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Abstract. Fractional analog of the reaction diffusion equation is used to model the
subdiffusion process. Diffusion equation with fractional Riemann–Liouville operator
is analyzed in this paper. We offer finite-difference methods that can be used to
solve the initial-boundary value problems for some time-fractional order differential
equations. Stability and convergence theorems are proved.

Keywords: subdiffusion process, fractional order differential equation.

AMS Subject Classification: 65N06; 65N12; 65Z05; 92C10; 92C05.

1 Introduction

Cell membrane is a complicated heterogeneous dynamic bio-structure that can
be considered as fractal media. Here a lateral raft diffusion is not classic Brow-
nian motion [7]. Such physical processes as the diffusion in the fractal media
lead to various types of “anomalies” like jump (hop), fractional, sub- and su-
perdiffusion. These processes are well described by the fractional order partial
differential equations [14]. Time-space fractional diffusion equations extend
the classical model, substituting fractional derivatives for their integer-order
analog.

Some models of reversible reaction in subdiffusive regime are constructed
using fractional reaction diffusion equation [4]

∂tu(x, t) = 0D
1−γ
t

(
k(x)∇2u(x, t)

)
+ f(x, t), 0 < γ < 1. (1.1)

Physical interpretation was presented by [3, 4, 11, 20]. In this framework some
authors investigated the front reaction in biomolecular reactions [7].

In papers [1, 15] authors suggested to use a well-known factorization method
as a numerical method for solving the Dirichlet problem of anomalous diffusion
equation. Estimation of fractional order shifted mixed derivatives was adapted,



448 N. Abrashina-Zhadaeva and N. Romanova

in order to construct a factorization numerical model using the general theory
of the finite difference schemes [16].

We also mention interesting applications of fractional time derivatives to
formulate the exact and approximate discrete transparent boundary conditions
for solution of Schrōdinger type problems [5, 6].

In present paper we consider two approaches how to solve numerically the
2D fractional partial differential equations. These approaches are based on
the construction of finite difference schemes and the application of Grunwald–
Letnikov formula and L1-approximation for time fractional derivative. Ana-
lytical solution for considered problems can be obtained only for some special
cases. Moreover, the number of the published papers, that are devoted to this
theme, is limited. This fact is our motivation to investigate the modifications
of multilayer difference schemes for this class of problems.

2 Statement of the Problem

In the present paper, we investigate numerical methods to solve initial-boun-
dary value problems for equation (1.1).

Let us define continuous function u(x, t) in cylinder QT = G× [0 ≤ t ≤ T ],
where G = G∪Γ is two dimensional domain with boundary Γ and x = (x1, x2)
satisfies the following equation

∂u

∂t
= 0D

1−γ
t

(
∂2u

∂x21
+
∂2u

∂x22

)
+ r(x, t), x ∈ G, t > 0, (2.1)

and special conditions

u(x, 0) = u0(x), x ∈ G, u(x, t) = μ(x, t), x ∈ Γ, t ≥ 0. (2.2)

Here 0D
1−γ
t denotes the fractional Riemann–Liouville operator that is defined

by

0D
1−γ
t v(t) =

1

Γ (γ)

∂

∂t

∫ t

0

v(s)

(t− s)γ
ds,

where 0 < γ < 1 and Γ (·) is the Gamma function [9]. Let the problem (2.1),
(2.2) has a unique and sufficiently smooth solution. Riemann–Liouville frac-
tional derivative is considered in the class of a function, that is continuous across
the segment [0, T ]. Also, these functions have derivatives at this segment till
|γ|-order and exist almost everywhere [9, 12]. We assume that fractional γ-
order derivative of the function r(x, t) across the value t in initial time t = 0

exists. Here r(x, t) = a(x)tγ−2

Γ (γ−1) and a(x) is given function at point x.

According to [10, 12, 13], we obtain

0D
1−γ
t

[
0D

γ
t u(x, t)−

u(x, 0)t−γ

Γ (1− γ)

]
= 0D

1−γ
t ∇2u(x, t).

Then the equivalent form of the equation (2.1) is

0D
γ
t u(x, t)−

u(x, 0)t−γ

Γ (1− γ)
= Lu(x, t),

where L =
∑2

m=1 ∂
2/∂x2m.
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3 Difference Schemes

Let us introduce the discrete-time domain wτ = {tj = jτ, j = 0, . . . ,M ;
Mτ = T} and the discrete-space domain wh = {xi = (i1h1, i2h2), iα =
0, 1, . . . , Nα, hα = lα/Nα}. We use the following notation [16, 17]

y(±1α) = y
(
x
(±1α)
i , t

)
, x±1α = x1αα ± hα, xiαα = hαiα, α = 1, 2,

here y is the value of the function y(x, t) in the fixed node x = (i1h1, i2h2). For
numerical approximation of Lu we use the second difference derivative along
any space direction

Λu =

2∑
α=1

Λαu, Λαu = uxαxα
=
u(+1α) − 2u+ u(−1α)

h2α
+O

(
h2α

) ∼ ∂2u

∂x2α
(x, tj).

(3.1)
Time-derivative is approximated by the finite difference operator that is

obtained from the Grunwald–Letnikov formula and L1-approximation [9, 10].
Therefore we have

0D
γ
t u(x, tj)−

u(x, 0)t−γ
j

Γ (1− γ)
∼ u

(γ)
t +O(τ), (3.2)

0D
γ
t u(x, tj)−

u(x, 0)t−γ
j

Γ (1− γ)
∼ ũ

(γ)
t +O

(
τ2−γ

)
, (3.3)

where

u
(γ)
t = τ−γ

j∑
k=0

gγ,k
[
uj−k − u0

]
, gγ,k = (−1)k

(
γ

k

)
,

ũ
(γ)
t =

τ−γ

Γ (2− γ)

[
uj −

j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)u
k − aγ,j−1u

0

]
,

aγ,k = (k + 1)1−γ − k1−γ .

Modified difference schemes on the basis of the approximations (3.1) and (3.2)
have the following form

yγt = Λ
(
σyj + (1− σ)yj−1

)
, (3.4)

y0 = u0(x), x ∈ wh, (3.5)

yj
∣∣
γ∗ = μ(x, t), x ∈ γ∗, t ≥ 0 (3.6)

and on the basis of the approximations (3.1) and (3.3)

ỹγt = Λ
(
σyj + (1− σ)yj−1

)
, (3.7)

y0 = u0(x), x ∈ wh, (3.8)

yj
∣∣
γ∗ = μ(x, t), x ∈ γ∗, t ≥ 0. (3.9)

Here γ∗ is a set of the nodes that belong to Γ , 0 ≤ σ ≤ 1.
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4 Consistency and Stability

The conditional stability of the explicit scheme (3.4)–(3.6) as 0 ≤ σ < 1 is
obtained in [2] and the following theorem holds:

Theorem 1. Suppose that the condition τγ ≤ γ
2(1−σ) [

∑2
α=1 h

−2
α ]−1 is valid,

then the finite-difference scheme (3.4)–(3.6) is stable.

The stability and consistency of the difference scheme are proved in [18] for
(3.7)–(3.9) as 0 < σ < 1. This proof is based on the maximum principle and
the realization of the following condition

τγ <
2− 21−γ

2Γ (2− γ)(1− γ)

(
2∑

k=1

1

h2k

)−1

.

For difference functions we define the scalar product and the norm in the
following way

(v, w) =
∑
x∈wh

v(x)w(x)h1h2, ‖v‖ =
√

(v, v).

According to [16], we have

(Λαz, z) = −(zxα
, zxα

]α.

where z = 0 as x ∈ γ∗h and

N1∑
i1=1

N2−1∑
i2=1

v(i1h1, i2h2)w(i1h1, i2h2)h1h2 := (v, w]1,

N1−1∑
i1=1

N2∑
i2=1

v(i1h1, i2h2)w(i1h1, i2h2)h1h2 := (v, w]2.

Lemma 1. The implicit scheme (3.4)–(3.6) is unconditionally stable for σ = 1.

Proof. Let ρ0 is a perturbation solution. Then the corresponding error of (3.4)
as σ = 1 is defined by the following equation

τ−γ
[
ρj +

j−1∑
k=1

gγ,kρ
j−k −

j−1∑
k=0

gγ,kρ
0
]
= Λρj .

Here i1 = 1, 2, . . . , N1 − 1, i2 = 1, 2, . . . , N2 − 1 and ρj |γ

h
= 0 for all j ∈ N.

Multiplying (4.1) by τγh1h2ρ
j and summing over i1 = 1, N1 − 1, i2 = 1, N2 − 1,

we have

∥∥ρj∥∥2
= −

( j−1∑
k=1

gγ,kρ
j−k, ρj

)
+

( j−1∑
k=0

gγ,kρ
0, ρj

)
+ τγ

(
Λρj , ρj

)
. (4.1)
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We remind some important properties of binomial coefficients [2, 8, 9]

gγ,k =
(
1− 1 + γ

k

)
gγ,k−1, gγ,0 = 1, gγ,1 = −γ,

gγ,2 =
γ(γ − 1)

2!
, gγ,3 = −γ(γ − 1)(γ − 2)

3!
,

+∞∑
k=0

gγ,k = 0,

as k = 1, 2, . . . , gγ,k < 0,

j−1∑
k=0

gγ,k > 0, (0 < γ < 1).

They give us the following estimates according to (4.1)

−
( j−1∑

k=1

gγ,kρ
j−k, ρj

)
≤ −1

2

j−1∑
k=1

gγ,k
∥∥ρj−k

∥∥2 − 1

2

j−1∑
k=1

gγ,k
∥∥ρj∥∥2

,

( j−1∑
k=0

gγ,kρ
0, ρj

)
≤ 1

2

j−1∑
k=0

gγ,k
(∥∥ρ0∥∥2

+
∥∥ρj∥∥2)

,

τγ
(
Λρj , ρj

)
= −τγ

2∑
α=1

∥∥ρjxα

∥∥2

α
≤ −τγ

(
8

l21
+

8

l22

)∥∥ρj∥∥2 ≤ 0. (4.2)

Using the obtained estimates, (4.1) and (4.2), we have

∥∥ρj∥∥2 ≤
j−1∑
k=0

gγ,k
∥∥ρ0∥∥2 −

j−1∑
k=1

gγ,k
∥∥ρj−k

∥∥2
.

Let j = 1 and ‖ρ1‖2 ≤ ‖ρ0‖2. Then according to mathematical induction the
estimate∥∥ρj∥∥2 ≤

j−1∑
k=0

gγ,k
∥∥ρ0∥∥2 − j−1∑

k=1

gγ,k
∥∥ρj−k

∥∥2 ≤
j−1∑
k=0

gγ,k
∥∥ρ0∥∥2 −

j−1∑
k=1

gγ,k
∥∥ρ0∥∥2

is valid. Thus we obtain ‖ρj‖2 ≤ ‖ρ0‖2, ∀j ∈ N . 	


Theorem 2. The scheme (3.4)–(3.6) approximates the problem (2.1) and (2.2),
it is stable and the following accuracy estimate is valid:∥∥z(xj)∥∥ =

∥∥u(x, tj)− y(x, tj)
∥∥ ≤ M

(
τ + h21 + h22

)
, M > 0.

Proof. We get the expression that is similar to (4.2). Moreover, this expression

contains τγ(ψj , zj), |ψj | ≤ M1(τ +
∑2

α=1h
2
α) where M1 > 0 is constant. To

estimate the obtained equality we use ε-inequality in the following form

τγ
(
ψj , zj

) ≤ 1

4ε
τγ

∥∥ψj
∥∥2

+ ετγzj .

Let ε = (−∑∞
k=j gγ,k)(2τ

γ)−1. Then according to the inequality [18]

−
∞∑
k=j

gγ,k >
1

jγΓ (1− γ)
,

Math. Model. Anal., 17(3):447–455, 2012.
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we can define

1

4ε
τγ

∥∥ψj
∥∥2

=
τ2γ

−2
∑∞

k=j gγ,k

∥∥ψj
∥∥2 ≤ τ2γjγΓ (1− γ)

2

∥∥ψj
∥∥2

≤ T γτγΓ (1− γ)

2
l1l2M1

(
τ +

2∑
α=1

hα

)2

=
M2

2
τγ

(
τ +

2∑
α=1

h2α

)2

, (4.3)

ετγ
∥∥zj∥∥2

=
−∑∞

k=jgγ,k

2

∥∥zj∥∥2.
Thus we obtain the estimate

∥∥zj∥∥2 ≤ −
j−1∑
k=1

gγ,k
∥∥zj−k

∥∥2
+M2τ

γ

(
τ +

2∑
α=1

h2α

)2

. (4.4)

By (4.4), we get that
∑j−1

k=0gγ,k = −∑∞
k=jgγ,k, and the mathematical induction

proves that

∥∥zj∥∥2 ≤ M2

(
−
∞∑
k=j

gγ,k

)−1

τγ
(
τ +

2∑
α=1

h2α

)2

, ∀j ∈ N.

Using the estimates (4.3), (4.4), we get

∥∥zj∥∥2 ≤ M2j
γΓ (1− γ)τγ

(
τ +

2∑
α=1

hα

)2

≤ C2T
γΓ (1− γ)

(
τ +

2∑
α=1

h2α

)2

= M2

(
τ +

2∑
α=1

h2α

)2

.

The theorem is proved. 	


In analogous way we can prove the following theorem:

Theorem 3. Difference scheme (3.7)–(3.9) is stable under the initial data in
the norm ‖·‖ =

√
(·,·) and for the solution of this scheme the following estimate

∥∥zj∥∥ ≤ M

(
τ2−γ +

2∑
α=1

h2α

)
, M > 0 (4.5)

is satisfied for σ = 1.

Proof. We limit the proof of Theorem 3 to the part, that includes the essential
addition to Theorem 2. Multiplying the perturbed solution of (3.7), (3.9) by
τγΓ (2− γ) = A we get the following equation

(
ρj , ρj

)
=

(
j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)ρ
k, ρj

)
+ aγ,j−1

(
ρ0, ρj

)
+A

(
Λρj , ρj

)
.
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Since aγ,m > aγ,m+1 (m = 0, 1, . . .), it follows that(
j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)ρ
k, ρj

)

≤ 1

2

j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)
∥∥ρk∥∥2

+
1

2

j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)
∥∥ρj∥∥2

=
1

2

j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)
∥∥ρk∥∥2

+
1

2
(aγ,0 − aγ,j−1)

∥∥ρj∥∥,
aγ,j−1

(
ρ0, ρj

) ≤ 1

2
aγ,j−1

(∥∥ρ0∥∥2
+

∥∥ρj∥∥2)
.

We obviously have ‖ρ1‖2 ≤ ‖ρ0‖2 at j = 0. From here we obtain

∥∥ρj+1
∥∥2 ≤

j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)
∥∥ρk∥∥2

+ aγ,j−1

∥∥ρ0∥∥2
. (4.6)

Using the recurrent calculus from (4.6), we get

∥∥ρj+1
∥∥2 ≤

j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)
∥∥ρk∥∥2 + aγ,j−1

∥∥ρ0∥∥2

≤
j−1∑
k=1

(aγ,j−k−1 − aγ,j−k)
∥∥ρ0∥∥2

+ aγ,j−1

∥∥ρ0∥∥2
= (1− aγ,j−1)

∥∥ρ0∥∥2
+ aγ,j−1

∥∥ρ0∥∥2 =
∥∥ρ0∥∥2

.

The theorem is proved. 	

The error of the observed method is defined by the following estimate∥∥zj∥∥2 ≤ a−1

γ,j−1M2τ
γ
(
τ2−γ + h2

)2
, ∀j ∈ N,

where M2 is constant. Since aγ,j−1 >
1−γ
(j)γ , ∀j ∈ N , we see that

‖zj‖2 ≤ M2T
γ

1− γ
(τ2−γ + h2)2.

Using M =
(
M2T

γ/(1− γ)
) 1

2 , we obtain the estimate (4.5).

Remark. In the case when the approximation has the second order with re-
spect to spatial variables, coefficients kα(x) �= const and the convection term

−0D
1−γ
t (

∑2
α=1vα(x)

∂u
∂xα

) is presented in the model, all obtained results are
still valid. Modificated schemes (3.4)–(3.6), (3.7)–(3.9) are closely related to
n-layer finite–difference schemes [16] and its solution can be expressed via the
solution of the system of equations, that contain the operator matrix (cij) = c.
The size of this matrix is m × m, (m = 1). Therefore, using the concept of
compound schemes with m period, we can construct a local additive scheme for
the considered class of problems [16]. These FDS allow us to take into account
the memory effect of the considered system [19].
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