; then the shock path x = ϕ(t)
and the shock velocity V are found as

ϕ(t) = x1δ ln(t/A), V = δx1/t. (4.17)

Invariance of the jump conditions suggests that ρ0(x) must be of the following
form

ρ0 =

{
ρc if α �= 0,

ρce
μx/x1 if α = 0,

where ρc is a dimensional constant and μ = (α11 + a)/c3. It may be noticed
that in this case the shock path is logarithmic and is given by (4.17)1.

Substitution of (4.16) into the system (2.1) yields the following system of
ordinary differential equations in S, U and P :

(U − 1)S′ + SU ′ = 0,

U ′(U − 1)− U

δ
+
P ′

S
= 0, (4.18)

(U − 1)P ′ − 2

δ
P +

(
γP +

αγ

γ − 1
SP

)
U ′ = 0.

Also the following conditions are obtained from the jump conditions (2.4),

S(0) = β, U(0) = 1− β−1, P (0) = 1− β−1. (4.19)

The system (4.18) together with the conditions (4.19) may be integrated nu-
merically to obtain the flow field.

Case IV. Let us consider the case when α22 = 0 and a = 0 for α �= 0
(α22−α11 = 0 and a = 0 for α = 0). Making use of the translational invariance
of the system (2.1) with respect to x and t, we find from (3.9) and (4.2) the
following self-similar solution:

ρ =

{
ρcS(ξ) if α �= 0,

ρ0(ϕ(t))S(ξ) if α = 0,
p =

{
ρcV

2P (ξ) if α �= 0,

ρ0(ϕ(t))V
2P (ξ) if α = 0,

u = V U(ξ), (4.20)

where dimensionless similarity variable ξ is

ξ =
1

x1

(
x− x1

δ t

A

)
,

and the shock position ϕ and velocity V are given by

ϕ = x1(1 + δt/A), V = δx1/A, (4.21)

where x1 and A are the dimensional constants, and δ = c3/b is a constant. It
may be noted that the shock path is linear in this case and is given by (4.21)1.

Math. Model. Anal., 17(3):351–365, 2012.
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The invariance of the jump conditions implies that density ahead of the shock
must be of the following form

ρ0 =

{
ρc if α �= 0,
ρc e

μx/x1 if α = 0,

where ρc is an arbitrary dimensional constant and μ = α11/c3.
Substitution of (4.20) into the system (2.1) leads to the following system of

ordinary differential equations in S, U and P :

(U − 1)S′ + SU ′ = 0,

(U − 1)U ′ +
P ′

S
= 0, (4.22)

(U − 1)P ′ +
(
γP +

αγ

γ − 1
SP

)
U ′ = 0,

where ′ denotes the differentiation with respect to the similarity variable ξ. The
system (4.22) together with the conditions (4.10) may be integrated numerically
to obtain the flow field.

5 Shock Implosion

Here, we consider the problem in Case I of an imploding shock for which V � a0
in the neighbourhood of implosion. For the problem of a converging shock
collapsing to the center/axis, the origin of time t is taken to be the instant at
which the shock reaches the center/axis so that t ≤ 0 in (4.9). In this regard
the definition of the similarity variable is slightly modified by setting

ϕ(t) = A(−t)δ, ξ =
x

A(−t)δ , (5.1)

so that the intervals of the variables are: −∞ < t ≤ 0, 0 ≤ x ≤ ϕ and
1 ≤ ξ < ∞.

As the gas density, velocity, pressure and the sound speed at any finite
radius are bounded, at the instant of collapse t = 0, where ξ = ∞ for x �= 0,
it follows that for ρ = ρcS(ξ), u = (δϕ/t)U(ξ), p = ρc(δϕ/t)

2P (ξ) and a2 =
γ(δϕ/t)2(P/S) to remain bounded there, we must have

U(∞) = 0, P (∞)/S(∞) = 0. (5.2)

Thus, equations (4.9), (4.10) and (5.2) together constitute a boundary value
problem (BVP), solving which we can determine the flow field behind the shock.

The system (4.9) is written in the matrix form as AW ′ = C, where W =
(U, S, P )tr, and the matrix A and the column vector C can be read off by
inspection of the equations (4.9); ′ is the derivative with respect to ξ. It may
be noted that the system (4.9) has an unknown parameter δ, which we compute
by an iterative procedure. We solve the system (4.9) for the derivatives U ′, S′

and P ′ as

U ′ = Ω1/Ω, S′ = Ω2/Ω, P ′ = Ω3/Ω, (5.3)
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where Ω, which is the determinant of the matrix A, is given by Ω = (ξ −
U)[(U − ξ)2 − γ P

S (1 +
αS
γ−1 )], and Ωj (j = 1, 2, 3) are the determinants which

we obtain from Ω by replacing the jth column by the column vector C.
It may be noted that Ω > 0 at ξ = 1 and Ω < 0 at ξ = ∞; hence there

exists a ξc ∈ [1,∞) where Ω vanishes, thereby the solutions become singular
at ξ = ξc. In order to obtain a nonsingular solution of the system (4.9) in the
interval [1,∞), we choose the exponent δ such thatΩ vanishes only at the points
where the determinant Ω1 is also zero; it can be checked that at points where Ω
and Ω1 vanish, the determinants Ω2 and Ω3 also vanish simultaneously. To find
the exponent δ, we introduce the variable Z, as Z = (U − ξ)2 − γ P

S (1 +
αS
γ−1 ),

which, in view of (5.3) implies

dZ/dξ = Ω4/Ω, (5.4)

where

Ω4=2(U − ξ)(Ω1−Ω)− αγP

(γ − 1)S
Ω2+

γ

S2

(
1 +

αS

γ − 1

)
(PΩ2 − SΩ3). (5.5)

Equations (5.3), in view of (5.4), become

dU

dZ
=
Ω1

Ω4
,

dS

dZ
=
Ω2

Ω4
,

dP

dZ
=
Ω3

Ω4
, (5.6)

where the initial conditions are given in (4.10). Also the variable ξ is obtained
from the expression of Z, as ξ = U + (Z + γ P

S (1 +
αS
γ−1 ))

1/2.

Table 1. Comparison of the similarity exponent δ obtained in the present method with
that obtained by Whitham’s rule [22] and Madhumita and Sharma [14] for different values
of α and β with m = 1 and γ = 7/5.

α β Present Whitham’s rule [22] Madhumita and Sharma [14]
δ δ δ

0.00 6.00 0.83527 0.835373 0.835306
0.001 5.925 0.8330 0.834012 0.8338205
0.003 5.775 0.83048 0.831223 0.830894
0.005 5.625 0.82749 0.828339 0.828024
0.007 5.475 0.82474 0.825355 0.8251775
0.009 5.325 0.82219 0.822265 0.824143
0.01 5.25 0.82099 0.820678 0.822701
0.015 4.875 0.81564 0.812301 0.818906

For solving equations (5.6) and (4.10), we apply fourth order Runge–Kutta
method. In order to compute the value of δ, we integrate the equations (5.6)
from the shock, Z = Z(1) to the singular point Z = 0 after choosing a trial value
of δ, and evaluate U , S, P and Ω1 at Z = 0. If Ω1 vanishes at this point, then
we have started with the correct value of δ; otherwise we change this initial
guess of δ and repeat the same procedure again and again till the corrected
value of δ yields a zero value of Ω1 when Z = 0. For γ = 7/5 and different
values of α and β, the values of the similarity exponent δ, obtained from the
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above procedure, are listed in Tables 1 and 2; also they are compared with the
corresponding values obtained by CCW approximation [22] and Madhumita
and Sharma [14]. Indeed, the computed values are in excellent agreement with
those obtained by CCW approximation [22] and Madhumita and Sharma [14].

Table 2. Comparison of the similarity exponent δ obtained in the present method with
that obtained by Whitham’s rule [22] and Madhumita and Sharma [14] for different values
of α and β with m = 2 and γ = 7/5.

α β Present Whitham’s rule [22] Madhumita and Sharma [14]
δ δ δ

0.00 6.00 0.71718 0.717287 0.717174
0.001 5.925 0.71441 0.715284 0.714644
0.003 5.775 0.70918 0.711191 0.709833
0.005 5.625 0.70434 0.706979 0.705248
0.007 5.475 0.69989 0.702642 0.700797
0.009 5.325 0.69576 0.698174 0.698878
0.01 5.25 0.68898 0.69589 0.696718
0.015 4.875 0.68560 0.683929 0.690714

The velocity, density and pressure profiles for the present case are shown
in Figs. 1 to 6. Figs. 1, 2 and 3 correspond to cylindrical shocks and Figs.
4, 5 and 6 to spherical shocks. The CCW approximation consists in applying
the differential relation, which is valid on characteristics moving in the same
directions as the shock, to the flow quantity immediately behind the shock.
The computed results are given in Tables 1 and 2 for m = 1 and m = 2,
respectively. Tables 1 and 2 show that an increase in parameter α causes δ to
decrease and consequently the shock velocity to increase as shock approaches
the center/axis.
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Figure 1. Velocity profiles for
cylindrically symmetric (m = 1); γ = 7/5.
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Figure 2. Density profiles for cylindrically
symmetric (m = 1) flow; γ = 7/5.

We also obtain from (5.3) the analytical expressions of the flow variables at
the instant of collapse of the shock at t = 0, ϕ = 0 (t = 0, x �= 0 correspond to
ξ = ∞), where conditions (5.2) hold; they are given as

U ∼ ξ(δ−1)/δ, S ∼ ξμ, P ∼ ξμ+2(δ−1)/δ as ξ → ∞. (5.7)
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Figure 3. Pressure profiles for
cylindrically symmetric (m = 1) flow;

γ = 7/5.
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Figure 4. Velocity profiles for spherically
symmetric (m = 2); γ = 7/5.

The first relation in (5.7) implies that the velocity U tends to zero at the
instant of collapse where ξ → ∞ since δ is always smaller than one. It may
be noted from (5.7) that for uniform initial density (i.e. μ = 0) the density
S behind the shock remains bounded at the time of collapse while it becomes
unbounded at the time of collapse for non-uniform density (i.e. μ > 0). Equa-
tion (5.7) also indicates that the pressure P behind the shock remains bounded
(unbounded) at the instant of collapse if μ+ 2(δ − 1)/δ is negative (positive).
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Figure 5. Density profiles for spherically
symmetric (m = 2) flow; γ = 7/5.

0.2 0.4 0.6 0.8 1
1�Ξ

0.2

0.4

0.6

0.8

1
Pressure

Α�0.000

Α�0.007

Α�0.015

Figure 6. Pressure profiles for spherically
symmetric (m = 2) flow; γ = 7/5.

We integrated the equations (5.6) numerically using the fourth order Runge–
Kutta method for 1 ≤ ξ < ∞ and the values of velocity, density and pressure
before collapse and at the instant of collapse are plotted in Figs. 1–6. The
numerical results in the neighbourhood of ξ = ∞ are consistent with the results
predicted by asymptotic relations (5.7).

Figures 1–6 show that behind the shock the velocity decreases and the
density increases monotonically as we move towards the center/axis of collapse
where ξ → ∞; this increase in density behind the shock may be attributed to
the geometrical convergence or the area contraction of the shock wave. The
increase in density is further reinforced by a decrease in the value of α, and the
decrease in velocity is further reinforced by an increase in the value of α. The
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behaviuor of the pressure is more complicated: the pressure profiles behind the
shock exhibit non-monotonic variations. The pressure first increases, attains
a maximum value and then decreases as we move towards the center/axis of
collapse.
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